

Úvod do fyziky pevných látek SLO/UFPL

Jan Soubusta

Společná laboratoř optiky UP a Fyzikálního ústavu AV ČR 17. listopadu 50A, 779 07 Olomouc

Olomouc 2023

Navazující text je Fyzika pevných látek.

Recenzenti: zatím nikdo

1. vydání

 \bigodot Jan Soubusta, 2023

 \bigodot Univerzita Palackého v Olomouci, 2023

Tato publikace neprošla ve vydavatelství jazykovou úpravou. Návázáno na publikaci FPL z dubna 2012: 978-80-244-3095-9

Aktualizace a dodatečné informace k tomuto textu jsou dostupné na adrese: http://jointlab.upol.cz/soubusta/PL/

Sazba textu: LATEX, obrázky

Toto je vydaní ze dne 27. března 2023

Obsah

Ú	vod		1
1	Pro	storové uspořádání krystalu	5
	1.1	Historický vývoj pohledu na pevné látky	6
	1.2	Pevné látky z pohledu kvantové mechaniky	9
	1.3	Krystalová mřížka	10
	1.4	Sedm krystalografických soustav	11
	1.5	Operace symetrie	11
	1.6	Indexy krystalových rovin	13
	1.7	Jednoduché krystalové struktury	14
	1.8	Příklady	24
2	Gru	ipová teorie pevných látek	29
	2.1	Grupa prvků bodové symetrie	30
	2.2	Reprezentace grupy	31
	2.3	Značení grup symetrie	34
	2.4	Využití symetrie při práci s vlnovými funkcemi	35
	2.5	Využití symetrie při výpočtu integrálů	39
	2.6	Symetrie ve fyzice	41
	2.7	Příklady	45
3	Difi	rakce na krystalu, reciproká mřížka	47
	3.1	Krystalografie pomocí různých svazků	47
	3.2	Fourierova analýza	48
	3.3	Zákony rozptylu, difrakční podmínky	49
	3.4	Experimentální difrakční metody	50
	3.5	Fourierova analýza báze a strukturní faktory	52
	3.6	Příklady	58
Li	terat	tura	61
Se	eznar	n použitých symbolů	62
	Sym	boly v latince	62
	Sym	ıboly v řecké abecedě	64

Jednotky a veličiny v soustavě CGS		
------------------------------------	--	--

Úvod

Tento studijní text by měl sloužit pro první seznámení studentů přírodovědných oborů se základními principy fyziky pevných látek. V této vědní oblasti byla v nedávné době publikována celá řada velmi kvalitních knih. Některé se ale věnují již pokročilejším tématům a navíc převážná většina publikací je dnes dostupná pouze v anglickém jazyce. Tento text by měl proto ulehčit studium pevných látek i tím, že je v češtině.

Řazení kapitol tohoto textu bylo inspirováno českým překladem knihy Ch. Kittela: *Úvod do fyziky* pevných látek [1]. Tato kniha byla od svého vydání v minulém století doporučovaná jako úvodní text pro studenty fyziky pevných látek. Dodnes je tato kniha uceleným textem, který lze doporučit i díky výbornému překladu, který uvádí vzorce v jednotkách SI. Příklady na konci kapitol tohoto studijního textu jsou často převzaty z tohoto českého překladu a jsou proto citovány i s odkazem na stránku jako: Kittel, str. 49, př. 1. Příklady jsou často doprovázeny vysvětlivkami a jejich řešení může napomoci k lepšímu pochopení probírané látky. Náročnější úlohy, které řeší složitější problémy, jsou označeny hvězdičkou (*). Přestože Ch. Kittel vydal již osmé upravené vydání své knihy [2], český překlad je dodnes dostupný pouze pro druhé vydání z osmdesátých let minulého století. Je pravda, že fyzikální vlastnosti pevných látek se nemění, nicméně toto téma by si zasloužilo přece jen nové upravené vydání. Navíc český překlad druhého vydání je dnes dostupný pouze v knihovnách.

Pokročilejšímu čtenáři je možné doporučit knihu R.F. Pierreta [3] Advanced Semiconductor Fundamentals. Tato kniha je ve výkladu stručnější, ale je zase doplněna o celou řadu dat a grafů parametrů pevných látek. Kniha M. Razeghiho [4] je velmi podrobná a pokrývá i pokročilá témata. Symetrii krystalů se velmi podrobně věnují M. De Graef a M.E. McHenry [5]. Jednou z mála původních českých knih je

Knihy doporučené pro doplňující studium, přesné citace jsou uvedeny v kapitole Literatura na str. 61.

text L. Eckertové a kol. [6] Fyzikální elektronika pevných látek vydaný v roce 1992.

Převážně kovům se věnuje knížka autorů N.W. Ashcrofta a N.D. Mermina [7]. Přestože je tento text již z poloviny sedmdesátých let, je pro výklad kovů jedinečný. Kniha C. Klingshirna [8] se v první polovině podrobně věnuje výkladu fyziky pevných látek a v druhé polovině probírá optické vlastnosti polovodičů a různé optické metody studia pevných látek.

Velmi zajímavá je i kniha L. Mihalyho a M.C. Martina [9], která vysvětluje problematiku pevných látek na souboru řešených příkladů. Tato koncepce dovoluje čtenáři prohloubit si znalosti díky nutnosti hledat řešení typických úloh. Při řešení těchto úloh nezaškodí si zopakovat některé matematické poučky, vhodnou knihou může být např. *Matematický aparát fyziky* od J. Kvasnicy [10]. Navíc problematika pevných látek využívá známá řešení typických úloh z kvantové mechaniky. Základy kvantové mechaniky si lze zopakovat v knize L. Skály [11] *Úvod do kvantové mechaniky*.

Teoretičtější pohled na pevné látky podávají skripta E. Majerníkové [12] vydaná UP v Olomouci v roce 1999. Kniha Ch. Kittela [13] *Quantum Theory of Solids* je opět souborem řešených úloh. Symetrii krystalů se věnuje kniha autorů P.Y. Yua a M. Cordony [14], kterou lze ale opět doporučit pouze pokročilému čtenáři. Poslední kniha, jejíž autor je J. Celý [15] z MU v Brně, se věnuje problematice kvazičástic pro popis pevné látky a různých interakcí v pevné látce.

Seznam jmenovaných knížek, které se věnují problematice pevných látek, by mohl být mnohem rozsáhlejší, ale další hledání přenechme vlastní iniciativě čtenáře. Navíc mnoho zajímavých textů, ale i multimediálních souborů na téma *pevné látky* lze najít i na internetových stránkách známých univerzit, nebo na Wikipedii: http://www.wikipedia.org/. Jak známo, dlouhé vysvětlování může snadno zastoupit jeden obrázek a dynamiku nějakého procesu je možné nejsnáze pochopit z reprezentativní animace. Není možné zde vypsat všechny zajímavé internetové odkazy, ale bez obav: "Kdo hledá, najde."

Tento krystal je původně z Brazílie, ale dnes ho najdete na zeměpisné pozici: 49°24'24.220"N, 11°0'23.203"E. Jde o krystal SiO₂, trigonální krystalová soustava, tvrdost 7.

Kapitola 1

Prostorové uspořádání krystalu

Obsah kapitoly

1.1	Historický vývoj pohledu na pevné látky	6
	1.1.1 Bohrův model atomu vodíku	7
	1.1.2 Popis atomárních vlnových funkcí a kvantová čísla \hdots	8
1.2	Pevné látky z pohledu kvantové mechaniky	9
1.3	Krystalová mřížka	10
1.4	Sedm krystalografických soustav	11
1.5	Operace symetrie	11
	1.5.1 Prvky bodové grupy symetrie	12
1.6	Indexy krystalových rovin	13
1.7	Jednoduché krystalové struktury	14
1.8	Příklady	24

Všechny látky dělíme podle skupenství na *plyny, kapaliny* a *pevné látky*. Jako čtvrté skupenství se někdy uvádí ještě *plazma*. Pevné látky pak dělíme podle prostorového uspořádání na *krystalické*, *polykrystalické* a *amorfní*. V celé této práci se soustředíme výhradně na látky krystalické, u kterých se při popisu uspořádání atomů dá využít prostorová symetrie.

Krystalická pevná látka znamená periodické uspořádání atomů v pravidelné mřížce. O této pravidelnosti se můžeme přesvědčit díky tomu, že při difrakci rentgenového záření se za krystalem vytváří pravidelný obrazec difrakčních maxim, ze kterého lze rozmístění atomů dopočítat. Částice, ze kterých je látka složena, lze rozdělit na těžká atomární jádra a o tři řády lehčí elektrony. Při počátečním studiu pevných látek bylo nutné řešit oba tyto systémy nejprve odděleně. O atomech již víme, že jsou rozmístěny v periodické mřížce a řeší se pouze kinetické rovnice popisující dynamiku kmitání atomů kolem svých rovnovážných poloh. Přitom elektrony na vnitřních energetických hladinách jsou lokalizovány blízko jader a spolu vytvářejí kompaktní ionty. Navenek pak působí celkovým nábojem, který je součtem kladného náboje jádra a záporného náboje elektronů vnitřních lokalizovaných orbitalů. Vibrace těchto atomů je tedy první řešený problém.

Pokud máme známé periodické uspořádání atomů v prostoru, víme, že zbývající elektrony se musí pohybovat v periodickém potenciálu, který tyto ionty vytvářejí. Průlomem při hledání správné vlnové funkce valenčních elektronů byl Blochův teorém. S jeho použitím se odvodí to, že periodický potenciál vede na pásovou energetickou strukturu povolených a zakázaných energetických pásů pevné látky. Nalezení energetických hladin elektronů je tedy druhý základní problém, který je nutné vyřešit a je předpokladem dalšího hlubšího studia fyziky pevných látek.

Teorie pevných látek vychází ze znalostí z celého rozsahu základního kurzu fyziky. Jedná se zejména o termodynamiku a statistickou fyziku, kvantovou fyziku, dále pak elektronovou konfiguraci atomů a popis elektronových orbitalů ze základů chemie. Je nutná také znalost matematické analýzy, protože v této problematice se musí často sumovat, integrovat, derivovat a počítat limity funkcí. V neposlední řadě je důležitá také znalost algebry pro popis symetrií krystalů pomocí grupové teorie. Výhodou fyziky pevných látek je to, že se v ní dají uplatnit všechny řešitelné modely kvantové mechaniky. Studium pevných pátek je tedy ukázkou praktického použití kvantovky. Při výzkumu se postupovalo od nejednodušších modelů a testovala se shoda teoretických výpočtů s experimentem. Shoda s naměřenými daty tak byla vždy nejdůležitějším ukazatelem správnosti používané teorie.

1.1 Historický vývoj pohledu na pevné látky

Nejprve připomeňme některé historické milníky ve vývoji pohledu na strukturu látky. Ty jsou do značné míry svázány s formováním základů kvantové mechaniky na počátku dvacátého století.¹

- 1853 První pozorování čárového spektra vodíku.
- 1864 Maxwellova teorie elektromagnetického pole (J.C. Maxwell).
- 1869 Mendělejevova periodická tabulka prvků (D.I. Mendělejev).
- <u>1895</u> Objev rentgenového záření (W.C. Röntgen).
- 1896 Objev radioaktivity (A.H. Becquerel).
- 1897 J.J. Thomson objevil elektron a navrhl tzv. pudinkový model atomu.
- 1898 Identifikace α a β záření.
- 1899– R.A. Millikan provedl první nepřímé měření náboje elektronu.
- 1900 M. Planck odstartoval zrod kvantové teorie vysvětlením záření absolutně černého tělesa.
- 1905 A. Einstein vysvětlil princip fotoefektu pomocí kvanta elektromagnetického záření.
- 1906 E. Rutherford² provedl experiment s rozptylem α částic na kovové fólii (100 atomárních vrstev).
- 1911 Tento experiment vedl Rutherforda k závěru, že kladný náboj atomu je soustředěn do "bodového" jádra atomu.
- 1913 N. Bohr použil planetární model pro vysvětlení stability atomu.
- 1921 Objev silné nukleární interakce, která zodpovídá za stabilitu jádra.
- 1931 Sir J. Chadwick a kolegové objevili neutronu.

Kdybychom chtěli začít historicky úplně na začátku, museli bychom se vrátit až k řeckým filozofům jako byli **Leukippos** a **Démokritos**. Ti již v době 400 let před Kristem zavedli *atom* jako nejmenší dále již nedělitelnou částici, ze které se skládá veškerá hmota kolem nás. Trvalo další dva tisíce let, než irský badatel, fyzik a chemik **Robert Boyle** roku 1661 navrhl koncept, že se různé látky skládají z různých atomů, které dnes nazýváme *prvky*. Podle Boyla bylo možné prvky rozlišovat podle zbarvení plamene, když se daný materiál zapálí. Tímto způsobem vlastně poprvé použil spektroskopii jako metodu prvkové analýzy. Jeho kolegové (**A. Lavoisier**, **J. Priestley** a **J. Dalton**) pak přišli se správnou myšlenkou, že pro jednotlivé prvky je charakteristická jejich atomární hmotnost.

Kolem roku 1870 bylo známo již 65 různých prvků. Významným přelomem byla pečlivá práce ruského chemika **Dmitrije Ivanoviče Mendělejeva**, který zkoumal systematické opakování vlastností prvků po osmi a podařilo se mu uspořádat všechny prvky do *periodické tabulky*, která dnes nese jeho jméno. V jeho tabulce některé prvky chyběly, nebyly totiž v jeho době ještě známy. Takto dokázal Mendělejev velmi přesně předpovědět vlastnosti prvku, který je v tabulce ve sloupci IV.A pod křemíkem. Tento v přírodě ne příliš častý prvek objevil až v roce 1886 německý chemik **Clemens A. Winkler** a pojmenoval jej podle svého národa germanium. ((PO. 1.1: Periodická tabulka))

Na konci 19. století **Joseph John Thomson** objevil ve struktuře látky záporně nabité částice, které nazval *elektrony*. Poté **Robert Millikan** provedl měření, kterým stanovit poměr náboje a hmotnosti elektronu. Dále pak určil, že poměr hmotnosti elektronu a hmotnosti atomu vodíku (jednoho protonu) je řádově 1/2000. Na to navázal **Henry Moseley**, který odhadl, že počet elektronů jednotlivých atomů odpovídá atomovému číslu. Pokud jsou ale atomy navenek neutrální, musí záporný náboj elektronů kompenzovat nějaký kladný náboj.

Prvním, kdo navrhl planetární model atomu byl v roce 1904 japonský fyzik **Hantaro Nagaoka**. Odmítal Thomsonův pudinkový model, kde by se kladné a záporné náboje překrývaly. Kladný náboj si představoval jako planetu Saturn a elektrony jako Saturnovy prstence. Předpovědi o hustém atomovém jádru potvrdl svými pokusy **Ernest Rutherford**, který pojmenoval kladně nabité částice jádra *protony*. Dále předpovídal že jádro, složené z kladně nabitých protonů, musí pro udržení své stability obsahovat

¹Tento seznam obsahuje hned několik nositelů Nobelovy ceny za fyziku: 1901 - W.C. Röntgen, 1903 - A.H. Becquerel, 1906 - J.J. Thomson, 1918 - M. Planck, 1921 - A. Einstein, 1922 - N. Bohr, 1923 - R.A. Millikan, 1929 - L. de Broglie, 1935 - J. Chadwick, převzato z knihy [5] na str. 51.

 $^{^2 {\}rm Ernest}$ Rutherford bývá považován za zakladatele jaderné fyziky. Za studium radioaktivity obdržel v roce 1908 Nobelovu cenu za chemii.

nějaké další neutrální částice. Rutherford o nich mluvil jako o lepidlu, které drží husté jádro pohromadě. Tyto neutrální částice jádra dnes nazýváme *neutrony*.

Od počátku 20. století se začala rozvíjet kvantová fyzika. V roce 1900 Max Planck začal s kvantováním elektromagnetického pole. Částice tohoto pole se nazývají *fotony* a mají energii $h\nu$, kde h je Planckova konstanta ($h = 6.62607515 \times 10^{-34}$ Js, přesně) a ν představuje frekvenci pole. Nastolenou vlnově částicovou dualitu dokončil z druhé strany francouzský fyzik Louis de Broglie, když hmotným částicím přiřadil vlnovou délku podle vztahu $\lambda = h/p$. Zde h je opět Planckova konstanta a p je hybnost částice, kterou spočítáme jako součin hmotnosti a rychlosti částice. My v tomto textu budeme používat výhradně jenom redukovanou Planckovu konstantu definovanou vztahem $\hbar = h/2\pi$. Všechny v textu používané konstanty a symboly jsou pro přehlednost uvedeny v seznamu na konci skripta na str. 62.

Jeden ze základních postulátů popisujících kvantové chování elementárních částic je princip neurčitosti **Wernera Heisenberga**³. Ten říká, že nelze současně přesně změřit dvě nekumutující veličiny jedné částice. Nelze například současně určit přesně polohu a hybnost. Tento princip můžeme zapsat tak, že neurčitost měřené polohy Δx a neurčitost hybnosti Δp_x částice je větší než nenulová konstanta,

 $\Delta x \Delta p_x \ge \hbar.$

Jak je patrné, konstanta, která omezuje maximální možnou přesnost měření, je opět redukovaná Planckova konstanta. K vlnově částicovému dualismu přispěl dále **Max Born**⁴, když navrhl pravděpodobnostní interpretaci vlnové funkce studované částice. A nakonec bylo ještě nutné, aby **Erwin Schrödinger**⁵ odvodil rovnici, která umožňuje počítat vlnové funkce a energie studovaných částic a předpovídat jejich časový vývoj.

1.1.1 Bohrův model atomu vodíku

Pro vysvětlení stability atomu vodíku použil dánský fyzik Niels Bohr kvantování [11]. Předpoklady Bohrova modelu jsou:

Elektrony se pohybují po kruhových drahách, pro které je splněna kvantová podmínka pro moment hybnosti

$$\oint p \, \mathrm{d}r = n \, 2\pi\hbar, \qquad n = 1, 2, \dots, \tag{1.1}$$

kde p je hybnost elektronu, dr je element kruhové dráhy, n je kvantové celé číslo a \hbar je redukovaná Planckova konstanta.

