Superconducting Nanowire Single-Photon Detectors

Antonín Černoch and Jan Soubusta

Joint laboratory of optics of Palacky University and Institute of Physics of the Czech Academy of Sciences

Obsah

- Historical development
- 2 Microcalorimeter at the superconductivity edge TES
- Superconducting Nanowire
- SNSPD construction
- 5 SNSPD for quantum cryptography
- 6 Manufacturers and suppliers

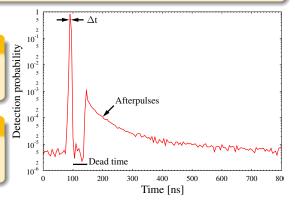
Historical development

- 1911 superconductivity of metals discovered by Dutch physicist Heike Kamerlingh Onnes
- 1971 rate of change in resistance of a Pb superconductor when illuminated by a laser pulse
- 1977 constructed TES (Transition-edge sensor) working at the edge of superconductivity
- 1996 a superconducting sensor can work much faster than a thermal bolometer
- 2001 the first functional prototype of a detector based on a superconducting nanowire

SNSPD - Superconducting Nanowire Single-Photon Detectors

Characteristics of single-photon detectors

Spectral properties


ullet dependence of quantum efficiency η on wavelength

Time characteristics

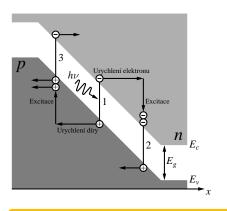
- dead time
- jitter (Δt)

Noise properties

- Dark counts rate D
- Afterpuls probability

SPCM – Single photon counting module

Perkin-Elmer EG&G SPCM-AQR-14(-FC) → TODAY Excelitas

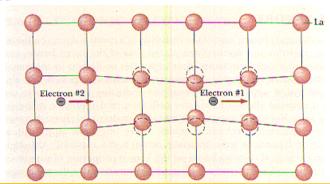


- $\eta_{max} \sim$ 73 % 700 nm
- maximum repetition rate 16 MHz

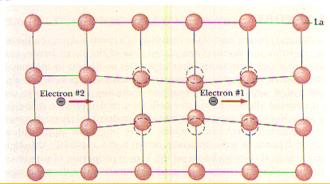
- D < 100/s
- Cooling to −20 °C

Avalanche photodiode in geiger mode

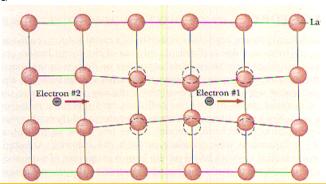
- p-n or p-i-n junction
- applied voltage V > V_{break}
- avalanche multiplication
- active and passive avalanche suppression
- influence on dead time


Typical materials

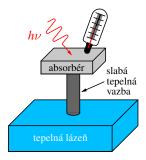
VIS Si, 400 - 1~000 nm, $\eta_{max} = 75$ %, D < 100/s


NIR Ge, InGaAs/InP, $\eta_{max} \sim 20$ %, $D \sim 5000/s$, slower

- Why does superconductivity work?
- Cooper pair binding energy is in units of meV
- Impact of a photon with an energy of units of eV will breakhundreds of these pairs
- In the impact area, superconductivity is disrupted and a hotspot is formed

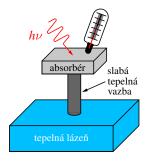

- Why does superconductivity work?
- Cooper pair binding energy is in units of meV
- Impact of a photon with an energy of units of eV will break hundreds of these pairs
- In the impact area, superconductivity is disrupted and a hotspot is formed

- Why does superconductivity work?
- Cooper pair binding energy is in units of meV
- Impact of a photon with an energy of units of eV will break hundreds of these pairs
- In the impact area, superconductivity is disrupted and a hotspot is formed


- Why does superconductivity work?
- Cooper pair binding energy is in units of meV
- Impact of a photon with an energy of units of eV will break hundreds of these pairs
- In the impact area, superconductivity is disrupted and a hotspot is formed