- Elektrony při pohybu na kruhových drahách, splňujících kvantovou podmínku, nevyzařují energii.
- Elektron může přijmout nebo vyzářit energii pouze při přechodu z jedné dráhy na druhou.

Nyní použijeme klasickou podmínku vyvážení přitažlivé coulombovské a odstředivé síly při kruhovém pohybu. Tak dostaneme na základě těchto semi-klasických úvah první rovnici,

$$v^2 = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_0 r},$$

kde *e* je elementární náboj, m_0 je hmotnost elektronu a ε_0 je permitivita vakua. Druhou rovnici získáme z kvantovací podmínky (1.1),

$$v = \frac{hn}{m_0 r}$$

Kombinací obou rovnic prostým dosazením eliminujeme neznámou v a získáme poloměr povolených kruhových drah hladiny s kvantovým číslem n ve tvaru

$$r_n = n^2 a_{\rm B}, \qquad \text{kde} \quad a_{\rm B} = \frac{4\pi\varepsilon_0\hbar^2}{e^2 m_0} \approx 0.529 \ 177 \ \text{\AA}.$$
 (1.2)

Poloměr kružnice základní energetické hladiny $a_{\rm B}$ se označuje *Bohrův poloměr*. Pro energie jednotlivých elektronových hladin dostaneme vztah, který je ve shodě s experimentálně pozorovaným čárovým spektrem atomárního vodíku

$$E_n = -\frac{\text{Ry}}{n^2}, \quad \text{kde} \quad \text{Ry} = \frac{e^4 m_0}{2(4\pi\varepsilon_0\hbar)^2} \approx 13.605 \text{ 8 eV}.$$
 (1.3)

 $^3 \rm Werner$ Heisenberg získal Nobelovu cenu za fyziku v roku 1932 za podíl na vytvoření kvantové mechaniky.

⁴Max Born je nositelem Nobelovy ceny za fyziku z roku 1954.

⁵Erwin Schrödinger je nositelem Nobelovy ceny za fyziku z roku 1933.

Obr. 1.1: Červeně je zobrazen coulombovský potenciál atomu vodíku U(r), tečkovaně jsou znázorněny energetické hladiny (1.3) a modře jsou zobrazeny atomární vlnové funkce 1s a 2s.

Energie základní hladiny se nazývá *Rydberg*.

Je zajímavé, že Bohrovu kvantovací podmínku (1.1) můžeme s využitím vlnové délky pro elektron podle L. de Broglieho ($\lambda_e = 2\pi\hbar/p$) zapsat následujícím alternativním způsobem. Délka stabilní kruhové dráhy elektronu atomu vodíku je vždy celočíselným násobkem vlnové délky elektronu,

$$2\pi r_n = n\lambda_e.$$

Podrobný kvantový výpočet spektra, které se získá řešením Schrödingerovy rovnice, lze nalézt v učebnicích kvantové mechaniky [11]. Výsledkem jsou kromě energetických hladin (1.3) ještě vlnové funkce elektronů. Kvadrát vlnové funkce představuje pravděpodobnost nalezení elektronu v daném místě prostoru. Zde uvedeme pro ilustraci pouze vlnovou funkci základního kulově symetrického stavu (1s orbitalu)

$$\psi_{1s}(r) = \frac{1}{\sqrt{\pi a_{\rm B}^3}} e^{-r/a_{\rm B}}.$$
(1.4)

Energetické hladiny atomu vodíku a dvě vlnové funkce nejnižších hladin jsou zakresleny v obr. 1.1.

1.1.2 Popis atomárních vlnových funkcí a kvantová čísla

Jádro atomu vodíku představuje vlastně jeden proton, který vytváří sféricky symetrický potenciál (obr. 1.1).

$$U(r) = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}.$$

Řešením Schrödingerovy rovnice pro elektron s tímto sféricky symetrickým potenciálem dostaneme soustavu energetických hladin a vlnových funkcí $\psi(\vec{r})$. Tyto vlnové funkce lze rozložit na součin sférické části R_{nl} a úhlové části Y_{lm} ,

$$\psi(\vec{r}) = \psi_{nlm}(r,\theta,\phi) = R_{nl}(r) Y_{lm}(\theta,\phi),$$

kde proměnné r, θ, ϕ představují sférické souřadnice. Indexy n, l, m představují kvantová čísla dané vlnové funkce a těm se budeme dále věnovat.

- První je *n*, které označuje *hlavní kvantové číslo* a nabývá hodnot $n = \{1, 2, 3, ...\}$. Hlavní kvantové číslo určuje energii kvantové hladiny podle (1.3), $E_n = -\text{Ry}/n^2$.
- Následuje *l* jako vedlejší kvantové číslo. Pro jeho hodnoty platí: $l \le n-1$, neboli $l = \{0, 1, ..., n-1\}$. Toto kvantové číslo určuje vlastní hodnotu operátoru kvadrátu momentu hybnosti \hat{L}^2 , velikost momentu hybnosti je rovna hodnotě: $\sqrt{l(l+1)}\hbar$.
- Třetím číslem je magnetické kvantové číslo m, které leží v intervalu $-l \le m \le l$. Toto číslo je vlastním číslem operátoru \hat{L}_z a určuje projekci orbitálního momentu hybnosti. $l_z = m\hbar$. Název tohoto

kvantového čísla vyplývý z toho, že vlivem působení magnetického pole dochází k rozštěpení energetické hladiny elektronů v závislosti právě na projekci momentu hybnosti do směru magnetického pole. Tento efekt se nazývá Zeemanův jev⁶.

Pro úplnost uvedeme ještě čtvrté kvantové číslo elektronu, kterým je *spin s.* Představuje vnitřní moment hybnosti elektronu, je ryze kvantový a nemá klasickou paralelu. Při působení magnetického pole se energické hladiny elektronu štěpí pouze na dvě hodnoty. Projekce spinu je totiž pouze dvojí $s = \pm 1/2$.

Obr. 1.2: Atomární orbitaly odpovídající vlnovým funkcím atomu vodíku. Každý řádek odpovídá jedné hodnotě hlavního kvantového čísla. V jednotlivých sloupcích jsou uvedeny povolené kombinace vedlejšího a magnetického kvantového čísla. Oblasti červené a modré barvy představují oblasti a kladnou a zápornou hodnotou. Převzato z webu WIKIPEDIA: https://en.wikipedia.org/wiki/Atomic_orbital

Protože elektrony mají jen dvě možné projekce spinu, používá se pro jejich značení často jenom šipka. Podle Pauliho vylučovacího principu⁷ musí mít každý elektron unikátní kvantová čísla. Musí se lišit alespoň projekcí spinu, proto se elektronové obsazení daného atomu často maluje do schémat. Na ukázku zde uvedeme schématický obrázek pro draslík s atomovým číslem 19.

1.2 Pevné látky z pohledu kvantové mechaniky

Pevná látka obsahuje řádově 10²³ atomů na krychlový centimetr. Matematicky lze systém interagujících částic látky popsat pomocí Hamiltonova operátoru energie. Hamiltonián popisující perfektní krystal má členy odpovídající kinetické energii elektronů, $\sum_{i} \frac{p_i^2}{2m}$, a coulombovské interakci mezi elektrony, $\frac{1}{2}\sum_{i,i'} \frac{e^2}{4\pi\varepsilon_0|\vec{r_i}-\vec{r_{i'}}|}$. Čárka nad sumou znamená to, že indexy *i* a *i'* musí být různé. Další členy přísluší kinetické energii jader, $\sum_{j} \frac{P_j^2}{2M_j}$, a coulombovské interakci mezi jádry, $\frac{1}{2}\sum_{j,j'} \frac{Z_j Z_{j'} e^2}{4\pi\varepsilon_0|\vec{R_j}-\vec{R_{j'}}|}$. Poslední člen odpovídá vzájemné interakci mezi elektrony a jádry, $-\sum_{i,j} \frac{Z_j e^2}{4\pi\varepsilon_0|\vec{r_i}-\vec{R_j}|}$, kde proměnné $m, \vec{r_i}, \vec{p_i}$ značí hmotnost, po-

lohy a hybnosti elektronů a proměnné $M_j, Z_j, \vec{R}_j, \vec{P}_j$ značí hmotnosti, atomové číslo, polohy a hybnosti jader. Atomové číslo udává počet protonů (elektronů) daného neutrálního atomu.

 $^{^6}$ Nizozemský fyzik Pieter Zeeman získal za popis štěpení energetických hladin v magnetickém poli Nobelovu cenu za fyziku v roce 1902.

⁷Wolfgang Pauli za formulaci vylučovacího principu získal Nobelovu cenu za fyziku v roce 1945.

Celý systém popíšeme hamiltoniánem, který je součtem všech zmíněných členů,

$$H = \sum_{i} \frac{p_{i}^{2}}{2m} + \frac{1}{2} \sum_{i,i'}^{\prime} \frac{e^{2}}{4\pi\varepsilon_{0}|\vec{r_{i}} - \vec{r_{i'}}|} + \sum_{j} \frac{P_{j}^{2}}{2M_{j}} + \frac{1}{2} \sum_{j,j'}^{\prime} \frac{Z_{j}Z_{j'}e^{2}}{4\pi\varepsilon_{0}|\vec{R_{j}} - \vec{R_{j'}}|} - \sum_{i,j} \frac{Z_{j}e^{2}}{4\pi\varepsilon_{0}|\vec{r_{i}} - \vec{R_{j}}|}.$$
(1.5)

Problém takového počtu interagujících částic nelze řešit a ani by to nemělo smysl. Z pohledu klasického pozorovatele nás stejně budou zajímat makroskopické parametry, jako je třeba vodivost daného vzorku. Je třeba provést zjednodušení daného řešeného problému.

0) Rozdělení elektronů na valenční a vnitřní slupky

Nulté zjednodušení můžeme provést tak, že rozdělíme elektrony na valenční, které vstupují například do vazeb v látce, a na elektrony v uzavřených orbitalech. Pro křemík jsou uzavřené orbitaly elektronové slupky $1s^2$, $2s^2$, $2p^6$. Tyto elektrony jsou lokalizované u jader a nemění se během procesu krystalizace. Od této chvíle budeme proto používat indexy *i* pouze pro elektrony ve valenční slupce, protože prostorové rozložení těchto elektronů se během krystalizace mění. Pro křemík jsou to elektrony ve slupkách 3s a 3p, valence křemíku je $Z^* = 4$. Jádro s elektrony v uzavřených orbitalech budeme považovat za fixní iont.

1) Bornova-Oppenheimerova⁸ aproximace (adiabatická aproximace)

Hmotnost elektronu je o tři řády menší než hmotnost protonu. Proto elektrony mohou reagovat na změnu polohy jader prakticky okamžitě. To umožňuje použít pro elektrony aproximaci, kdy se polohy jader berou jako stacionární. Naproti tomu atomová jádra nemohou sledovat pohyb elektronů a vidí tedy pouze časově zprůměrovaný adiabatický elektronový potenciál. Takže hamiltonián lze přepsat následovně

$$H = H_J(\vec{R}_j) + H_e(\vec{r}_i, \vec{R}_{j0}) + H_{e-J}(\vec{r}_i, \delta \vec{R}_j),$$
(1.6)

kde H_J popisuje pohyb iontů v poli samotných iontů plus průměrný adiabatický potenciál elektronů. H_e značí hamiltonián elektronů s ionty zamrzlými na stacionárních polohách \vec{R}_{j0} . Konečně H_{e-J} popisuje změny energie elektronů při posunu jader z jejich rovnovážné polohy o $\delta \vec{R}_j$. Tento člen odpovídá za elektron-fononovou interakci, která se bude diskutovat až v pozdějších kapitolách.

Elektronový hamiltonián má tedy tvar

$$H_e = \sum_{i} \frac{p_i^2}{2m} + \frac{1}{2} \sum_{i,i'}' \frac{e^2}{4\pi\varepsilon_0 |\vec{r_i} - \vec{r_{i'}}|} - \sum_{i,j} \frac{Z^*{}_j e^2}{4\pi\varepsilon_0 |\vec{r_i} - \vec{R_{j0}}|}$$
(1.7)

2) Aproximace středního pole (jedno-elektronová aproximace)

V této aproximaci předpokládáme, že každý elektron cítí stejný střední potenciál $V(\vec{r})$. Schrödingerova rovnice, která popisuje pohyb libovolného zvoleného elektronu v pevné látce, bude mít následující tvar

$$H_{1e}\varphi_n(\vec{r}) = \left(\frac{p^2}{2m} + V(\vec{r})\right)\varphi_n(\vec{r}) = E_n\varphi_n(\vec{r}), \qquad (1.8)$$

kde φ_n označuje vlnovou funkci jednoho elektronu.

Řešení jedno-elektronové Schrödingerovy rovnice spočívá ve dvou krocích. V prvním kroku se spočítá elektronový potenciál $V(\vec{r})$. Ve druhém kroku se nalezne řešení Schrödingerovy rovnice, takto získáme spektrum energetických hladin a vypočítáme obsazení těchto hladin elektrony. Každá energetická hladina může být obsazena pouze dvěma elektrony s opačným spinem, díky Pauliho vylučovacímu principu.

1.3 Krystalová mřížka

Krystal je periodické uspořádání atomů, které je pravidelné na velkou vzdálenost. Krystalová struktura je definována pomocí mřížky a báze atomů v každé její elementární buňce. (PO. 1.1: Periodická tabulka)

Krystal se dá chápat jako periodické opakování jedné *elementární buňky*, která je daná třemi elementárními translačními vektory $\vec{a}_1, \vec{a}_2, \vec{a}_3$. Objem elementární buňky označíme $V_c = |\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3|$. *Primitivní*

 $^{^8 {\}rm Robert}$ Oppenheimer byl šéfem projektu Manhattan, který se v Los Alamos věnoval vojenskému výzkumu jaderných reakcí. Dne 16.7. 1945 zde provedli první pokusný výbuch atomové bomby Trinity.

buňka je elementární buňka s nejmenším objemem. Pro kubické krystaly se často místo primitivní buňky používá buňka elementární, jejíž objem je celistvým násobkem objemu primitivní buňky. (PO. 1.2: Kubické SC, BCC, FCC)

Obrázek 1.3 ukazuje elementární buňku jednoduché kubické mřížky (SC) soli CsCl. Jednotlivé *mříž-kové body* jsou červeně zobrazené atomy chlóru. Tyto mřížkové body jsou v prostoru vzdáleny vždy o celočíselný násobek elementárních translačních vektorů. *Bázi* tohoto krystalu tvoří dvojice atomů (Cs-Cl), kde atom cesia je posunutý vůči atomu chlóru o polovinu tělesové úhlopříčky. Abychom správně popsali celý krystal, musíme jednotlivé atomy báze umístit přesně stejně do všech elementárních buněk mřížky.

Volba elementární buňky krystalu není jednoznačná, proto se někdy zavádí Wignerova-Seitzova buňka⁹, jejíž definice již jednoznačná je. Přestože tato buňka dobře odráží symetrii krystalu, moc se nepoužívá. K její definici se dostaneme v následující kapitole.

Obr. 1.3: Elementární buňka a elementární translační vektory v mřížce soli CsCl. Elementární a současně primitivní buňka je jednoduchá kubická. Bázi tvoří dva atomy. Celý krystal lze vytvořit opakováním této elementární buňky.

1.4 Sedm krystalografických soustav

Tabulka 1.1 shrnuje 7 krystalografických soustav. Mřížky v některých soustavách mají několik variant, takže započtením všech variant dostaneme 14 Bravaisových mřížek, které popisují všechny možné varianty uspořádání pravidelného třírozměrného krystalu. U kubické mřížky se tři varianty mřížky často značí jako: prostá mřížka (P = SC), prostorově centrovaná (I = BCC) a plošně centrovaná (F = FCC). U ortorombické a monoklinické mřížky je ještě navíc bazálně centrovaná varianta (C). (P0. 1.3: 14 Bravaisových mřížek, 7 skupin)

1.5 Operace symetrie

Definice operace symetrie: Operace symetrie krystalu je transformací, která vede na stav krystalu, který je fyzikálně nerozlišitelný od výchozího stavu.

Jak již bylo řečeno, krystal můžeme zobrazit prostým opakováním jeho elementární buňky. Elementární buňka je tedy taková stavební cihlička a jejím opakováním poskládáme celý krystal. Proto je první operací symetrie ideálního nekonečného krystalu *operace mřížkové translace* daná vektorem mřížkové translace $\vec{T} = k.\vec{a}_1 + l.\vec{a}_2 + m.\vec{a}_3$. Navíc samotná elementární buňka může mít některé prvky symetrie podobně jako třeba molekuly. Tyto prvky symetrie se označují jako *operace bodové symetrie*. Všechny operace bodové symetrie nechávají na místě jeden význačný bod. U molekul je to těžiště, u krystalu to může být jeden atom nebo nějaký bod vyšší symetrie elementární buňky. Třetí skupinu symetrie, která je

 $^{^9\}mathrm{Eugene}$ Paul Wigner je nositelem Nobelovy ceny za fyziku z roku 1963.

Tab. 1.1: Parametry čtrnácti typů prostorových mřížek v sedmi krystalografických soustavách včetně velikostí stran a úhlů elementárního rovnoběžnostěnu. U kubické mřížky budeme používat anglické zkratky typů mřížek: prostá mřížka (P = SC), prostorově centrovaná (I = BCC) a plošně centrovaná (F = FCC).

Soustava	Alternativní	Počet	jednotlivé	strany	úhly
	český název	mřížek	typy	a, b, c	$lpha,eta,\gamma$
kubická	krychlová	3	P, I, F	a	90°
tetragonální	čtverečná	2	Ρ, Ι	a, a, c	90°
ortorombická	kosočtverečná	4	$\mathrm{P,C,I,F}$	a, b, c	90°
trigonální	klencová	1	Р	a	α
hexagonální	šesterečná	1	Р	a, a, c	$90^\circ,90^\circ,120^\circ$
$\operatorname{monoklinick}$ á	jednoklonná	2	P, C	a, b, c	$90^{\circ}, \beta, 90^{\circ}$
$\operatorname{triklinick\acute{a}}$	${ m trojklonn}{ m \acute{a}}$	1	Р	a, b, c	$lpha,eta,\gamma$

typická pouze pro složitější krystaly, jsou potom ještě složitější operace, jako je např. posunutí se současným pootočením. Tuto symetrii má uspořádání atomů do šroubovice. V tomto textu se budeme věnovat pouze prvním dvěma typům symetrie, t.j. bodové a translační symetrii.

1.5.1 Prvky bodové grupy symetrie

V této kapitole se budeme věnovat pouze bodové symetrii. K bodovým prvkům symetrie patří rotace, zrcadlení a jejich různé kombinace. Přestože atomy v mřížce neustále kmitají, pro popis symetrie nás zajímají pouze rovnovážné pozice atomů. Následující seznam obsahuje všechny typy prvků bodové symetrie:

Î	\Rightarrow	identita,
\hat{C}_n	\Rightarrow	<i>n</i> -četná osa rotace,
$\hat{\sigma}$	\Rightarrow	zrcadlení (podle roviny $\hat{\sigma}_h$ horizontální, $\hat{\sigma}_v$ vertikální, $\hat{\sigma}_d$ diagonální),
$\hat{S_n}$	\Rightarrow	n-četná osa rotace se zrcadlením podle roviny kolmé k ose,
\hat{i}	\Rightarrow	inverze.
(PO.	1.4:	Zobrazení prvků symetrie)

Uveďme několik jednoduchých příkladů. Osa nejvyšší symetrie \hat{C}_n se obvykle značí jako svislá osa \hat{z} . Úhel rotace kolem této osy činí $2\pi/n$. Pokud provedeme tuto operaci rotace m-krát, značí se výsledná operace jako $\hat{C}_n^{\ m}$. Z toho plyne, že pokud provedeme tuto rotaci *n*-krát, otočíme se o 360° ($\hat{C}_n^{\ n} = \hat{I}$). Zrcadlení v horizontální rovině se značí $\hat{\sigma}_h$. Operace nevlastní osy rotace lze zapsat jako rotaci a poté zrcadlení v rovině kolmé na osu rotace ($\hat{S}_n = \hat{\sigma}_{\perp} \hat{C}_n$). Na tomto zápisu je patrné, že operace symetrie se provádí zprava doleva. Pokud operátor symetrie působí na nějakou funkci, která se zapíše úplně vpravo, budou se jednotlivé operace provádět postupně právě v tomto pořadí směrem od této funkce. Je to podobné jako pořadí provádění derivací funkce. Pomocí uvedeného popisu můžeme nyní zapsat následující dvě identity a) pro zrcadlení $\hat{\sigma} = \hat{S}_n^{\ n}$, b) pro inverzi $\hat{i} = \hat{S}_2$.

Podle počtu všech prvků symetrie lze sedm Bravaisových krystalových soustav uspořádat do diagramu podle obr. 1.4. Nejméně prvků symetrie má trojklonná soustava (může mít pouze jediný prvek, identitu). Naopak nejsymetričtější soustava je kubická mřížka. Pro detailnější výklad krystalových symetrií lze doporučit knihy [5, 14]. Jako cvičení hledání prvků symetrie zadaného objektu se doporučuje si najít všechny operace bodové grupy symetrie např. krychle. Těchto 48 prvků symetrie krychle je zakresleno v obr. 1.5. Symetrii krychle se věnuje též př. 1.1 na konci této kapitoly.

Všechny operace bodové symetrie daného krystalu tvoří grupu. Grupová teorie je rigorózní matematická disciplína, která se probírá v rámci přednášek matematické algebry. Na tomto místě nejsou uvedeny detaily této teorie, ale stojí za to zopakovat základní vlastnosti grupy.

Definice: Grupa \mathcal{G} je množina prvků $\{a, b, c, \ldots\}$, pro které je definována operace násobení libovolných dvou prvků. Tato operace musí podle definice splňovat čtyři vlastnosti:

Uzavřenost: Výsledek násobení dvou prvků grupy \mathcal{G} , c = ab, je opět prvek grupy \mathcal{G} . Asociativnost: Pro libovolné tři prvky a, b, c platí: (ab)c = a(bc).

Identita: Grupa musí obsahovat identitu I, pro kterou platí xI = x pro libovolný prvek x z grupy \mathcal{G} . **Inverzní prvek:** Ke každému prvku grupy x existuje inverzní prvek x^{-1} splňující podmínku: $x^{-1}x = I$.

Obr. 1.5: Operace symetrie krychle: horní řádek osy symetrie, spodní řádek roviny symetrie. Jednotlivé sloupce odpovídají prvkům symetrie ve směru os [000], [110] a [111]. Nad jednotlivými krychlemi jsou výčty odpovídajících prvků symetrie, např. $6S_4$ zahrnuje operace S_4 a S_{-4} podle tří zobrazených os.

1.6 Indexy krystalových rovin

Libovolnou rovinu lze zadat třemi body, které neleží na přímce. Můžeme zadat průsečíky této roviny s osami mřížky vyjádřené prostřednictvím mřížkových konstant, např. $\{3, 2, 2\}$ pro obr. 1.6. Převrácenou hodnotu těchto čísel převedeme na celá čísla se stejným poměrem: $(\frac{1}{3}\frac{1}{2}\frac{1}{2}) \rightarrow \frac{1}{6}(233)$. Odpovídající rovina se označí (233), všechny roviny k ní rovnoběžné označujeme jako ekvivalentní roviny $\{233\}$.

 $Millerovy indexy \Rightarrow$ Konvence pro označení směrů a rovin v krystalografii:

Notace	Význam
(hkl)	rovina
$\{hkl\}$	ekvivalentní rovina
[hkl]	směr
$\langle hkl \rangle$	ekvivalentní směr

Obr. 1.6: Rovina ekvivalentní s rovinou (233).

Pokud chceme zadat nějaký symetrický směr v krystalu, můžeme k tomu použít translační vektor, který je celočíselnou lineární kombinací elementárních translačních vektorů, $\vec{T} = k.\vec{a}_1 + l.\vec{a}_2 + m.\vec{a}_3$. Pro zjednodušení zápisu se tento směr zapisuje jako trojice čísel v hranatých závorkách [klm]. Všechny ekvivalentní směry, které jsou ekvivalentní díky symetrii daného krystalu, označujeme $\langle hkl \rangle$. V případě kubických krystalů platí, že rovina (hkl) je kolmá na směr [hkl]. Například normálu k rovině (233) je směr [233]. To platí ale pouze u kubických krystalů. U jiných krystalových soustav toto obecně neplatí.

Takto zavedené značení směrů a rovin se v krystalografii nazývá Millerovy indexy¹⁰. Je třeba ještě doplnit, že pokud je některé číslo v zápisu roviny či směru záporné zapisuje se znaménko mínus jako čárka nad číslo. Jako příklad uvedme (1 $\overline{10}$), [$\overline{111}$], (PO. 1.6: Indexy rovin v kubické mřížce). Nakonec je důležité ještě zdůraznit, že Millerovy indexy souvisí vždy s danou volbou elementárních translačních vektorů $\vec{a}_1, \vec{a}_2, \vec{a}_3$. Pokud si zvolíme sadu jiných vektorů, budou mít zkoumané směry a roviny v krystalu odlišné indexy.

Polovodičové součástky se velmi často vyrábějí litograficky na substrátu křemíku. Protože krystal se štípe podél rovin symetrie, byla zavedena jednotná syntaxe pro orientaci substrátů s různou orientací krystalových os. Značení krystalů ve formě kruhových destiček se provádí pomocí odlomení primární a sekundární úseče na kraji destičky. Směr lomu odpovídá příslušné rovině symetrie. Jako příklad je uvedeno značení křemíkových substrátů (PO. 1.7: Křemíkové substráty).

1.7 Jednoduché krystalové struktury

Soli:

CsCl – SC, bázi tvoří jeden atom Cs a jeden atom Cl posunutý o 1/2 tělesové úhlopříčky.

NaCl – FCC s bází s jedním atomem Na a jedním Cl posunutým o 1/2 tělesové úhlopříčky.

Kovy:

HCP – hexagonální struktura s nejtěsnějším uspořádáním (Mg, Ti, Zn, Cd).

FCC – kubická struktura s nejtěsnějším uspořádáním (Al, Cu, Ag, Au).

BCC – kubická struktura s méně těsným uspořádáním (Li, Na, K).

Nejlepší zaplnění prostoru koulemi (p = 74 %) splňují struktury HCP a FCC.

BCC struktura má koeficient zaplnění prostoru koulemi o něco menší (p = 68 %).

Obr. 1.7: Struktura koordinačních vazeb ve sfaleritu jako např. GaAs. Červeně jsou zakresleny atomy galia a modře arsenu.

Polovodiče IV skupiny:

Diamant – kubický FCC, koordinační uspořádání vazeb (C, Si, Ge, Sn).

Polovodiče III-V:

Sfalerit – kubický jako diamant, ale střídají se dva atomy (GaAs, ZnS, CuCl, InAs), viz obr. 1.7.

Polovodiče II-VI:

Wurtzit – hexagonální struktura (ZnS, ZnO, ZnSe, CdSe).

```
(PO. 1.8: Obrázek nejtěsnějšího uspořádávání koulí v prostoru),
(PO. 1.9: Příklady uspořádání krystalů typických solí),
(PO. 1.10: Příklady uspořádání krystalů kovů).
```

 $^{^{10}}$ Indexy jsou pojmenované podle britského mineraloga Williama Hallowese Millera (1801-80). Přestože byly tyto indexy navrženy ještě dříve jinými mineralogy, označují se podle Millera, protože ve své knize *Treatise on Crystallography* (1839) vysvětlil jejich zavedení.

VIII A	He HCP 3.57 5.83	Ne FCC 4.46	Ar FCC 5.31	Kr FCC 5.64	Xe FCC 6.13	Rn		
VII A		Ц	Cl cmplx. (Cl ₂)	$\begin{array}{c} Br\\ cmplx.\\ (Br_2) \end{array}$	I cmplx. (I ₂)	At		
VI A		O cmplx.	S cmplx.	Se hex. chains	Te hex. chains	Po SC 3.34		
ΛV		N cubic 5.66 (N ₂)	P cmplx.	As rhomb.	Sb rhomb.	Bi rhomb.		
IV A		C diam. 3.567	Si diam. 5.430	Ge diam. 5.658	$\begin{array}{l} \text{Sn}\left(\alpha\right)\\ \text{diam.}\\ 6.49\end{array}$	Pb FCC 4.95		
III A		B rhomb.	Al FCC 4.05	Ga cmplx.	In tetr. 3.25 4.95	T1 HCP 3.46 5.52		
			IIB	Zn HCP 2.66 4.95	Cd HCP 2.98 5.62	Hg rhomb.		
			IB	Cu FCC 3.61	Ag FCC 4.09	Au FCC 4.08		
				Ni FCC 3.52	Pd FCC 3.89	Pt FCC 3.92		
			VIII B	Co HCP 2.51 4.07	Rh FCC 3.80	Ir FCC 3.84		cmplx.
				Fe BCC 2.87	Ru HCP 2.71 4.28	Os HCP 2.74 4.32		rhomb.
			VII B	Mn cubic cmplx.	Tc HCP 2.74 4.40	Re HCP 2.76 4.46		hex.
			VIB	Cr BCC 2.88	Mo BCC 3.15	W BCC 3.16		tetr.
			VB	V BCC 3.03	Nb BCC 3.30	Ta BCC 3.30	Db	diam.
			IV B	Ti HCP 2.95 4.68	Zr HCP 3.23 5.15	Hf HCP 3.19 5.05	Rf	НСР
			III B	Sc HCP 3.31 5.27	Y HCP 3.65 5.73	La hex. 3.77 ABAC	Ac FCC 5.31	FCC
ΠA		Be HCP 2.27 3.59	Mg HCP 3.21 5.21	Ca FCC 5.58	Sr FCC 6.08	Ba BCC 5.02	Ra	BCC
ΙA	H HCP 3.75 6.12	Li BCC 3.491	Na BCC 4.225	K BCC 5.225	Rb BCC 5.585	Cs BCC 6.045	Fr	SC

PO. 1.1: Krystalová struktura prvků. Každé políčko obsahuje chemickou značku prvku, krystalovou soustavu a mřížkové parametry *a*, případně *c*. Parametry jsou uvedeny v Å (1 Å= 10^{-10} m). Prvky stejné krystalové soustavy mají políčko podbarvené stejným barevným odstínem, označení soustav je shrnuto v tab. 1.1, navíc diam. označuje diamantovou strukturu a cmplx. neperiodické mřížky. Data byla převzata z [2].

PO. 1.2: Kubické krystalové struktury.

PO. 1.3: Čtrnáct Bravaisových krystalografických mřížek. Převzato z [4].

PO. 1.4: Zobrazení operací symetrie: 2-, 3-, 4-, 6-tičetná osa a zrcadlení. Převzato z [5].

PO. 1.5: Ukázka krystalových rovin ve 2D čtvercové mřížce.

PO. 1.6: Millerovy indexy rovin v kubické mřížce. Převzato z webu WIKIPEDIA: http://en.wikipedia.org/wiki/Miller_index

PO. 1.7: Příklady značení orientace krystalografických os u křemíkových substrátů.

Křemík se uměle vyrábí Czochralského metodou růstu. Polský chemik Jan Czochralski objevil tuto metodu již v roce 1916. Při této metodě se precizně orientovaný primární krystal zanoří do taveniny křemíku. Tento primární krystal se potom velmi pomalu vytahuje z taveniny (10–100 mm za hodinu) a na jeho povrchu dochází ke krystalizaci. Touto metodou se dá vypěstovat monokrystal ve tvaru dlouhého válce, viz fotografie vlevo převzatá z webu WIKIPEDIA:

http://en.wikipedia.org/wiki/Czochralski_process

Monokrystalický válec se rozřeže podélně na tenké destičky (substráty), které se brousí a leští. Tyto substráty se pak používají pro litografickou výrobu polovodičových součástek. Protože je substrát tenká destička pravidelného krystalu, štípe se při ohybu podle rovin vyšší symetrie. Odštípnutím jedné nebo dvou úsečí z kruhového substrátu se provádí označení typu krystalu. Pokud jsou např. primární a sekundární úseče provedeny kolmo na sebe, jedná se o krystal, který rostl ve směru [100] a jde o křemík s dopováním na p-typ.

PO. 1.8: Geometrie nejtěsnějšího uspořádání koulí vedoucí na kubickou strukturu FCC (123123123, kolmo z obrázku vystupuje osa [111]), nebo hexagonální HCP (121212, kolmo z obrázku vystupuje 6-tičetná osa C_6).

c) GaAs, kubická mřížka sfalerit

d) ZnS, hexagonální mřížka wurtzit

PO. 1.9: Příklady prostorového uspořádání atomů typických solí: a) až c) kubické mřížky, d) hexagonální mřížka s osou shora dolů. V obrázku a) jsou zobrazeny elektronové obaly, v obrázku b) jsou zobrazena atomární jádra. U obrázků c) a d) jsou zobrazeny směrové vazby. 3D modely těchto krystalů si lze vytvořit a prohlédnout pomocí programu z webu OpenRasMol: http://www.rasmol.org/

a) Kubická mřížka FCC

b) Kubická mřížka BCC

c) Hexagonální mřížka HCP

d) Kubická mřížka SC

PO. 1.10: Příklady prostorového uspořádání atomů kovů. Všechny mřížky jsou kubické. a) až c) jsou mřížky s těsnějším uspořádáním, d) mřížka SC je méně obvyklá.

1.8 Příklady

Př. 1.1: Symetrie krychle: Napište 48 operací symetrie krychle \mathcal{O}_h a načrtněte příklady prvků symetrie do obrázku krychle.

Nápověda: $\mathcal{O}_h = \{ I, 3C_2(100), 6C_4(100), 6C'_2(110), 8C_3(111), i, 3\sigma_h(200), 6S_4(100), 6\sigma_d(110), 8S_6(111) \}.$

Př. 1.2: Symetrie tetraedru: Symetrie čtyřstěnu odpovídá symetrii krychle ale bez operace inverze. Celkový počet prvků symetrie je tedy poloviční. Napište 24 operací symetrie tetraedru \mathcal{T}_d .

Nápověda: $\mathcal{T}_d = \{I, 3C_2(100), 6S_4(100), 6\sigma_d(110), 8C_3(111)\}.$

Př. 1.3: Symetrie krystalu: Napište operace symetrie ortorombické (kosočtverečné) krystalové soustavy, \mathcal{D}_{2h} neboli *mmm*. Navíc sestavte matice transformující souřadnice $\vec{R}' = \overleftarrow{T} \vec{R}$.

Nápověda: $\mathcal{D}_{2h} = \{I, C_2(x), C_2(y), C_2(z), i, \sigma_{xy}, \sigma_{xz}, \sigma_{yz}\}.$

$$C_n^m(z) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix}, \qquad \alpha = \frac{2\pi m}{n}$$
$$\sigma_v = \begin{pmatrix} \cos(2\beta) & \sin(2\beta) & 0\\ \sin(2\beta) & -\cos(2\beta) & 0\\ 0 & 0 & 1 \end{pmatrix}, \qquad \sigma_h = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Př. 1.4: Tetraedrické úhly: Úhly mezi tetraedrickými vazbami v diamantu jsou stejné jako úhly sevřené tělesovými úhlopříčkami krychle, viz obr. 1.8. Užitím elementární vektorové analýzy spočítejte velikost tohoto úhlu. Kittel, str. 49, př. 1

Obr. 1.8: Schéma prostorového uspořádání tetraedru v krychli.

Př. 1.5: Bohrův model atomu vodíku: Postupujte podle semi-klasického planetárního modelu atomu vodíku popsaného v sekci 1.1.1. Odvoďte vztahy pro Bohrův poloměr $a_{\rm B}$ (1.2) a pro energii jeden Rydberg (1.3), které počítají tyto parametry vodíku pomocí elementárních konstant elektronu.