Obsah

- 1 Historical development
- 2 Microcalorimeter at the superconductivity edge TES
- Superconducting Nanowire
- SNSPD construction
- 5 SNSPD for quantum cryptography
- Manufacturers and suppliers


TES - Transition Edge Sensor

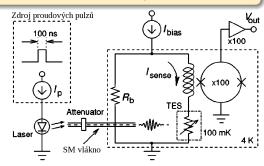
Microcalorimeter at the superconductivity edge

- increase of temperature → resistivity change
- ullet superconductivity temperature $T_c \sim 100\,\mathrm{mK}$
- narrow wolfram film $25 \times 25 \times 0.035 \,\mu\text{m}^3$ on Si substrate with Al contacts
- wide-spectrum, calibration required according to photon energy $(E = hc/\lambda)$

TES - Transition Edge Sensor

Microcalorimeter at the superconductivity edge

- increase of temperature → resistivity change
- ullet superconductivity temperature $T_c \sim 100\,\mathrm{mK}$
- narrow wolfram film $25 \times 25 \times 0.035 \, \mu\text{m}^3$ on Si substrate with Al contacts
- wide-spectrum, calibration required according to photon energy (E = hc/λ)


Quantum efficiency

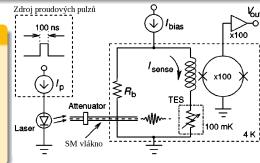
- theoretically 80 %, in practise 20 % (for 1550 and 1310 nm)
- ullet optical trap or rezonator ightarrow 95 %
- small absorption, great reflectance

TES – Functional diagram

Current pulse processing

- The current pulse in the detector circuit is proportional to the temperature change
- 100× SQUID (Superconducting Quantum Interference Device)
- SQUIDs @4 K, other electronics are at room temperature

Miller et al., App. Phys. Lett. 83, 791 (2003)


TES - Functional diagram

Current pulse processing

- The current pulse in the detector circuit is proportional to the temperature change
- 100× SQUID (Superconducting Quantum Interference Device)
- SQUIDs @4 K, other electronics are at room temperature

Properties of TES

- slow (heat conduction) $\Delta t \approx 100 \, \mathrm{ns}, \, \tau_D \approx 2 \, \mathrm{\mu s}$
- negligible $D \approx 3 \, \text{Hz}$
- resolution of up to 8 photons in the range from 200 to 1800 nm

Miller et al., App. Phys. Lett. 83, 791 (2003)

Obsah

- 1 Historical development
- 2 Microcalorimeter at the superconductivity edge TES
- Superconducting Nanowire
- SNSPD construction
- 5 SNSPD for quantum cryptography
- 6 Manufacturers and suppliers

Quid pro quo

What do we want?

- increase efficiency
- speed up the detection process
- reduce timing jitter
- keep D small

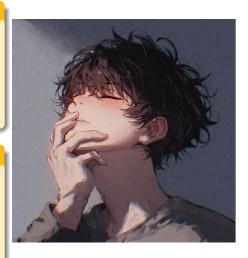
Quid pro quo

What do we want?

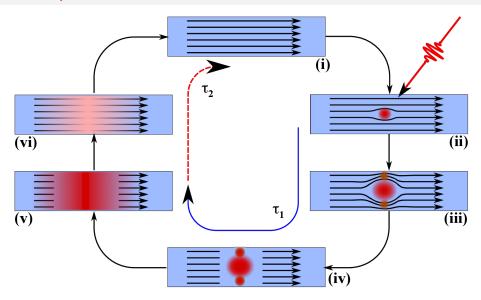
- increase efficiency
- speed up the detection process
- reduce timing jitter
- keep D small

What are we willing to sacrifice?

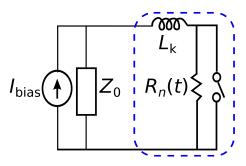
- NOTHING
- ...
- If there has to be something, then e.g. the resolution of the number of photons.

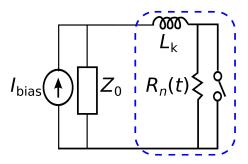

Quid pro quo

What do we want?