Nápověda: Je nutné použít rovnováhu sil při kruhovém pohybu elektronu a kvantovací podmínku.

Př. 1.6: Elektronová 1*s* **funkce atomu vodíku:** Základní stav atomu vodíku je daný 1*s* funkcí atomárního orbitalu (1.4). Ukažte, že: a) tato vlnová funkce je normovaná, b) nejpravděpodobnější vzdálenost elektronu od protonu (jádra atomu vodíku) je Bohrův poloměr $a_{\rm B}$.

Nápověda: a) Pravděpodobnost výskytu elektronu $(n(r) = |\psi_{1s}(r)|^2)$ v celém prostoru je rovna jedné.

Integrací per-partes ukažte, že

$$\int_{0}^{\infty} 4\pi r^2 \, \mathrm{d}r \, \mathrm{e}^{-2r/a_{\mathrm{B}}} = \pi a_{\mathrm{B}}^3.$$

b) Pravděpodobnost výskytu elektronu ve vzdálenosti
r je daná n(r),množství bodů s touto vzdáleností je
 $4\pi r^2$. Maximum pravděpodobnosti je dané podmínkou

$$\frac{\mathrm{d}}{\mathrm{d}r}(4\pi r^2 \ \mathrm{e}^{-2r/a_{\mathrm{B}}}) = 0.$$

Z této podmínky přímo dostaneme $r_{\text{max}} = a_{\text{B}}$.

Př. 1.7: Indexy rovin: V mřížce FCC uvažujte roviny (100) a (001). Indexy se vztahují k Bravaisově elementární kubické buňce. Jaké indexy mají tyto roviny vzhledem k translačním vektorům primitivní buňky $\vec{a}'_1, \vec{a}'_2, \vec{a}'_3$ podle obr. 1.9. Kittel, str. 49, př. 2

Obr. 1.9: Schéma prostorového uspořádání vektorů primitivní buňky FCC.

Př. 1.8: Koeficient zaplnění: Vypočítejte koeficient zaplnění prostoru tuhými koulemi v geometrickém uspořádání daném základními mřížkami

SC:	$\pi/6 =$	52 %,
BCC:	$\sqrt{3}\pi/8 =$	68 %,
FCC=HCP:	$\sqrt{2}\pi/6 =$	74 %,
diamant:	$\sqrt{3}\pi / 16 =$	34 %.

Př. 1.9: Optimální HCP mřížka: V přiblížení nejtěsnějšího uspořádání koulí HCP spočítejte poměr výšky a základny elementárního šestihranu c/a. (Pokud je v reálném krystalu tento poměr výrazně větší, můžeme krystal pokládat za složený z těsně uspořádaných rovin, které jsou na sebe volně vrstveny.) Kittel, str. 49, př. 3

Nápověda: Výška c je dvojnásobkem vzdálenosti vrstev koulí nad sebou, strana základny a je rovna průměru koulí.

Řešení: $c/a = \sqrt{8/3} \approx 1.633$.

Př. 1.10: Rekrystalizace železa: Železo krystalizuje při teplotě $T < 910^{\circ}$ C v BCC mřížce. Při vyšší teplotě krystalizuje v FCC mřížce. Z geometrie uspořádání určete, jaký je poměr hustot těchto různých krystalů železa. Výpočet proveďte za předpokladu, že atomy železa jsou tuhé koule o poloměru r.

Řešení:

$$\frac{\rho_{FCC}}{\rho_{BCC}} = \frac{4}{3}\sqrt{\frac{2}{3}} = 1.09$$

Př. 1.11: Krystaly solí: Pro krystaly GaAs, CaF₂ načrtněte elementární buňku, určete o jakou krystalovou strukturu jde a jaké jsou vektory primitivní buňky $\vec{a_i}$, i = 1, 2, 3.

Řešení: GaAs (sfalerit): polohy prvků – Ga na (0,0,0), As na $\frac{a}{4}(1,1,1)$. Elementární buňka je kubická FCC s 4 atomy Ga a 4 atomy As.

CaF₂ (sfaleriť): polohy prvků – Ca na (0,0,0), F na $\frac{a}{4}(1,1,1)$ a na $\frac{3a}{4}(1,1,1)$. Elementární buňka je kubická FCC s 4 atomy Ca a 8 atomy F.

Př. 1.12: Křemíkové substráty: Pomocí vektorové algebry dopište do obr. 1.10 označení chybějících směrů, podle kterých se dělají typické zlomy křemíkových substrátů.

Obr. 1.10: Nákres křemíkového substrátu se směrem růstu (111). Červeně označené směry, které odpovídají kubickým osám \hat{x} , \hat{y} a \hat{z} , směřují mírně dopředu. Na obvodu substrátu je provedeno 12 symetrických zlomů.

Př. 1.13: De Broglieho vlnová délka: S využitím de Broglieho vztahu spočítejte vlnovou délku pro uvedené částic v angstromech: a) kuličku o hmotnosti 0.01 g s rychlosti 10 m/s; b) elektron s energií 10 eV. Řešení: 10⁻¹⁹ Å, 4 Å

Tato kapitola je věnována odkazu doc. Jaroslava Pantoflíčka, který je autorem této kresby. Originální pozice: $50^{\circ}4'10.193"$ N, $14^{\circ}25'41.561"$ E.

Kapitola 2

Grupová teorie pevných látek

Obsah kapitoly

2.1	Gru	pa prvků bodové symetrie	30
	2.1.1	Abelovské grupy	30
	2.1.2	Vlastnosti tříd prvků libovolné grupy	31
2.2	Rep	rezentace grupy	31
	2.2.1	Reprezentace Γ_x	31
	2.2.2	Blokově diagonální reprezentace	32
	2.2.3	Věty pro neekvivalentní ireducibilní reprezentace	32
2.3	Zna	čení grup symetrie	34
	2.3.1	Mullikenova domluva o značení NIR	34
2.4	Vyu	žití symetrie při práci s vlnovými funkcemi	35
	2.4.1	LCAO - MO jako vlnové funkce elektronů	35
	Př. 1:	Molekula vody	36
	2.4.2	Interakční diagram molekuly	37
	2.4.3	Studium vibrací jader	37
	2.4.4	Výběrová pravidla	39
2.5	Vyu	žití symetrie při výpočtu integrálů	39
	2.5.1	Direktní součin reprezentací	39
	2.5.2	Normální vibrace a normální souřadnice	40
2.6	Sym	netrie ve fyzice	41
2.7	Přík	dady	45

V této kapitole si podrobně probereme, jak se dá matematický aparát grupové teorie aplikovat na bodovou symetrii krystalu. K tomuto tématu je možné najít velké množství různých výukových textů [16, 17]. Nicméně pro nezasvěceného čtenáře může být jejich čtení obtížné. Zkusme to tedy shrnout v této kapitole. Zopakujme si všechny možné prvky bodové grupy symetrie krystalu:

Ι	\Rightarrow	identita,
C_n	\Rightarrow	<i>n</i> -četná osa rotace,
σ	\Rightarrow	zrcadlení (podle roviny σ_h horizontální, σ_v vertikální, σ_d diagonální)
S_n	\Rightarrow	n-četná osa rotace se zrcadlením podle roviny kolmé k ose,
i	\Rightarrow	inverze.

Kdybychom chtěli zapsat operátory těchto uvedených operací symetrie, pouze bychom nad značky operace přidali operátorovou stříšku, např. \hat{I} nebo \hat{C}_n . Pokud bychom grupovou teorii aplikovali na molekulu, je zřejmé, že všechny prvky dané grupy symetrie, $\mathcal{G} = \{a, b, c, \ldots\}$, musí zachovávat nehybný jedem bod prostoru. V tomto bodu se musí protínat všechny operace symetrie a tímto bodem je těžiště. Také u krystalu musí mít všechny prvky symetrie jeden společný bod, ale prvky symetrie se aplikují na elementární buňku daného krystalu.

U molekul i krystalů má symetrie několik důležitých důsledků, které se hojně používají. A) Dipólový moment molekuly může být jen ve směru symetrické osy C_n . Molekula smí mít rovinu zrcadlení, ale pouze

Obr. 2.1: Molekula amoniaku NH_3 , převzato z webu Wikipedie.

vertikální σ_v ve které leží osa symetrie. Jiné operace mít nesmí. B) Materiál, který má být opticky aktivní (chirální) nesmí mít inverzi *i*, ani žádné zrcadlení σ a tedy ani žádnou osu se zrcadlením S_n . Chirální materiály jsou totiž schopny stáčet rovinu polarizace procházejícího světla a dělí se proto vždy na dvě chirální varianty, které se označují jako levotočivá a pravotočivá.

2.1 Grupa prvků bodové symetrie

To, jaká je souvislost mezi jednotlivými prvky dané grupy symetrie, se dá shrnout pomocí multiplikační tabulky. Ta nám ukazuje výsledek násobení libovolných dvou prvků této grup. Jako příklad zvolíme molekulu amoniaku NH₃. Molekula amoniaku není rovinná, ale vypadá jako trojnožka namalovaná na obr. 2.1. Multiplikační tabulka této molekuly je zapsaná v tab. 2.1. Protože grupa je uzavřená vůči operaci násobení, musí být každý řádek nebo sloupec této tabulky permutací všech prvků grupy. Z toho plyne, že v multiplikační tabulce je v každém řádku/sloupci každý prvek právě jednou. Tvrzení této věty lze dokázat jednoduše sporem.

C_{3v}	Ι	C_3	C_3^2	a	b	c
Ι	Ι	C_3	C_3^2	a	b	c
C_3	C_3	C_3^2	Ι	c	a	b
C_3^2	C_{3}^{2}	Ι	C_3	b	c	a
a	a	b	c	Ι	C_3	C_{3}^{2}
b	b	c	a	C_3^2	Ι	C_3
c	c	a	b	C_3	C_3^2	Ι

Tab. 2.1: Multiplikační tabulka pro molekulu NH₃, která má symetrii C_{3v} . Pro zjednodušení jsou roviny symetrie { $\sigma_a, \sigma_b, \sigma_c$ } zapsány pouze indexem {a, b, c}.

Pro symetrii D_3 by byl rozdíl pouze v tom, že symboly $\{a, b, c\}$ by znamenaly dvojčetné osy rotace kolmé na hlavní osu symetrie $\{C_{2a}, C_{2b}, C_{2c}\}.$

Počet prvků grupy definuje řád grupy (h). Grupa popsaná v tab. 2.1 má řád h = 6. Prvky grupy dělíme do tříd vzájemně sdružených (konjugovaných) prvků. Počet tříd budeme označovat písmenem t. Prvky $a \ a \ b$ jsou sdružené, pokud v dané grupě existuje prvek x s jehož použitím můžeme zapsat podobnostní transformaci:

$$a = x^{-1}bx. (2.1)$$

Sdruženost prvků je vzájemná a tranzitivní vlastnost. To znamená, že v rámci třídy jsou prvky sdružené každý s každým. Z definice tříd je zřejmé, že grupa C_{3v} má 3 třídy (t = 3). První třída má pouze jeden prvek a tím je identita I. Druhá třída má dva prvky, kterými jsou rotace C_3 a C_3^2 . Třetí třídu tvoří tři operace zrcadlení { $\sigma_a, \sigma_b, \sigma_c$ }.

Pro porovnávání různých grup se zavádí vztah *izomorfie*. Dvě grupy $(\mathcal{G}_i, \mathcal{G}_j)$, které mají stejné multiplikační tabulky jsou vzájemně izomorfní. Každému prvku a_i z první grupy odpovídá ekvivalentní prvek a_j z druhé grupy. Přitom se mohou některé prvky u obou grup různit, nicméně identitě bude určitě odpovídat identita. Izomorfní jsou tedy například grupy D_3 a C_{3v} , pro které je shoda multiplikační tabulky patrná z tab. 2.1.

2.1.1 Abelovské grupy

Grupa \mathcal{G} se nazývá abelovská neboli komutativní, pokud pro libovolné dva prvky a, b této grupy platí rovnost ab = ba. Dá se ukázat, že všechny grupy do řádu čtyři $(h \leq 4)$ jsou abelovské neboli komutativní. Tato úloha se řeší v příkladu 2.3. Abelovy grupy mají jednu zajímavou vlastnost, totiž že každý prvek této grupy má svou vlastní třídu, musí tedy pro ně platit t = h.

2.1.2 Vlastnosti tříd prvků libovolné grupy

Vlastnosti tříd lze shrnout do tří základních tvrzení.

Věta 2.1.1 Každá třída je jednoznačně určená svým libovolným prvkem.

Věta 2.1.2 Grupa je sjednocením tříd konjugovaných prvků, kde tyto třídy jsou neprázdné a navzájem disjunktní.

Prostě každý prvek grupy patří právě do jedné třídy. Grupa je jako škola s žáky, kde každý žák patří právě do jedné třídy.

Věta 2.1.3 Počet prvků p každé třídy je dělitelem řádu grupy h.

Řád grupy C_{3v} z tab. 2.1 je: h = 6. Číslo šest má tři dělitele $\{1, 2, 3\}$. Jak jsme si říkali, grupa C_{3v} má právě tří třídy, t = 3, s počty prvků v jednotlivých třídách právě $\{1, 2, 3\}$.

2.2 Reprezentace grupy

Soubor čtvercových matic dimenze $(n \times n)$, které se při provedení operace násobení chovají stejně jako elementy dané grupy, definuje *reprezentaci grupy*. Operaci násobení prvků grupy zde představuje násobení čtvercových matic. Číslo *n* určuje *dimenzi této reprezentace*. Mějme operaci symetrie *a*, reprezentací této operace nechť je čtvercová matice $\mathcal{D}(a)$. Dimenze této reprezentace je *n* a všem prcků grupy, do které náleží *a*, musí být přiřazena stejně velká čtvercová matice. Zopakujme, že počet prvků grupy a tedy i počet čtvercových matic reprezentace grupy se nazývá řád grupy a značí se písmenem *h*.

Uvažujme grupu $\mathcal{G} = \{a, b, c, \ldots\}$. Pro každý prvek teto grupy a k němu inverzní prvek musí platit, že mají v libovolné reprezentaci k sobě navzájem inverzní matice. To lze zapsat pro jednu konkrétní operaci takto, $\mathcal{D}(a^{-1}) = [\mathcal{D}(a)]^{-1}$. Dále musí platit, že operaci identita I musí v každé bázi odpovídat jednotková matice. Jiná matice by totiž nesplnila definiční podmínku pro identitu: $Ix = xI = x, \forall x \in \mathcal{G}$.

2.2.1 Reprezentace Γ_x

Tato reprezentace popisuje, jak se pomocí prvků symetrie mění polohový vektor $\vec{x} = (x_1, x_1, x_1)$. Dimenze této reprezentace je samozřejmě n = 3, neboť popisujeme zobecněnou rotaci vektoru ve 3D prostoru. Zapišme si tyto transformační matice pro naší oblíbenou grupu C_{3v} .

$$I = \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \quad C_3 = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & | & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \quad C_3^2 = \begin{pmatrix} -1/2 & \sqrt{3}/2 & | & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix},$$
$$\sigma_a = \begin{pmatrix} 1/2 & \sqrt{3}/2 & | & 0 \\ \hline \sqrt{3}/2 & -1/2 & | & 0 \\ \hline \sqrt{3}/2 & -1/2 & | & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \quad \sigma_b = \begin{pmatrix} 1/2 & -\sqrt{3}/2 & | & 0 \\ -\sqrt{3}/2 & -1/2 & | & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \quad \sigma_c = \begin{pmatrix} -1 & 0 & | & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}. \quad (2.2)$$

Protože jde o matice transformace prostoru, která musí zachovávat skalární součin, mají tyto matice vzájemně ortogonální řádky a sloupce. Provedeme-li skalární součin dvou různých řádků, dostaneme nulu. Součin řádku sama se sebou dá jako výsledek jedničku. Pokud bychom označili prvky některé z matic jako a_{ij} , potom můžeme zapsat vztah ortogonality jako $a_{ik}a_{jk} = a_{ki}a_{kj} = \delta_{ij}$. V tomto zápisu je použito **Einsteinovo sumační pravidlo**. Sčítá se automaticky přes právě dvakrát uvedený index, což výrazně zjednodušuje zápis skalárních součinů. Funkce δ_{ij} je Kroneckerovo delta.

Jak je zřejmé, jsou matice (2.2) blokově diagonální. Tato reprezentace je tedy *reducibilní* a jednotlivé bloky jsou samy o sobě ireducibilní reprezentací. Levý horní blok je dimenze 2 a pravý dolní je dimenze 1. Reducibilní reprezentaci Γ_x lze v tomto konkrétním případě zapsat jako direktní součet dvou *neekvivalentních ireducibilních reprezentací (NIR)*, $\Gamma_x = E \oplus A_1$. Abychom pochopili, co tento zápis znamená, musíme postupně zavést některé termíny. Tak třeba reprezentace E, která je popsaná maticemi dimenze 2, se nazývá *věrná reprezentace*, neboť všechny operace mají různé matice. Naproti tomu reprezentace A_1 je tzv. úplně symetrická reprezentace (někdy označovaná též totálně symetrická), všechny operace mají přiřazenou stejnou jedničku, a proto reprezentace A_1 *není věrná*. Všechny operace násobení lze v reprezentaci A_1 zapsat jako výraz: $1 \cdot 1 = 1$.

S maticemi jakékoliv reprezentace grupy by se dalo různě točit. Nejsou tedy dané jednoznačně a vlastně nás z pohledu symetrie ani nemusí zajímat konkrétní hodnoty jednotlivých prvků matice. Co je ale při všech otočkách matice stále invariantní, je její stopa. Stopa matice $\mathcal{D}(a)$ proto určuje důležitou vlastnost, která se nazývá *charakter* a značí se písmenem χ :

$$\chi(a) = \mathbf{Tr}(\mathcal{D}(a)). \tag{2.3}$$

Z definice je zřejmé, že charakter identity je roven dimenzi reprezentace ($\chi(I) = n$). Dále platí, že charaktery operací symetrie téže třídy musí být stejné (viz Věta 2.1.1). Proto pro charakterizaci grupy stačí uvést charaktery všech neekvivalentních ireducibilních reprezentací (NIR). Tabulku charakterů grupy C_{3v} ukazuje tab. 2.2 a také (PO. 2.1: Tabulky charakterů).

Tab. 2.2: Tabulka charakterů pro molekulu NH₃, která má symetrii C_{3v} . Pro symetrii D_3 by byl rozdíl pouze v tom, že poslední sloupec by měl nadpis $3C_2$. Poslední řádek k tabulce nepatří, ukazuje charaktery reducibilní reprezentace.

C_{3v}	Ι	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
Γ_x	3	0	1

2.2.2 Blokově diagonální reprezentace

Pokud bychom zvolili jinou soustavu os ve 3D, vyšly by nám jiné matice reprezentace než ty v rovnicích (2.2). Vždy by však bylo možné najít transformační matici s stejného řádu právě tak, že by bylo možné k blokově diagonálnímu tvaru přejít pomocí podobnostní transformace: $a' = s^{-1}as$. Pomocí stejné transformační matice s bychom transformovali všechny matice všech operací grupy z nečárkované do čárkované soustavy. Jednotlivé čtvercové bloky, vyříznuté z původních matic, představují NIR.

$$\mathcal{D}(R) = \begin{pmatrix} \mathcal{D}^{(1)} & 0 & \cdots & 0 \\ 0 & \mathcal{D}^{(2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{D}^{(m)} \end{pmatrix}.$$
 (2.4)

Tento rozpis znamená, že reprezetaci $\mathcal{D}(R)$ lze rozepsat do direktního součtu m NIR. Matematicky by to bylo:

$$\mathcal{D}(R) = \mathcal{D}^{(1)} \oplus \mathcal{D}^{(2)} \oplus \cdots \oplus \mathcal{D}^{(m)}.$$

Přitom platí, že některé ireducibilní reprezentace se mohou v rozepsaném zápisu vyskytovat vícekrát.

Povšimněme si, že výše uvedená podobnostní transformace, je totožná s transformací hledající sdružené prvky (2.1). Z pohledu matic mají tedy všechny prvky sdružené do jedné třídy vzájemně ekvivalentní matice.

Zopakujme zavedené značení. Reprezentace, které jsou svázané podobnostní transformací, jsou vzájemně ekvivalentní. Reprezentace, mezi kterými neexistuje podobnostní transformace jsou neekvivalentní. Reprezentace, kterou lze pomocí podobnostní transformace převést na blokově diagonální je reducibilní (redukovatelná). Každý blok odpovídá jedné ireducibilní (neredukovatelné) reprezentaci

2.2.3 Věty pro neekvivalentní ireducibilní reprezentace

Abychom popsali symetrii grupy, stačí nalézt charaktery všech jejích NIR. Pro ně musí platit určité zákonitosti, které si nyní popíšeme. Veškeré značení k tomu je shrnuto v obrázku (PO. 2.2: Popis syntaxe).

Věta 2.2.1 Počet NIR grupy je roven počtu tříd t.

Například grupa C_{3v} má 3 třídy, a proto bude mít i 3 NIR. Tabulka charakterů pro grupu C_{3v} je tedy čtverec 3×3 .

Věta 2.2.2 Součet čtverců dimenzí všech NIR dané grupy je roven řádu grupy h.

Jako příklad si vezmeme opět grupu C_{3v} , která má řád h = 6. Je typické, že v tabulce charakterů odpovídá první sloupec identitě a její charakter je roven dimenzi NIR. Stačí tedy sečíst čtverce čísel v prvním sloupci a dostaneme řád grupy, $1^2 + 1^2 + 2^2 = 6$.

Věta 2.2.3 Součet čtverců absolutních hodnot charakterů $\chi(R)$ všech prvků R grupy \mathcal{G} v libovolné NIR je roven řádu grupy h.

$$\sum_{R \in \mathcal{G}} \chi^*(R)\chi(R) = h.$$
(2.5)

Věta 2.2.4 Charaktery dvou libovolných NIR i a j splňují podmínku ortogonality.

Obě poslední věty lze zapsat pomocí jednoho matematického vztahu.

$$\sum_{R \in \mathcal{G}} \chi_i^*(R) \chi_j(R) = h \delta_{ij}, \qquad \sum_{k=1}^t p_k \chi_i^*(R) \chi_j(R) = h \delta_{ij}, \qquad (2.6)$$

kde i, j jsou indexu dvou reprezentací a δ_{ij} je Kroneckerovo delta. Jako příklad si spočítáme skalární součin dvou reprezentací $A_1 \cdot A_2$ pro grupu C_{3v} . Výsledek je následující: $1 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 1 + 3 \cdot 1 \cdot (-1) = 0$. V tomto výpočtu jsme provedli sumaci přes třídy, které mají shodné charaktery a vynásobili součin počtem prvků dané třídy p_k . Použili jsme tedy zkrácený výpočet podle vztahu uvedeného v rámečku.

Věta 2.2.5 Splňují-li charaktery studované reprezentace podmínku (2.5), pak je tato reprezentace ireducibilní.

S použitím těchto pěti vět můžeme opustit jakoukoliv multiplikační tabulku, která obsahuje zbytečné redundantní informace a přejít k tabulce charakterů, která je mnohem menší a obsahuje veškerou potřebnou informaci popisující symetrii dané grupy. Jako příklad si proveďte přepis multiplikační tabulky (tab. 2.1) pro grupu C_{3v} na tabulku charakterů. Výsledek si srovnejte s tab 2.2. Poslední řádek do tabulky již nepatří, nicméně nám umožňuje spočítat rozklad reducibilní reprezentace Γ_x do NIR. K tomuto účelu použijeme poslední větu této sekce (věta 2.2.6).

Věta 2.2.6 Kolikrát je konkrétní NIR i v nějaké reducibilní reprezentaci Γ je dané vztahem (2.7).

$$a_{i\Gamma} = \frac{1}{h} \sum_{R \in \mathcal{G}} \chi_i^*(R) \chi_{\Gamma}(R), \qquad a_{i\Gamma} = \frac{1}{h} \sum_{k=1}^t p_k \chi_i^*(R) \chi_{\Gamma}(R).$$

$$(2.7)$$

Grupová teorie se s použitím známých tabulek charakterů snaží řešit tři stupně úloh:

- 1. Nalezení všech NIR dané grupy. Ty je možné si vyhledat pro danou \mathcal{G} v tabulkách které zpracovali matematici.
- 2. Rozklad zadané reprezentace \mathcal{D} do NIR. To souvisí s \mathcal{G} a \mathcal{D} . Výpočet se provede podle (2.7).
- 3. Využití získaného rozkladu k nalezení spektra hamiltoniánu. Neboť hamiltonián je invariantní vůči operacím symetrie, lze najít řešení Schrödingerovy rovnice s využitím společných funkcí. Zde se již promítá \mathcal{G} , \mathcal{D} a hamiltonián H.

2.3 Značení grup symetrie

Všech možných grup popisujících bodové symetrie molekul nebo krystalů je omezený počet. Typicky tyto grupy dělíme na tři kategorie, kde krystaly mohou být pouze první dvě uvedené kategorie.

Grupy typu I jsou grupy rotací. Příkladem jsou $\{C_n, C_{nv}, C_{nh}, S_n, D_n, D_{nd}, D_{nh}\}$.

Grupy typu II jsou grupy vyšší symetrie. Příkladem uveďme $\{T, T_d, T_h, O, O_h, I, I_h\}$.

Grupy typu III jsou grupy s operací C_{∞} , např. $\{C_{\infty v}, D_{\infty h}, K_h\}$. První dvě odpovídají lineárním molekulám a poslední je sféricky symetrická koule.

Pro určování bodové grupy symetrie zkoumané molekuly nebo krystalu a nalezení odpovídajícího označení se používá vývojový diagram uvedený jako úvodní obrázek této kapitoly. Přiřazení jednotlivých krystalografických soustav ke grupám symetrie s odpovídajícím označením ukazuje tabulka na konci kapitoly: (P0. 2.3: Symetrie krystalografických soustav).

2.3.1 Mullikenova domluva o značení NIR

Robert S. Mulliken byl americký fyzik a chemik, který se věnoval vývoji teorie molekulárních orbitalů a získal za svou práci Nobelovu cenu za chemii v roce 1966. Pro sjednocení značení různých NIR zavedl následující pravidla pro volbu písmena a indexů [18]. Uvedený článek je velmi podrobný, ale zajímavý je i tím, že u něj při tisku omylem zapomněli uvést jméno autora. Jméno bylo doplněno až v Erratu k tomuto článku. Z Mullikenova názvosloví vybereme jen pět hlavních bodů, což bude pro náš základní náhled stačit¹.

1. Písmeno je podle dimenze reprezentace n,

2. Volba písmena u 1D se provede podle symetrie C_n v ose nejvyššího řádu, která se bere jako svislá osa,

$$\chi(C_n) = \begin{cases} +1, & A \\ -1, & B \end{cases}$$

3. Horní index je podle horizontální roviny σ_h kolmé na svislou osu, např. pro A,

$$\chi(\sigma_h) = \begin{cases} +1, & A' \\ -1, & A'' \end{cases}$$

4. První dolní index je podle rotace C_2 kolmo na osu nejvyššího řádu. Pokud grupa nemá kolmou dvojčetnou osu, pak se tento index určí podle σ_v . Uveďme příklad pro A,

$$\chi(C_2) = \begin{cases} +1, & A_1 \\ -1, & A_2 \end{cases}$$

5. Druhý dolní index je podle charakteru prvku inverze *i*, např. pro *A*,

$$\chi(i) = \begin{cases} +1, & A_g \\ -1, & A_u \end{cases}$$

Značení u, g je podle německých slov gerade/ungeráde ve významu českých slov sudý/lichý. Speciální postavení má totálně symetrická NIR A_1 , která má všechny charaktery +1 a odpovídá reprezentaci invariantní vůči úplně všem operacím symetrie.

¹ http://www.pci.tu-bs.de/aggericke/PC4e/Kap_IV/Mulliken.html

2.4 Využití symetrie při práci s vlnovými funkcemi

Pokud chceme využít grupovou teorii pro kvantově-mechanické výpočty vlnových funkcí např. elektronů, musíme uvedenou teorii aplikovat na vlnové funkce atomárních orbitalů.

Definice: Soubor n lineárně nezávislých funkcí $\{f_{(n)}\} = \{f_1, \ldots, f_n\}$, který se působením operátorů symetrie příslušné grupy \mathcal{G} transformují na lineární kombinaci těchto funkcí, tvoří bázi n-dimenzionální reprezentace grupy.

Jak je zřejmé, funkce, které tvoří bázi, představují uzavřený systém vůči operacím symetrie. Nechť $R \in \mathcal{G}$ a k této operaci symetrie je přiřazen operátor \hat{R} , který působí na bázi funkcí. Potom z definice můžeme zapsat vztahy pro transformace funkcí $\{f_{(n)}\}$ takto,

$$\hat{R}f_i = \sum_j r_{ij}(R)f_j, \qquad (2.8)$$

kde $r_{ij}(R)$ představuje matici koeficientů transformace podle operace R. Dimenze této čtvercové matice n je shodná s počtem funkcí báze. Je zřejmé, že grupa \mathcal{G} je izomorfní s grupou operátorů a matice $r_{ij}(R)$ je reprezentací této grupy. Pokud bychom funkce $\{f_{(n)}\}$ zamíchali provedením nějaké lineární kombinace těchto funkcí, vznikla by nám nová báze, která by byla s tou původní bází *ekvivalentní*. Z pohledu matic $r_{ij}(R)$ by šlo pouze o jejich transformaci, která nezmění výsledek řešeného problému. Můžeme si tedy bez újmy na obecnosti zvolit takovou bázi, se kterou se nám bude dobře počítat.

Jak bude vypadat působení operací symetrie na vlnové funkce, které jsou řešením Schrödingerovy rovnice a jsou tedy vlastními stavy energie?

$$\hat{R}(\hat{H}\psi_{j\nu}) = \hat{R}(E_j\psi_{j\nu}) = E_j(\hat{R}\psi_{j\nu}) = \hat{H}(\hat{R}\psi_{j\nu}),$$
(2.9)

kde E_j je energetická hladina s degenerací ν a systém funkcí $\psi_{j\nu}$ tvoří úplný systém. Tento zápis říká, že pokud má být výsledek po použití operace symetrie nerozlišitelný od počátečního stavu, nesmí se změnit energie. Operátor symetrie tedy můžeme použít přímo na vlnovou funkci, neboť hamiltonián a operace symetrie komutují, $[\hat{R}, \hat{H}] = 0$. Ke každé energetické hladině E_j je přiřazena sada funkcí $\psi_{j1}, \ldots, \psi_{j\nu}$, která tvoří bázi Γ_{ν} . Tato báze tvoří NIR pokud není hladina pouze náhodně degenerovaná překryvem různých hladin. Energetické hladiny se transformují podle grupy symetrie a každá hladina musí odpovídat jedné z NIR bodové grupy molekuly. Je proto obvyklé, že se energetické hladiny označují stejným písmenem které odpovídá příslušné NIR. Jak již víme, dimenze této reprezentace je určena degenerací této energetické hladiny E_i .

Pro názornost uveďme několik příkladů degenerace energetických hladin. Setkáváme se s tím u grup s operací C_n . Potom musí platit $\chi(I) = \chi(C_n^n) = \omega^n = 1$. Z toho plyne, že $\chi(C_n) = e^{i2\pi/n}$. Dále platí, že každý volný atom má symetrii koule K_h a má ireducibilní reprezentace pouze liché dimenze 1, 3, 5, Vzpomeňme, že magnetické kvantové číslo volného atomu má také lichý počet povolených hodnot (2l+1), viz sekce 1.1.2.

2.4.1 LCAO - MO jako vlnové funkce elektronů

Elektronovou vlnovou funkci molekuly zapíšeme jako lineární kombinaci atomárních orbitalů. Budeme uvažovat funkci bez spinu a pouze dodáme, že každou tuto hladinu můžeme obsadit dvěma elektrony s opačným spinem. Musíme se ujistit, že naše volba atomárních funkcí souhlasí s grupou symetrie studované molekuly. Lineární kombinace atomárních orbitalů jako molekulární orbitaly se značí LCAO - MO. Atomární orbitaly použijeme jako bázi $\{f_{(n)}\}$ a získanou reprezentaci rozložíme do NIR, $\Gamma_{AO} = \Gamma_1 \oplus \cdots \oplus \Gamma_m$.

Spočítat molekulární vlnové funkce vlastně znamená, že musíme provést symetrizaci atomárních vlnových funkcí. Od atomárních orbitalů $\{f_{(n)}\}$ chceme přejít k symetrizovaným funkcím $\{g_{(n)}\}$, které respektují symetrii dané molekuly. Zvolíme si jednu konkrétní NIR reprezentaci s označením Γ_k , která má dimenzi n_k . Nyní spočítáme symetrizovanou funkci g ze zvolené funkce f s využitím všech operací symetrie R grupy \mathcal{G} dané molekuly. Výsledek je zapsán v rámečku.

$$g = \frac{n_k}{h} \sum_{R \in \mathcal{G}} \chi_k^*(R) \hat{R} f, \qquad g_i = \frac{n_k}{h} \sum_{R \in \mathcal{G}} \chi_k^*(R) r_{ij}(R) f_j.$$
(2.10)

Pravý vztah je výpočet celé sady symetrizovaných funkcí s využitím matic $r_{ij}(R)$. Z jiného pohledu lze vztah (2.10) chápat tak, že s využitím operací symetrie získám sadu atomárních orbitalů, které jsou v molekulární funkci zastoupeny s koeficientem daným charakterem zvolené NIR (Γ_k). Použití tohoto vztahu si vysvětlíme na příkladu molekuly vody. Výsledkem bude odvození symetrizovaných vlnových funkcí LCAO - MO pro tuto molekulu H₂O.

Obr. 2.2: Molekula vody, která leží v rovině yz. Osa x vystupuje kolmo z roviny obrázku. Molekula není lineární, úhel mezi vazbami činí 104.45°.

Př. 2.1: Molekula vody: Molekula H₂O nemá všechny atomy na přímce. Proto nemá osu C_{∞} , ale má symetrii jen C_{2v} , viz obr. 2.2. Zvolíme si minimální soubor atomových vlnových funkcí.

$$n = 7, \quad \{f_1, \dots, f_7\} = \{1s_1, 1s_2, 1s_0, 2s_0, 2p_x, 2p_y, 2p_z\}.$$

První a druhá funkce jsou orbitaly na prvním a druhém vodíku. Ostatní orbitaly odpovídají kyslíku. Molakula H₂O má 10 elektronů, a proto 7 zvolených AO by mělo díky spinové degeneraci stačit. Reprezentaci Γ_{AO} odpovídají čtvercové matice $r_{ij}(R)$ velkosti (7 × 7) následovně.

Zápis jsme zjednodušili tak, že jsou uvedeny jen diagonální a nenulové prvky matic. Je jasné že reprezentace založená na těchto maticích r_{ij} se při výpočtu charakterů dané operace symetrie ptá na to, který atomární orbital zůstává při dané operaci na svém původním místě. Zopakujme, že charakter reprezentace se spočítá jako stopa matice. Výsledek je:

$\Gamma_{\rm AO}$	Ι	$C_2(z)$	σ_{xz}	σ_{yz}
χ	7	1	3	5

Standardním rozkladem reprezentace Γ_{AO} do NIR pro C_{2v} pomocí vztahu (2.7) dostaneme výsledek, $\Gamma_{AO} = 4A_1 \oplus B_1 \oplus B_2$. Molekulární orbitaly vody spočítané podle (2.10) mají následující symetrii:

NIR	LCAO - MO
$A_1:$	$g_1 = 1s_0, \ g_2 = 2s_0, \ g_3 = 2p_z, \ g_4 = (1s_1 + 1s_2)/2$
B_1 :	$g_5 = 2p_x$
B_2 :	$g_6 = 2p_y, \ g_7 = (1s_1 - 1s_2)/2$

2.4.2 Interakční diagram molekuly

Obr. 2.3: Kvalitativní interakční diagram vody. Popis je uveden v textu.