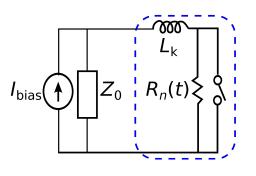

- increase efficiency
- speed up the detection process
- reduce timing jitter
- keep D small

What are we willing to sacrifice?


- NOTHING
- ...
- If there has to be something, then e.g. the resolution of the number of photons.


Principle of detection in a nanowire

Replacement electrical diagram


Replacement electrical diagram

kinetic inductance L_k

inductance – the magnetic field causes inertia of the current direction kinetic inductance even without a coil – in superconductors with very high current density and at very high frequencies

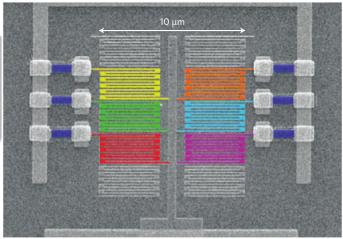
Replacement electrical diagram

- detection voltage pulse very weak (μV)
- cryogenic amplifiers 30 dB (1-2 GHz bandwidth)
- another broadband amplifier at room temperature 20 dB (9 GHz)
- output detection pulse 300 400 mV, SNR 100:1

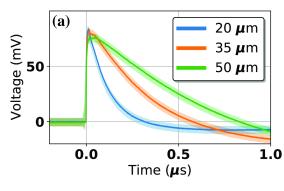
kinetic inductance Lk

inductance – the magnetic field causes inertia of the current direction kinetic inductance even without a coil – in superconductors with very high current density and at very high frequencies

Quantum efficiency


limited nanowire width \rightarrow small area \Rightarrow meanders

Efficiency


- coupling
- absorption
- recognizing

DDE or SDE

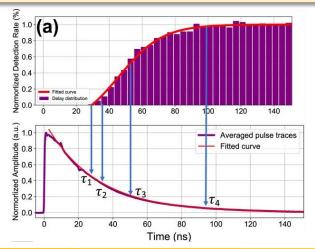
Optimization for various applications see design

Time properties

leading edge τ_1

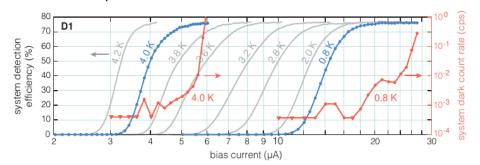
 \approx 1 ns

trailing edge τ_2


from units to hundreds of nanosecond depending on the active area of the meander (length of the nanowire)

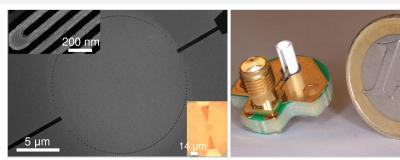
timing jitter Δt

- multiple sources: detector, amplification electronics, photon source or detection oscilloscope
- greatest influence nanowire length


detection efficiency imes dead time $au_{ m d}$

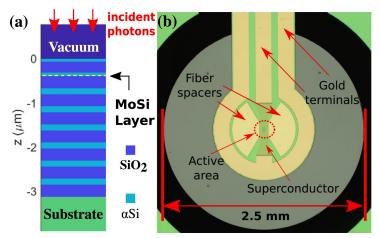
- the hit section of the nanowire is not in a superconducting state
- ullet substrate temperature (reservoir) significantly below T_c , as it goes

Dark counts D

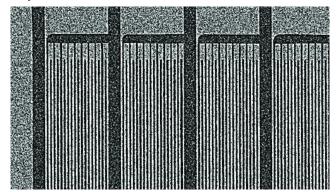

- ullet outer small excitation energy of Cooper pairs \Rightarrow cooled filters
- inner current fluctuations, grow exponentially with I_{sw} , for 0.9 I_{sw} they are negligible
- ullet lower temperatures o better SNR

Obsah

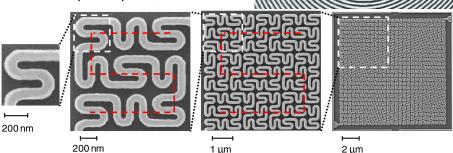
- Historical development
- 2 Microcalorimeter at the superconductivity edge TES
- Superconducting Nanowire
- SNSPD construction
- 5 SNSPD for quantum cryptography
- 6 Manufacturers and suppliers