Na základě úvah o symetrii molekuly vody můžeme sestrojit kvalitativní interakční diagram s energetickými hladinami. Protože ze symetrie nemůžeme zjistit velikost dané energie, je tento diagram pouze kvalitativní. Hodnoty energie odhadujeme ze zkušenosti. Pro zpřesnění je potřeba vyřešit pro takto určené molekulární orbitaly Schrödingerovu rovnici. Alternativně je samozřejmě také možné určit energie hladin měřením.

Obrázek 2.3 je potřeba vysvětlit. Molekulární reprezentace se označují malými písmeny, aby se odlišily od atomárních, které používají podle Mullikena písmena velká. Nejnižší hladina kyslíku $1a_1$ se nepodílí na vazbě. Hladiny $2a_1, 1b_1$ jsou vazebné, protože sdílí atomární funkce kyslíku i vodíků. Toto sdílení je možné díky shodné symetrii. Dále následují dvě nevazebné hladiny $3a_1, 1b_2$, kde jsou umístěný poslední dva elektrony molekuly vody. Další dvě hladiny $4a_1, 2b_1$ jsou antivazebné.

Elektrony umístěné do energetického schématu vody na obr. 2.3 jsou na hladinách ve dvojicích s opačným spinem. První excitovaný stav by odpovídal přesunu jednoho elektronu z poslední obsazené hladiny $1b_2$ na první volnou hladinu $4a_1$.

2.4.3 Studium vibrací jader

Pokud chceme studovat vibrace jader, musíme vzít do úvahy vzájemné polohy všech N atomů. Jde tedy o problém 3N proměnných, kterému bude odpovídat reducibilní reprezentace Γ_{3N} . Tuto reprezentaci je potřeba nalézt, rozložit ji na součet NIR a odečíst reprezentace náležící translaci a rotaci. To co zbude bude odpovídat symetrii vibračních módů. Každá NIR jednomu povolenému vibračnímu módu. Pro jednoduchost vezměme opět vodu, která má jen tři atomy.

Když se spočítá stopa těchto matic, je zřejmé, že charaktery v této reprezentaci je možné stanovit přímo bez nutnosti sestavovat transformační matice. Charakter získáme jako součin počtu atomů N_R , které se při provedení operace symetrie R nepohnou z místa, a určitého geometrického koeficientu.

$$\chi(C_n) = N_R(2\cos\alpha + 1), \quad \chi(S_n) = N_R(2\cos\alpha - 1),$$

$$\chi(I) = 3N, \quad \chi(\sigma) = N_\sigma, \quad \chi(i) = -3N_i.$$

 $\alpha = 2\pi/n$, je úhel otočení při použití dané operace symetrie. Druhý řádek lze spočítat jako speciální případy rotací podle vztahů z prvního řádku. Výsledek výpočtu charakterů pro vodu je:

Γ_{3N}	Ι	$C_2(z)$	σ_{xz}	σ_{yz}
χ	9	-1	1	3

Tuto reducibilní reprezentaci rozložíme s použitím vztahu (2.7) a dostaneme, $\Gamma_{3N} = 3A_1 \oplus A_2 \oplus 2B_1 \oplus 3B_2$. Tato reprezentace respektuje 3N stupňů volnosti pro danou molekulu. To znamená, že musí platit,

$$\Gamma_{3N} = \Gamma_{\text{trans}} + \Gamma_{\text{rot}} + \Gamma_{\text{vib}}.$$
(2.13)

Pro získání přehledu o vibračních stupních volnosti je tedy nutné od Γ_{3N} odečíst translaci a rotaci. Translaci odpovídá reprezentace Γ_x , kterou jsme již udělali v sekci 2.2.1. Zatímco translace odpovídá transformaci vektoru \vec{x} , rotace je transformací pseudovektoru (axiálního vektoru) \vec{R} . To znamená, že translace a rotace mají stejné matice pro operace I, C_n . Pro operace S_n, σ, i mají translace a rotace u matic opačné znaménko. Pro vodu by nám vyšlo, $\Gamma_{\text{trans}} = A_1 \oplus B_1 \oplus B_2$, $\Gamma_{\text{rot}} = A_2 \oplus B_1 \oplus B_2$.

Prostým odečtením dostaneme symetrii vibračních stavů jako: $\Gamma_{\text{vib}} = 2A_1 \oplus B_2$. Pokud si chceme zjednodušit práci, je možné pro určení Γ_{trans} a Γ_{rot} využít toho, co je již napsané na pravé straně (PO. 2.1: tabulek charakterů). Translace odpovídá složkám vektoru \vec{x} a rotace složkám vektoru \vec{R} .

Získané vibrační stavy vody jsou zakresleny v obr. 2.4. Vlevo jsou totálně symetrické vibrace A_1 , vpravo je vibrace se symetrií podle reprezentace B_2 . Pro vibrace musí platit, že molekula se nesmí otáčet a při vibracích se nesmí posunovat těžiště. Směr do těžiště je pro jednotlivé atomy molekuly vody vyznačen tečkovanou čarou. Navíc musí platit, že jednotlivé vibrace jsou navzájem nezávislé, neboli ortogonální vibrační módy. Z IČ měření a Ramanových spekter vody je známo, že jednotlivým vibracím náleži frekvence: $\nu_1 = 1.08 \times 10^{14} \text{ Hz} (3601 \text{ cm}^{-1}), \nu_2 = 4.83 \times 10^{13} \text{ Hz} (1609 \text{ cm}^{-1}), \nu_3 = 1.11 \times 10^{14} \text{ Hz} (3696 \text{ cm}^{-1}).$

Obr. 2.4: Vibrační módy molekuly vody a jejich symetrie popsaná NIR.

2.4.4 Výběrová pravidla

V předchozím textu jsme si odvodili tři vibrační módy molekuly vody (obr. 2.4). Dva módy mají symetrii A_1 a jeden má symetrii B_2 . Pro tyto nalezené vibrace popíšeme výběrová pravidla, která určují, který z těchto módů bude aktivní ve spektrech IČ absorpce a který v Ramanových spektrech.

Věta 2.4.1 Vibrace je aktivní v absorpčním IČ spektru, jestliže patří ke stejné NIR jako složka vektoru \vec{x} , který symetrií odpovídá elektrickému dipólovému momentu.

Protože jsou povoleny všechny složky (x, y, z), ma molekula H₂O v IČ aktivní všechny tři vibrace.

Věta 2.4.2 Vibrace je aktivní v Ramanově spektru, jestliže patří ke stejné NIR jako složka kvadratické formy x^2 , která symetrií odpovídá polarizovatelnosti.

V Ramanově spektru jsou všechny tři módy vibrace vody rovněž aktivní, neboť jsou u nich uvedeny některé ze složek $(x^2, y^2, z^2, xy, xz, yz)$.

Ve chvíli, kdy je jasná symetrie vibrací, je možné se posunout ke kvantovému řešení. Využije se známá kinetická a potenciální energie jader, hamiltonián se dosadí do Schrödingerovy rovnice a získáme kvantovanou energii uloženou ve vibracích. K tomu se propracujeme v následující sekci.

2.5 Využití symetrie při výpočtu integrálů

V kvantové mechanice se pro výpočet střední hodnoty nějaké veličiny používá integrál z vlnové funkce a operátoru dané veličiny. Do výsledku ohoto výpočtu značnou měrou přispívá symetrie. Nyní si ukážeme, jak na to. Celé je to založené na jednoduchém tvrzení.

Věta 2.5.1 Uvažujme funkci f_{α} z báze $\{f_{(n)}\}$ se symetrií odpovídající reprezentaci Γ_{α} . Pokud **není** Γ_{α} totálně symetrická reprezentace, potom **je** integrál přes celý prostor z této funkce f_{α} identicky roven nule.

Tvrzení této věty plyne z následující úvahy. Pokud není Γ_{α} totálně symetrická reprezentace, mohu na funkci provést operaci symetrie při které integrál změní znaménko, ale systém popsaný funkcí zůstane nezměněn. Výsledkem integrace je tedy číslo, které se rovná své záporně vzaté hodnotě, což platí právě jen pro nulu.

2.5.1 Direktní součin reprezentací

Mějme grupu symetrie v reprezentaci F se souborem bázových funkcí $\{f_1, \ldots, f_m\}$. Dále mějme analogicky pro stejnou grupu reprezentaci G se souborem bázových funkcí $\{g_1, \ldots, g_n\}$. Obě reprezentace mohou mít různou dimenzi $(m \neq n)$. Transformace funkcí obou bází při působení operátorů prvků symetrie můžeme vyjádřit pomocí transformačních matic. Pro zvolenou operaci symetrie R je tato matice r_F pro reprezentaci F a r_G pro reprezentaci G. Direktní součin obou reprezentací, $J = F \otimes G$, definuje novou reprezentaci J, pro kterou platí:

$$\chi_J(R) = \chi_{F\otimes G}(R) = \chi_F(R)\chi_G(R). \tag{2.14}$$

Přitom platí, že matice reprezentace J lze získat tenzorovým součinem matic, $r_J = r_F \otimes r_G$.

Na základě těchto vztahů je možné spočítat direktní součin reprezentací a výsledou reprezentaci pak rozepsat na direktní součet zastoupených NIR. $F \otimes G = \Gamma_1 \oplus \cdots \oplus \Gamma_m$

Věta 2.5.2 Direktní součin dvou ireducibilních reprezentací $\Gamma_{\alpha} \otimes \Gamma_{\beta}$ obsahuje ve svém rozkladu totálně symetrickou reprezentaci A_1 tehdy a jen tehdy, pokud jsou obě reprezentace vůči sobě vzájemně komplexně sdružené, $\Gamma_{\alpha} = \Gamma_{\beta}^{*}$.

Při výpočtu kvantově-mechanických středních hodnot veličin se počítá integrál z operátoru dané veličiny. Například pro energii je jím hamiltonián. Tento integrál má tvar:

$$\int_{V} \psi_{i\alpha}^* F \psi_{j\beta} \, \mathrm{d}r. \tag{2.15}$$

Jednotlivé členy integrálu odpovídají symetrií reprezentacím Γ_{α} , Γ_{F} a Γ_{β} . Pro výpočet hodnoty integrálu využijeme symetrii. Součin funkcí dává jako výsledek funkci se symetrií Γ , kterou můžeme rozepsat,

$$\Gamma = \Gamma_{\alpha}^* \otimes \Gamma_F \otimes \Gamma_{\beta} = \Gamma_1 \oplus \Gamma_2 \oplus \dots$$

Pokud v rozkladu reprezentace Γ je i totálně symetrická A_1 může (ale nemusí) být výsledný integrál nenulový. Obráceně, pokud v rozkladu integrované funkce A_1 chybí, je naprosto jisté, že výsledný integrál musí být identicky nulový díky symetrii.

Symetrie nám umožňuje si zjednodušit výpočty kvantově-mechnických integrálů díky tomu, že u některých rovnou určíme nulový výsledek. U jiných integrálů si alespoň zvolíme správnou minimální bázi funkcí, která odpovídají symetrii řešeného problému.

2.5.2 Normální vibrace a normální souřadnice

Vibrace se předpokládají v harmonické aproximaci, kdy můžeme využít známého řešení kvantového harmonického oscilátoru. Řešení je obdobné pro molekuly i pro pevné látky. Energii kmitání na frekvenci ω je možné zapsat jako $E_n = (n + 1/2)\hbar\omega$. Kvantové číslo n určuje obsazení daného vibračního módu. V kap. 6 zavedeme označení, že v látce máme n fononů s frekvencí ω . Pro toto zavedení bude nutné znormovat amplitudy vibrací tak, že je vynásobíme odmocninou z hmotnosti daného kmitajícího atomu. Potom bude příspěvek ke kinetické energii všech atomů záviset pouze na znormované souřadnici. Nakonec bude ještě nutné provést diagonalizaci hamiltoniánu, aby byly jednotlivé vibrační módy vzájemně nezávislé. Tomuto postupu se říká přechod k normálním souřadnicím. Celkovou kinetickou energii uloženou v kmitech krystalu je potom možné spočítat jako prostý součet energií všech vibračních módů.

Při výpočtu energie molekuly s N atomy, pracujeme s 3N stupni volnosti. Z nich 3 stupně připadají na translaci, 3 na rotaci (u lineárních molekul 2). Zbytek 3N - 6 jsou vibrace (respektive 3N - 5). Pro translace a rotace by nám vyšly nulové frekvence pohybu. V pevných látkách se stupně volnosti původního translačního pohybu uplatňují v periodických mezimolekulárních pohybech jako mezimolekulární vibrace. Jde o vibrace přenášené mezi jednotlivými elementárními buňkami v periodické mřížce. V pevných látkách se stupně volnosti, kde N udává počet atomů v elementární buňce.

Podívejme se nyní na klasický a kvantový popis vibrací. Potenciál V, kterým se ovlivňují dva kmitající atomy α, β , lze jistě zapsat pomocí harmonické aproximace,

$$V = \frac{1}{2} \sum_{i,j} k_{ij} R_{i\alpha} R_{j\beta}.$$

Je to vlastně první nenulový člen Taylorova rozvoje, neboť konstantu mohu položit rovnou nule a lineární členy musí být v minimu nulové. Tenzor k_{ij} popisuje silové konstanty. Kinetickou energii vybraného atomu α zapíšeme jako

$$T = \frac{1}{2} M_{\alpha} \sum_{i} \dot{R}_{i\alpha}^2.$$

Provedeme přechod k váženým souřadnicím, $\xi_{i\alpha} = \sqrt{M_{\alpha}}R_{i\alpha}$. Tím nám ze zápisu energií zmizí hmotnosti. Abychom dostali nezávislé harmonické oscilátory, musíme diagonalizovat hahiltonián s klasickými souřadnicemi ξ_i a přejít k souřadnicím kvantovým Q_i . Tyto normální souřadnice nám umožňují vyjádřit hamiltonián celé molekuly jako součet nezávislých harminických oscilátorů, kde jsou pouze kvadráty této souřadnice v potenciálu a kvadráty derivace v kinetické energii. Protože se nám tam nemotají hmotnosti, můžeme zaspat součet členů do sumy přes jednotlivé stupně volnosti.

$$H_{\rm vib} = -\frac{\hbar^2}{2} \sum_{i=1}^{3N-6} \frac{\partial^2}{\partial Q_i^2} + \frac{1}{2} \sum_{i=1}^{3N-6} \omega_i^2 Q_i^2.$$

Klasickým řešením by byly samozřejmě harmonické funkce, $\xi_i = A_i \sin(\omega_i t + b)$, kde A_i a b jsou amplituda a fáze vibrací v čase t s frekvencí ω_i . Kvantově musí pro každý vibrační mód platit Schrödingerova rovnice, $H_i \chi_i = E_i \chi_i$. Protože řešení je známé, lze to celkově rovnou zapsat,

$$E_{\rm vib} = \sum_{i=1}^{3N-6} E_i = \sum_{i=1}^{3N-6} (n_i + 1/2)\hbar\omega_i, \qquad \chi_{\rm vib} = \prod_{i=1}^{3N-6} \chi_i(Q_i).$$

Kvantová čísla n_i určují obsazení jednotlivých vibračních módů.

2.6 Symetrie ve fyzice

Symetrie je ústředním pojmem vědy, který se prolíná fyzikou, matematikou a geometrií. Zkoumaný jev nebo vlastnost má určitou symetrii, pokud na tento objet mohu použít určitou operaci symetrie, ale na daném objektu se to neprojeví žádnou pozorovatelnou změnou. Symetrie se projevuje v mikrosvětě, kde nám umožňuje popsat třeba polohy atomů v krystalické mřížce, ale také vnitřní strukturu částic, kterou popisuje v kvantové mechanice vlnová funkce. Když se posuneme k makroskopickým objektům, obvykle vidíme jistý stupeň symetrie mezi levou a pravou stranou lidského těla, nebo v rozložení objektů v naší Galaxii. Nicméně tato symetrie je pouze částečná daná nějakým základním principem, ale je patrný i určitý stupeň náhodnosti či chaosu. Symetrie dává pozorovateli tendenci vnímat pozorovaný objekt jako krásný, ale jistá nedokonalost tento objekt zlidšťuje.

Ve fyzice je zajímavá symetrie vědeckých pojmů a teorií. Pokud má být nějaká teorie, popisující naší realitu, uvěřitelná, musí mít tato teorie určitou symetrii. Musí být svým způsobem krásná. Lapidárně řečeno, teorie, která platí pouze v pondělí a jindy ne, není dobrá teorie. Symetrie nám tedy často umožňuje kriticky nahlížet i na důsledky, které nějaká teorie předpovídá a určit omezení její použitelnosti a správnosti.