Perpendicular to the optical fiber tip

- diffraction limit or beam path from an optical fiber $10 \times 10 \, \mu m^2$ pro 1550 nm
- centering of the optical fiber relative to the sensor when the temperature changes
- narrower nanowire \rightarrow greater probability of recording, but smaller area \rightarrow longer meander \rightarrow larger Δt
- optimization of meanders for given applications and wavelengths

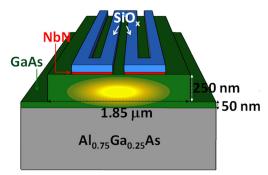

Nanowire in a resonator

- the nanowire itself has an absorption efficiency of only 30 %
- mirrors below (and above) from Au, Ag or dielectric Bragg mirror

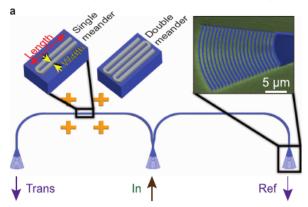

Segmentation

- division of the meander into several segments with separate reading
- increase in counting frequency or resolution in the number of photons
- possibility of crosstalk if nanowires are close to each other

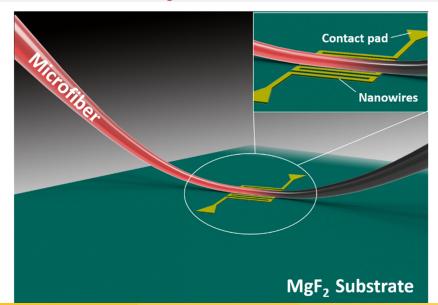
Polarization dependence


- pronounced anisotropy of meanders
- polarization in the direction of the nanowire has less absorption than perpendicular one
- new shapes spirals, fractals

Nanowire on top of waveguide

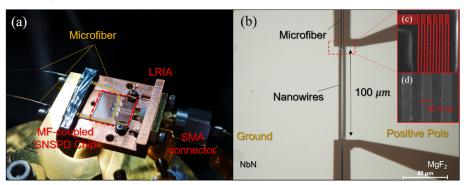


- integrated optics generation, processing and detection of light in a waveguide
- eliminates the problem of inefficient coupling into or decoupling from a material with a high refractive index
- energy transfer through an evanescent wave



Results are improving very quickly

- shape and length of meander optimized with respect to wavelength and guided mode profile
- short meander → faster response (hundreds of MHz)
- maximum DDE 66 % (for 0.96 $I_{\rm sw} \rightarrow D = 1.8 \, \rm kHz$)



Microfiber for focusing

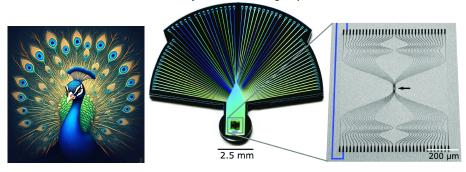
Results are improving very quickly

- ullet typical fiber core diameter for 1550 nm \sim 6 μm
- microfiber without cladding tapered down to 1.3 $\mu m \to significant$ losses, more pronounced for longer wavelengths
- \bullet experimental SDE 45 % and $D=50\,\mathrm{Hz}$ for 1550 nm

Obsah

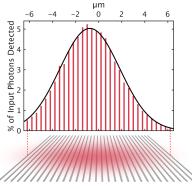
- Historical development
- 2 Microcalorimeter at the superconductivity edge TES
- Superconducting Nanowire
- SNSPD construction
- 5 SNSPD for quantum cryptography
- 6 Manufacturers and suppliers

Maximal secret bit rate


- counting frequency 10 GHz
- $\Delta t < 10 \, \text{ps} \, (3 \, \text{ps})$
- best SDE 100 % (98 %)
- noise-free (6 \times 10⁻⁶ Hz)

Record holders in individual categories?

who will win the modern pentathlon?