C_2	Ι	C_2	1D	2D
A	1	1	$z; R_z$	x^2, y^2, z^2, xy
B	1	-1	$x, y; R_x, R_y$	xz, yz
		I		

C_S	Ι	σ_h	1D	2D
A'	1	1	$x, y; R_z$	x^2, y^2, z^2, xy
$A^{\prime\prime}$	1	-1	$z; R_x, R_y$	xz, yz

C_i	Ι	i	1D	2D
A_g	1	1	R_x, R_y, R_z	$x^2, y^2, z^2, xy, xz, yz$
A_u	1	-1	x, y, z	

C_{2h}	Ι	C_2	i	σ_h	1D	2D
A_g	1	1	1	1	R_z	x^2, y^2, z^2, xy
B_g	1	-1	1	-1	R_x, R_y	xz, yz
A_u	1	1	-1	-1	z	
B_u	1	-1	-1	1	x, y	

D_2	Ι	$C_2(z)$	$C_2(y)$	$C_2(x)$	1D		2D
C_{2v}	I	C_2	$\sigma_v(xz)$	$\sigma_v(yz)$		1D	2D
A/A_1	1	1	1	1		z	x^2, y^2, z^2
B_1/A_2	1	1	-1	-1	$z; R_z$	R_z	xy
B_{2}/B_{1}	1	-1	1	-1	$y; R_y$	$x; R_y$	xz
B_3/B_2	1	-1	-1	1	$x; R_x$	$y; R_x$	yz

D_3	Ι	$2C_3$	$3C_2$	1D		2D
C_{3v}	Ι	$2C_3$	$3\sigma_v$		1D	2D
A_1	1	1	1		z	$x^2 + y^2, z^2$
A_2	1	1	$^{-1}$	$z; R_z$	R_z	
E	2	-1	0	$(x,y);(R_x,R_y)$	$(x,y);(R_x,R_y)$	$(x^2 - y^2, xy); (xz, yz)$

D_{3d}	Ι	$2C_3$	$3C_2$	i	$2S_6$	$3\sigma_d$	1D	2D
A_{1g}	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	-1	1	1	-1	R_z	
E_g	2	-1	0	2	-1	0	(R_x, R_y)	$(x^2 - y^2, xy), (xz, yz)$
A_{1u}	1	1	1	-1	-1	-1		
A_{2u}	1	1	-1	-1	-1	1	z	
E_u	2	-1	0	-2	1	0	(x,y)	

PO. 2.1: Tabulky charakterů ireducibilních reprezentací některých bodových grup. Dvojitá svislá čára odděluje na pravé straně uvedené funkce splňující symetrii dané NIR. Symbol \vec{x} představuje polární vektor a symbol \vec{R} axiální vektor. Ve 2D je chování radiálních a axiálních tenzorů stejné. Tabulky dalších grup lze nalézt např. na webu: http://symmetry.jacobs-university.de/

PO. 2.2: Souhrn syntaxe používaný v této kapitole na příkladu tabulky charakterů.

Crystal	Holohedral		Bravais	Cr	ystal	Number of space	
system	group		lattice	class		groups	
triclinic	C_i	ī	р	C_1	1	1	
				C_i	ī	1	
monoclinic	C_{2h}	$\frac{2}{m}$	p bfc	C_2	2	2 1	
				C_s	m	2 2	
				C_{2h}	$\frac{2}{m}$	2 4	
rhombic	D_{2h}	$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	p bfc bc fc	D_2	222	$4\ 2\ 2\ 1$	
				C_{2v}	2mm	10 3 7 2	
				D_{2h}	$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	16 4 6 2	
trigonal	D_{3v}	323	р	C_3	3	4	
				S_6	3	2	
				D_3	32	7	
				C_{3v}	3m	6	
				D_{3v}	$\bar{3}\frac{2}{m}$	6	
tetragonal	D_{4h}	$\frac{4}{m}\frac{2}{m}\frac{2}{m}$	p bc	C_4	4	42.	
				S_4	Ĩ	1 1	
				C_{4h}	$\frac{4}{m}$	4 2	
				D_4	422	8 2	
				C_{4v}	4mm	84	
				D_{2d}	$\bar{4}2m$	84	
				D_{4h}	$\frac{4}{m}\frac{2}{m}\frac{2}{m}$	16 4	
hexagonal	D_{6h}	$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	р	C_6	6	6	
				C_{3h}	6	1	
				C_{6h}	$\frac{6}{m}$	2	
				D_6	622	6	
				C_{6v}	6mm	4	
				D_{3h}	$\bar{6}m2$	4	
				D_{6h}	$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	4	
cubic	O_h	$\frac{4}{m}\overline{3}\frac{2}{m}$	p bc fc	T	23	2 2 1	
				T_h	$\frac{2}{m}\bar{3}$	322	
				0	432	4 2 2	
				T_d	$\bar{4}3m$	$2 \ 2 \ 2$	
			:	O_h	$\frac{4}{m}\overline{3}\frac{2}{m}$	4 2 4	

PO. 2.3: Rozpis bodových grup symetrie pro jednotlivé krystalografické soustavy. Upraveno z webu MUNI.cz: http://mineralogie.sci.muni.cz/

2.7 Příklady

Př. 2.2: Vzájemné vztahy mezi prvky grupy bodové symetrie: Vypočítejte následující mocniny prvků bodové symetrie: a) C_n^n , b) C_2^{-1} , c) σ^{-1} , d) σ^2 , e) S_2 , f) S_1 , g) i^{-1} , h) i^2 .

Př. 2.3: Multiplikační tabulky malých grup: Sestavte multiplikační tabulky grup do řádu h = 4. Ukažte, že jsou tyto grupy abelovské neboli komutativní.

Nápověda: Prvky grupy musí začínat identitou I a teprve potom následují další prvky $\{a, b, \ldots\}$

Př. 2.4: Inverzní prvek: Povšimněte si, že pro matice reprezentace (2.2) platí $R^{-1} = R^T$. Prověřte toto tvrzení a odůvodněte, proč to tak musí být.

Př. 2.5: Ortogonalita řádků transformačních matic: Vyberte několik příkladů z matic reprezentace (2.2) a prověřte vztah ortogonality řádků a sloupců.

Př. 2.6: Symetrie benzenu:^{*} Molekula benzenu odpovídá symetrií grupě D_{6h} . Řád této grupy je 24. Najděte všechny prvky symetrie této grupy, určete 12 tříd a sestavte tabulku charakterů s využitím vlastností symetrie NIR.

Nápověda: Pro h = 24 a t = 12 je jen jediné řešení věty 2.2.2: $24 = 8 \cdot 1^2 + 4 \cdot 2^2$.

Př. 2.7: Hybridizace uhlíku:

Najděte symetrizované vlnové funkce uhlíku pro případ molekul: A) 1D lineární molekulu CO_2 , B) 2D plošné uspořádání vazeb v tuze CH_3 , C) 3D uspořádání diamantu CH_4 .

Nápověda: Jde o orbitaly sp hybridizace, sp^2 hybridizace a sp^3 hybridizace.

Př. 2.8: Direktní součin reprezentací vody: Pro molekulu vody se symetrií C_{2v} najděte součin reprezentací $A_2 \otimes B_1$.

Př. 2.9: Potenciál vibrace vody: Odhadněte, jak by měl vypadat potenciál pro vibrace molekuly vody A_1, ν_2 podle obr. 2.4. Uvažujte vibrace, které překračují případ protažení molekuly do lineárního tvaru.

Lauegram krystalického vzorku

© Jiří Hybler, Fyzikální ústav AV ČR, Praha. Převzato z webu XRAY: http://www.xray.cz/kryst/difrakce/hybler/monokrystal.htm

Debyegram nebo difraktogram práškového vzorku

Převzato z webu XRAY: http://www.xray.cz/kurs/

Další užitečné odkazy: http://www.jcrystal.com/steffenweber/JAVA/jlaue/jlaue.html http://cst-www.nrl.navy.mil/lattice/

Kapitola 3

Difrakce na krystalu, reciproká mřížka

Obsah kapitoly

3.1	Krys	stalografie pomocí různých svazků	47
3.2	Four	ierova analýza	48
3.3	Záko	ony rozptylu, difrakční podmínky	49
	3.3.1	Braggův zákon	49
	3.3.2	Brillouinův zákon	50
	3.3.3	Laueho podmínky pro rozptyl	50
3.4	Exp	erimentální difrakční metody	50
	3.4.1	Laueho metoda	51
	3.4.2	Metoda rotujícího krystalu	51
	3.4.3	Debyeova-Scherrerova prášková metoda	51
3.5	Four	ierova analýza báze a strukturní faktory	52
	3.5.1	Strukturní faktory kubických mřížek	52
3.6	Přík	lady	58

Pokud na krystal dopadá optické záření ve viditelné oblasti (typicky 5 000 Å), je atomární struktura materiálu (2–3 Å) pod rozlišovací schopností této vlny. Pro odraženou a prošlou vlnu platí tedy standardní zákon odrazu a lomu. Prostředí se jeví jako homogenní, popsané daným indexem lomu.

Pokud je použito tvrdé rentgenové záření, které má vlnové délky v rozmezí od 0.2 Å do 2 Å, potom je vlnová délka menší nebo srovnatelná s mřížkovou konstantou. V tomto případě se šíří difraktované vlny ve směrech zcela odlišných od směru dopadu.

3.1 Krystalografie pomocí různých svazků

Jaké částice jsou tedy vhodnými kandidáty na studium krystalové struktury? *Dualita částic a vlnění* v případě světla znamená, že v závislosti na uspořádání experimentu a na způsobu pozorování můžeme světlo popisovat buď jako vlnu, nebo jako diskrétní kvanta energie, částice – *fotony*.

Fotony: rentgenové paprsky interagují s elektrony.

$$E = \frac{2\pi\hbar c}{\lambda}, \qquad \lambda = \frac{2\pi\hbar c}{eE[\mathrm{eV}]}, \qquad \mathrm{t.j.} \qquad \lambda[\mathrm{\AA}] = \frac{12.4}{E[\mathrm{keV}]}.$$

U těchto vzorců se energie částice zadává v jednotkách elektron
volt, kladně vzatý elementární náboj elektronue=1.602189
 2×10^{-19} C.

Neutrony: nemají náboj, interagují s magnetickými momenty elektronů a jsou tedy vhodné pro strukturní analýzu magnetických krystalů. V nemagnetických materiálech interagují s jádry. De Broglieova vlnová délka¹ hmotné částice je daná vztahem $p = 2\pi\hbar/\lambda$. Připomeňme hmotnost neutronu, $M_n = 1.674~927 \times 10^{-27}$ kg.

$$E = \frac{p^2}{2M_n} = \frac{(2\pi\hbar)^2}{2M_n\lambda^2}, \qquad \text{t.j.} \qquad \lambda[\text{\AA}] = \frac{0.285}{\sqrt{E[\text{eV}]}}.$$

Elektrony: mají náboj a proto kvůli coulombovské interakci pronikají jen těsně pod povrch studovaného materiálu. Energie elektronů je daná podobně jako pro neutrony, ale s hmotností o 3 řády menší, $m_0 = 0.910~953~4 \times 10^{-30}$ kg.

$$\lambda[\text{Å}] = \frac{12.2}{\sqrt{E[\text{eV}]}}.$$

Energetické vztahy jsou pro jednotlivé částice zakresleny v obr. 3.1. Pokud budeme chtít, aby výše uvedené částice měly vlnovou délku $\lambda = 1$ Å, potom budeme potřebovat, aby měly následující energii:

foton	neutron	elektron
12.4 keV	$0.081~{\rm eV}$	$149~{\rm eV}$

Obr. 3.1: Závislost vlnové délky na energii fotonu, neutronu a elektronu.

3.2 Fourierova analýza

K rozptylu rentgenového záření dochází na elektronech v krystalu. Hustota elektronů v periodickém krystalu musí být periodickou funkcí s periodou danou translacemi o mřížkové vektory. Matematicky to lze zapsat tak, že elektronová hustota zůstane stejná při posunu o libovolný vektor mřížkové translace, $n(\vec{r} + \vec{T}) = n(\vec{r})$. Periodickou funkci elektronové hustoty lze zapsat pomocí 3D Fourierova rozkladu

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} e^{i\vec{G}\cdot\vec{r}}.$$
(3.1)

 $^{^{1}}$ Louis de Broglie získal za objev vlnové povahy elektronu Nobelovu cenu za fyziku v roce 1929.

Všechny vektory \vec{G} , které vystupují v sumě, lze zapsat jako celočíselnou lineární kombinaci základních translačních vektorů reciproké mřížky, které jsou definovány takto:

$$\vec{b}_1 = \frac{2\pi}{V_c} (\vec{a}_2 \times \vec{a}_3), \quad \text{kde} \qquad V_c = |\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3|, \quad \text{analogicky pro} \quad \vec{b}_2, \vec{b}_3.$$
 (3.2)

Protože tyto vektory určují díky Fourierově transformaci prostorové frekvence, je jejich jednotkou m⁻¹. S danou krystalovou strukturou jsou tedy svázány dvě mřížky. Přímá mřížka je definovaná translačními vektory \vec{a}_1 , \vec{a}_2 , \vec{a}_3 a popisuje rozložení atomů v krystalu. Reciproká mřížka definovaná translačními vektory reciproké mříže \vec{b}_1 , \vec{b}_2 , \vec{b}_3 má stejnou symetrii a velmi úzce souvisí s rentgenovou difrakcí.

Pro vektory přímé a reciproké mřížky platí některé užitečné identity:

$$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{ij},$$
$$\exp[i\vec{T} \cdot \vec{G}] = 1,$$

pro libovolný vektor \vec{T} přímé mřížky a libovolný vektor \vec{G} reciproké mřížky.

Nyní nás bude zajímat amplituda pružného rozptylu rentgenového fotonu. Vektor změny směru vlnového vektoru tohoto fotonu můžeme zapsat jako $\Delta \vec{k} = \vec{k}' - \vec{k}$. Vlnový vektor dopadajícího záření označujeme \vec{k} a difraktovaného záření \vec{k}' . Amplitudu rozptylu \mathcal{A} zapíšeme jako integrál přes objem krystalu s tím, že intenzita rozptylu je v každém místě úměrná hustotě elektronů a jednotlivé příspěvky z různých míst se musí sčítat s odpovídajícím fázovým faktorem. S využitím (3.1) dostaneme

$$\mathcal{A}(\Delta \vec{k}) = \int \mathrm{d}V \, n(r) \, \mathrm{e}^{-\imath \Delta \vec{k} \cdot \vec{r}} = \sum_{\vec{G}} n_{\vec{G}} \int \mathrm{d}V \, \mathrm{e}^{\imath (\vec{G} - \Delta \vec{k}) \cdot \vec{r}}.$$
(3.3)

Integrál v sumě odpovídá delta funkci $\delta(\vec{G} - \Delta \vec{k})$. Vztah (3.3) lze tedy interpretovat tak, že v ideálním krystalu je možný pružný rozptyl rentgenového záření pouze pod podmínkou, že změna vlnového vektoru dopadajícího fotonu je rovna nějakému vektoru reciproké mřížky \vec{G} . Amplituda rozptylu v tomto konkrétním směru je pak úměrná složce Fourierova rozkladu elektronové hustoty, $\mathcal{A}_{\vec{G}} = V_{ck}n_{\vec{G}}$. V tomto vztahu V_{ck} označuje objem celého krystalu. Podmínka pro směry difrakce má v tomto případě tvar

$$\Delta \vec{k} = \vec{k}' - \vec{k} = \vec{G}.\tag{3.4}$$

Tuto podmínku můžeme řešit efektivní geometrickou konstrukcí, která se podle jejího autora označuje jako *Ewaldova konstrukce*.

3.3 Zákony rozptylu, difrakční podmínky

3.3.1 Braggův zákon

Uvažujeme odraz na rovinách krystalu, které jsou umístěné pod sebou ve vzdálenosti d. Ke konstruktivní interferenci odrazů z jednotlivých rovin dojde, pokud se budou jednotlivé odrazy k sobě přičítat konstruktivně ve fázi, t.j. pokud budou vzájemně zpožděné o celočíselný násobek vlnové délky λ . Tuto geometrickou podmínku lze zapsat ve tvaru Braggova zákona²:

(PO. 3.1: Geometrie Braggova zákona)

$$2d\sin\theta = n\lambda, \qquad n = 1, 2, \dots,$$
(3.5)

kde θ označuje úhel dopadu a d je vzdálenost krystalových rovin. Vzdálenost sousedních rovin (hkl) lze spočítat z velikosti odpovídajícího vektoru \vec{G} v reciprokém prostoru,

$$d(hkl) = \frac{2\pi}{|\vec{G}|}, \quad \text{kde} \quad \vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3.$$
 (3.6)

Důkaz tohoto vztahu je řešen v př. 3.2 na konci této kapitoly.

 $^{^2 {\}rm Sir}$ William Henry Bragg a jeho syn William Lawrence Bragg získali za tuto metodu určování krystalové struktury pomocí rentgenového záření Nobelovu cenu za fyziku v roce 1915.

3.3.2 Brillouinův zákon

Uvažujeme-li, že dopadající foton s vlnovým vektorem \vec{k} se odrazí pružně, potom bude mít jeho vlnový vektor stále stejnou velikost, ale odlišný směr. Platí tedy $|\vec{k}'| = |\vec{k}|$. Dosadíme-li do této rovnosti podmínku difrakce $\vec{k}' = \vec{k} - \vec{G}$, dostaneme³:

$$k^2 - 2\vec{k}.\vec{G} + G^2 = k^2 \qquad \Rightarrow \qquad 2\vec{k}.\vec{G} = G^2.$$

Odtud dostaneme Brillouinův zákon

$$\vec{k}.\frac{\vec{G}}{2} = \left(\frac{G}{2}\right)^2.$$
(3.7)

Vlnové vektory dopadajících fotonů \vec{k} , které splňují tuto podmínku, představují hranici tzv. Brillouinovy zóny (BZ) v reciprokém prostoru. Tuto BZ můžeme sestrojit tak, že v polovině každého vektoru reciproké mřížky \vec{G} sestrojíme kolmou rovinu. Brillouinovo vyjádření zákona rozptylu lze převést na Braggovo s využití rovnosti (3.6).

```
(PO. 3.2: Brillouinovy zóny čtvercové mříže),(PO. 3.3: Zaplnění reciprokého prostoru 1.BZ),(PO. 3.4: Model první Brillouinovy zóny FCC mřížky).
```

3.3.3 Laueho podmínky pro rozptyl

Poslední vyjádření téhož zákona rozptylu je možné zapsat pomocí Laueho rovnic⁴. Tyto rovnice odvodíme tak, že vektorovou rovnost (3.4) vynásobíme skalárně bázovými vektory mřížky.

$$\vec{a}_1 \cdot \Delta k = 2\pi h,$$

$$\vec{a}_2 \cdot \Delta \vec{k} = 2\pi k,$$

$$\vec{a}_3 \cdot \Delta \vec{k} = 2\pi l.$$
(3.8)

Řešení difrakce pak odpovídá splnění všech tří uvedených podmínek současně.