PEACOQ Optica 10, 183 (2023)

Performance-Enhanced Array for Counting Optical Quanta

- 32 individually read nanowires 13 µm long
- all electrical contacts have the same length

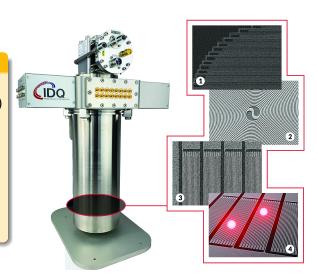
Performance

- probability of crosstalk 0.5 %
- efficiency of one segment multiplied by 25 → SDE (78±4) %
- dead time 5 ns + 2 ns for SDE at least 25 % \rightarrow 143 MHz
- polarization independent
- technically possible to realize photon counting

All together: for 1 GHz has SDE 50 % and a timing jitter 46 ps

QKD at a distance of 100 km (source 10 GHz, $\langle n \rangle = 0.025$ per pulse, 0.2 dB km⁻¹) will reach 70 Mbit/s secret key rate.

Obsah


- Historical development
- 2 Microcalorimeter at the superconductivity edge TES
- Superconducting Nanowire
- SNSPD construction
- 5 SNSPD for quantum cryptography
- Manufacturers and suppliers

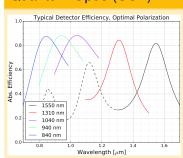
Manufacturers and suppliers

ID Quantique

- spin-off prof. N. Gisin (Genf)
- support for their QKD
- up to 16 different sensors in one cryostat

www.idquantique.com

Photon Spot (USA)


www.photonspot.com

- spin-off dr. Anant
- custom-made
- NIST certificate: 1550 nm SDE 95.5 % for 100 kHz

Quantum Opus (USA)

www.quantumopus.com

- spin-off dr. A. J. Miller
- model Opus One, up to 16 sensors, rack mountable
- cheapest configuration for \$105 000

Scontel (Russia)

www.scontel.ru

- founded in 2004 by Prof. G. Gol'tsman and his students
- 5 types of models optimized for efficiency, low noise, wide-spectrum response

Single Quantum (Netherlands)

www.singlequantum.com

- on the market since 2012, involved in the EuroQCI project
- sensors optimized for 800, 900, 1064, 1310 and 1550 nm

Comparison 1550 nm

	ID Quantique		Photon	Quantum	Scontel	Single
	ID230	ID287*	Spot*	Opus		Quantum
SDE [%]	25	95	85	80	90	85
D [Hz]	50	0.01	100	100	100	10
Δt [ps]	150	24	30	100	50	20
CR [MHz]	0.5	100	20	20	67	50

What to say in conclusion?

Recommended literature

- G. N. Gol'tsman et al., "Picosecond superconducting single-photon optical detector", Appl. Phys. Lett. 79, 705 (2001).
- Ch. M. Natarajan, M. G. Tanner and R. H. Hadfield, "Superconducting nanowire single-photon detectors: physics, and applications", Supercond. Sci. Technol. 25, 063001 (2012); ArXiv quant-ph 1204.5560.
- Lixing You, "Superconducting Nanowire Single-Photon Detectors for Quantum Information", arXiv quant-ph 2006.00411 (2000).
- I. Craiciu et al., "High-speed detection of 1550 nm single photons with superconducting nanowire detectors", Optica 10, 183 (2023).

Al was used to create several images in this presentation.

What to say in conclusion?

Thank you for your attention!

Recommended literature

- G. N. Gol'tsman et al., "Picosecond superconducting single-photon optical detector", Appl. Phys. Lett. 79, 705 (2001).
- Ch. M. Natarajan, M. G. Tanner and R. H. Hadfield, "Superconducting nanowire single-photon detectors: physics, and applications", Supercond. Sci. Technol. 25, 063001 (2012); ArXiv quant-ph 1204.5560.
- Lixing You, "Superconducting Nanowire Single-Photon Detectors for Quantum Information", arXiv quant-ph 2006.00411 (2000).
- I. Craiciu et al., "High-speed detection of 1550 nm single photons with superconducting nanowire detectors", Optica 10, 183 (2023).

Al was used to create several images in this presentation.