3.4 Experimentální difrakční metody

K difrakci může docházet pouze, pokud je polovina vlnové délky menší než vzdálenost rovin v krystalu, $\lambda/2 \leq d$. Záznamy typického lauegramu a debyegramu, které jsou diskutovány v této sekci, byly uvedeny na úvodním obrázku k této kapitole.

Obr. 3.2: Schéma Laueho difrakčního uspořádání. Krystal (zelený) je umístěn na goniometrickém držáku s náklony. Rentgenový svazek se spojitým spektrem je označen červeně. Modře zobrazené fotografické desky umožňují získat lauegram na průchod nebo na odraz.

³Volba znaménka je opačná proti (3.4). Znaménko si můžeme zvolit, neboť pokud je \vec{G} vektor reciproké mřížky, tak $-\vec{G}$ je také vektor reciproké mřížky.

 $^{^4 {\}rm Max}$ von Laue získal za tento výzkum Nobelovu cenu za fyziku v roce 1914.

3.4.1 Laueho metoda

Touto metodou se zkoumá monokrystalický vzorek pomocí dopadu kolimovaného svazku se spojitým spektrem v oblasti 0.2 Å až 2 Å. Lze sledovat průchod i odraz na rovinném záznamovém médiu, viz obr. 3.2. Krystal vybírá směry (odraz na rovinách symetrie) a vlnové délky, pro které je splněna difrakční podmínka. Tato metoda se používá pro přesnou orientaci krystalů. Teoreticky se dá předpovědět rozmístění difrakčních maxim v lauegramu geometrickou metodou (PO. 3.5: Ewaldova konstrukce lauegramu).

3.4.2 Metoda rotujícího krystalu

Při této metodě se používá monokrystalický vzorek a monochromatický svazek s jednou vlnovou délkou λ . Vzorkem se otáčí kolem pevné osy kolmo na směr paprsků. Svazek je difraktován, pokud dojde při otáčení ke splnění Braggovy rovnice. Geometrické uspořádání je schematicky znázorněno v obr. 3.3.

Obr. 3.3: Schéma uspořádání měření difrakce s rotujícím krystalem. Krystal (zelený) je umístěn na rotujícím držáku v ose válce, na kterém je zevnitř rozložen záznamový film (zobrazen modře). Monochromatický rentgenový svazek je označen červeně.

3.4.3 Debyeova-Scherrerova prášková metoda

Tato poslední metoda používá práškový vzorek⁵ a monochromatický svazek. Práškovým vzorkem se může navíc ještě rotovat. Splnění Braggovy podmínky pro jednu vlnovou délku a zcela náhodný směr orientace krystalu odpovídá difrakci ve směru kuželových ploch s úhlem odklonu 2θ od osy svazku.

Obr. 3.4: Schéma uspořádání měření difrakce Debyeovou-Scherrerovou práškovou metodou. Prášek krystalu je umístěn v tenkostěnné kapiláře (zelená). Záznamový proužek filmu (zobrazen modře) je umístěn na stěně válce. Zaznamenaný debyegram je složen z difrakčních kružnic s poloměry danými geometrií uspořádání. Směr průchodu monochromatického rentgenového svazku je označen červeně.

 $^{^5}$ Práškovou metodu difrakce vypracovali Peter Debye a jeho doktorand Paul Scherrer. Za tento výzkum získal P. Debye v roce 1936 Nobelovu cenu za chemii.

3.5 Fourierova analýza báze a strukturní faktory

Je-li splněna difrakční podmínka $\Delta \vec{k}=\vec{G}$ pro nějaký konkrétní vektor $\vec{G},$ je amplituda rozptylu podle (3.3) daná

$$\mathcal{A}_{\vec{G}} = N \int_{\text{buka}} \mathrm{d}V \, n(\vec{r}) \, \mathrm{e}^{-\imath \vec{G} \cdot \vec{r}} = N \, \mathcal{S}_{\vec{G}} \tag{3.9}$$

Rozptyl na krystalu složeného z N buněk je N násobkem strukturního faktoru $S_{\vec{G}}$, což je příspěvek od jedné elementární buňky. Pokud každá elementární buňka obsahuje s atomů báze, můžeme elektronovou hustotu v buňce zapsat jako sumu příspěvků od jednotlivých atomů na pozicích $\vec{r_i}$ takto,

$$n(\vec{r}) = \sum_{j=1}^{s} n_j (\vec{r} - \vec{r_j}).$$

Strukturní faktor daného krystalu pak můžeme spočítat z geometrie uspořádání jednotlivých atomů báze jako

$$\mathcal{S}_{\vec{G}} = \sum_{j=1}^{s} f_j \,\mathrm{e}^{-\imath \vec{G} \cdot \vec{r}_j}, \qquad \mathrm{kde} \quad f_j = \int \mathrm{d}V \, n_j(\vec{\rho}) \,\mathrm{e}^{-\imath \vec{G} \cdot \vec{\rho}} \tag{3.10}$$

je atomový rozptylový faktor a při jeho výpočtu se integruje přes elementární buňku v relativních souřadnicích $\vec{\rho}$ s počátkem v tomto *j*-tém atomu. Atomový rozptylový faktor je fakticky charakteristikou daného atomu a v prvním přiblížení odpovídá počtu elektronů daného atomu. Často je výhodné zapsat strukturní faktor $S_{\vec{G}}$ pomocí relativních souřadnic atomů báze $\vec{r}_j = (\xi \vec{a}_1 + \eta \vec{a}_2 + \zeta \vec{a}_3)$ a danou krystalovou reflexi zapsat pomocí indexů příslušné krystalové roviny (*hkl*). Výraz (3.10) se potom zredukuje na geometrickou sumu v bezrozměrných jednotkách

$$S_{(hkl)} = \sum_{j=1}^{s} f_j e^{-i 2\pi (\xi h + \eta k + \zeta l)}.$$
(3.11)

3.5.1 Strukturní faktory kubických mřížek

Výsledkem studia strukturních faktorů dané mřížky se dají odvodit výběrová pravidla, popisující, která difrakční maxima jsou u složitější elementární buňky potlačena. Dá se obecně říci, že přidáváním dalších atomů do báze krystalické struktury dojde ke zhášení některých difrakčních směrů.

Jako exemplární příklad se dá vyčíslit strukturní faktor pro elementární mřížku BCC. V tomto případě má elementární buňka dva atomy (s = 2). První leží v počátku ($\xi = \eta = \zeta = 0$) a druhý ve středu krychle ($\xi = \eta = \zeta = 1/2$). Rozptylový faktor obou atomů je identický ($f = f_1 = f_2$), a proto se vztah (3.11) zjednoduší na

$$\mathcal{S}_{(hkl)} = f \left\{ 1 + e^{-\imath \pi (h+k+l)} \right\}.$$

Pro mřížku *BCC* je tedy S = 0 pro (h + k + l) liché a S = 2f pro (h + k + l) sudé číslo.

Obdobně se dá postupovat i pro mřížku *FCC*. Tady vyjde, že nenulové difrakční řády jsou pouze případy, kdy jsou $\{h, k, l\}$ buď všechny liché, nebo všechny sudé.

Pro *diamantovou* mřížku je to ještě složitější. Buď jsou indexy $\{h, k, l\}$ všechny liché, nebo jsou všechny sudé, ale musí současně platit i to, že jejich součet je dělitelný čtyřmi.

Chování difrakce různých mřížek si lze prohlédnout např. pomocí programu WinWulff nebo WinLaue z webu: http://www.jcrystal.com/.

PO. 3.1: Braggův zákon rozptylu na krystalu. Černé tečky označují polohy atomů v mřížce. Rentgenový svazek se odchyluje od původního směru o úhel 2θ .

PO. 3.2: Sestrojení Brillouinových zón čtvercové 2D mřížky. Mřížkové body reciproké mřížky jsou označeny červenými tečkami. Hranice BZ leží na kolmici v polovině spojnice dvou mřížkových bodů reciproké mřížky.

PO. 3.3: Zaplnění prostoru pomocí opakování první Brillouinovy zóny kubické struktury FCC.

PO. 3.4: Nákresy Brillouinových zón pro kubocné mřížky BCC a FCC (nehoře). Model 3D Brillouinovy zóny ke kubické struktuře FCC si lze poskládat z vystřihovánky dole.

b)

PO. 3.5: Metoda konstrukce směrů difrakčních maxim lauegramu podle P.P. Ewalda. Body značí reciprokou mřížku a jejich vzdálenost odpovídá translačním vektorům reciproké mřížky. Rentgenový svazek je při Laueho difrakci širokospektrální, ale kolimovaný. Vlnový vektor \vec{k} vychází daným směrem ze zvoleného bodu A. Pro nejkratší vlnovou délkou je zobrazen modře a pro nejdelší vlnovou délku červeně. Po difrakci musí výsledný vlnový vektor $\vec{k'}$ ležet ve žlutě podbarvené oblasti mezi kružnicemi a musí začínat v některém bodě reciproké mřížky, např. v bodě B. Body A a B jsou takto spojeny vektorem reciproké mřížkové translace \vec{G} . Úhel odklonu rentgenového svazku při difrakci je 2 θ .

3.6 Příklady

Př. 3.1: Inverze Fourierovy řady: (a) Ukažte, že koeficienty rozvoje n_p periodické funkce n(x) v 1D splňují vztah

$$n(x) = \sum_{p = -\infty}^{\infty} n_p e^{i 2\pi \frac{x}{a}p}, \qquad n_p = \frac{1}{a} \int_{0}^{a} dx \, n(x) e^{-i 2\pi \frac{x}{a}p}.$$

(b) Ukažte, že ve 3D přejde tento vztah na analogii trojrozměrné Fourierovy transformace

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} e^{i\vec{G}\cdot\vec{r}}, \qquad n_{\vec{G}} = \frac{1}{V_c} \int_{\text{buka}} \mathrm{d}V \, n(\vec{r}) \, e^{-i\vec{G}\cdot\vec{r}}.$$

Kittel, str. 81, př. 1

Nápověda: Použijte následující dvě identity, které lze odvodit přímou integrací nebo z definičních vztahů:

$$\int_{0}^{a} dx e^{i 2\pi \frac{x}{a}(p-p')} = \delta(\frac{p-p'}{a}) = a\delta(p-p'),$$
$$\vec{a}_{i} \cdot \vec{b}_{j} = 2\pi\delta_{ij}.$$

Př. 3.2: Krystalové roviny: Uvažujeme rovinu (hkl) krystalové mřížky. Ukažte, že a) vektor reciproké mřížky $\vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$ je kolmý na rovinu (hkl); b) vzdálenost sousedních rovin $d(hkl) = 2\pi/|\vec{G}|$; c) pro SC mřížku je $d^2 = a^2/(h^2 + k^2 + l^2)$. Kittel, str. 82, př. 2

Nápověda:

Př. 3.3: Vztah přímé a reciproké mřížky:

$$\vec{b}_1 = \frac{2\pi}{V_c} \ \vec{a}_2 \times \vec{a}_3, \qquad V_c = |\vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3|.$$

Dokažte, že vektory reciproké k vektorům \vec{b} jsou právě vektory \vec{a} .

Nápověda: Použijte vektorovou identitu: $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b}).$

Př. 3.4: Objem 1. Brillouinovy zóny:

(a) Jaký je objem primitivní reciproké buňky (1.BZ)? <u>Kittel, str. 83, př. 5</u>
(b) Proč je 1.BZ k primitivní buňce krystalu větší, než když si zvolíme pro popis neprimitivní elementární buňku?
(c) S ohledem na
(b), jak se dá vysvětlit nezávislost difrakčních maxim na výběru elementární buňky daného krystalu?

Nápověda:

$$\Omega = |\vec{b}_1 \cdot \vec{b}_2 \times \vec{b}_3| = \frac{(2\pi)^3}{V_c}$$

Př. 3.5: Reciproká mřížka k variantám kubické mřížky: Nalezněte vektory reciproké mřížky pro primitivní buňky různých variant kubické mřížky (SC, BCC, FCC)

Řešení:SC, $\vec{b}_1 = \frac{2\pi}{a}(1,0,0),$ $\vec{b}_2 = \frac{2\pi}{a}(0,1,0),$ $\vec{b}_3 = \frac{2\pi}{a}(0,0,1);$ BCC, $\vec{b}_1 = \frac{2\pi}{a}(1,1,0),$ $\vec{b}_2 = \frac{2\pi}{a}(0,1,1),$ $\vec{b}_3 = \frac{2\pi}{a}(1,0,1);$ FCC, $\vec{b}_1 = \frac{2\pi}{a}(1,1,-1),$ $\vec{b}_2 = \frac{2\pi}{a}(-1,1,1),$ $\vec{b}_3 = \frac{2\pi}{a}(1,-1,1);$	SC, BCC, FCC,	$\vec{a}_1 = a(1,0,0),$ $\vec{a}_1 = \frac{a}{2}(1,1,-1),$ $\vec{a}_1 = \frac{a}{2}(1,1,0),$	$ \vec{a}_2 = a(0, 1, 0), \vec{a}_2 = \frac{a}{2}(-1, 1, 1), \vec{a}_2 = \frac{a}{2}(0, 1, 1), $	$\vec{a}_3 = a(0,0,1);$ $\vec{a}_3 = \frac{a}{2}(1,-1,1);$ $\vec{a}_3 = \frac{a}{2}(1,0,1).$
	Řešení: SC, BCC, FCC,	$\vec{b}_1 = \frac{2\pi}{a}(1,0,0), \vec{b}_1 = \frac{2\pi}{a}(1,1,0), \vec{b}_1 = \frac{2\pi}{a}(1,1,-1), $	$\vec{b}_2 = \frac{2\pi}{a}(0,1,0),$ $\vec{b}_2 = \frac{2\pi}{a}(0,1,1),$ $\vec{b}_2 = \frac{2\pi}{a}(-1,1,1),$	$\vec{b}_3 = \frac{2\pi}{a}(0,0,1);$ $\vec{b}_3 = \frac{2\pi}{a}(1,0,1);$ $\vec{b}_3 = \frac{2\pi}{a}(1,-1,1).$

Př. 3.6: Nejbližší sousedi: Reciproká mřížka k FCC je BCC. Určete počet a polohu nejbližších bodů Γ v sousedních BZ. Najděte hranici BZ v daném směru. S tím souvisí tvar 1.BZ ve 3D, který je zobrazen na (PO. 3.3: Zaplnění reciprokého prostoru 1.BZ).

Řešení: 8 bodů v tělesových úhlopříčkách $\vec{G} = \frac{2\pi}{a}(\pm 1, \pm 1, \pm 1), \overline{\Gamma L} = \frac{1}{2}|\vec{G}| = \frac{\pi}{a}\sqrt{3}.$ Dalších 6 bodů v osách, např. $\vec{G} = \vec{b}_1 + \vec{b}_2 = \frac{2\pi}{a}(2, 0, 0), \overline{\Gamma X} = \frac{1}{2}|\vec{G}| = \frac{2\pi}{a}.$

Př. 3.7: Rozptyl na vodíku: Základní stav atomu vodíku je daný 1*s* funkcí atomárního orbitalu (1.4). Hustota elektronů je daná kvadrátem této funkce:

$$n(r) = |\psi_{1s}(r)|^2 = (\pi a_{\rm B}^3)^{-1} \exp(-2r/a_{\rm B}),$$

kde $a_{\rm B}$ je Bohrův poloměr. Odvoďte vztah pro atomový rozptylový faktor f_G . Kittel, str. 84, př. 9 Řešení:

$$f_G = \int dV \frac{1}{\pi a_B^3} e^{-2r/a_B} e^{-i\vec{G}\cdot\vec{r}} = \frac{2\pi}{\pi a_B^3} \int_0^\infty dr \, r^2 \, e^{-2r/a_B} \int_0^\pi d\alpha \, \sin\alpha \, e^{-iGr\cos\alpha}$$
$$= \frac{2}{a_B^3} \int_0^\infty dr \, r^2 \, e^{-2r/a_B} \int_{-1}^1 d\xi \, e^{-iGr\xi} = \frac{4}{Ga_B^3} \int_0^\infty dr \, r \, e^{-2r/a_B} \sin(Gr)$$
$$= \frac{4}{Ga_B^3} \frac{4Ga_B^3}{(4+G^2a_B^2)^2} = \frac{16}{(4+G^2a_B^2)^2}.$$

Pro malé vektory \vec{G} je rozp
tylový faktor blízký jedné, neboť vodík má jeden elektron. S rostoucím vektore
m \vec{G} rozp
tylový faktor klesá, $f_G\propto G^{-4}$

Př. 3.8: Krystalografie práškového india: Pomocí rentgenového záření s $\lambda = 2$ Å zkoumáme prášek india (tetragonální prostorově centrovaná mřížka, a = 3.244 Å, c = 4.938 Å). Spočítejte úhly, pod kterými se odklánějí kužely difraktovaného záření (2 θ).

Nápověda:

elementární,	(a, 0, 0),	(0, a, 0),	(0, 0, c);
primitivní,	$\vec{a}_1 = \left(\frac{a}{2}, \frac{a}{2}, -\frac{c}{2}\right),$	$\vec{a}_2 = \left(-\frac{a}{2}, \frac{a}{2}, \frac{c}{2}\right),$	$\vec{a}_2 = (\frac{a}{2}, -\frac{a}{2}, \frac{c}{2});$
reciproká,	$\vec{b}_1 = \frac{2\pi}{ac}(c,c,0),$	$\vec{b}_1 = \frac{2\pi}{ac}(0, c, a),$	$\vec{b}_1 = \frac{2\pi}{ac}(c, 0, a),.$

Objem elementární buňky $V_c = \frac{1}{2}a^2c$. Rozptylový zákon sin $\theta = \frac{\lambda}{4\pi}|\vec{G}|$. Pro směr [100], $\vec{G} = \vec{b}_1$ dostaneme $\theta = 25.8^{\circ}$. Pro směr [010], $\vec{G} = \vec{b}_2$ dostaneme $\theta = 21.6^{\circ}$.

Obecně pro $\vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$ vyjde úhel $\sin\theta = \frac{\lambda}{2}\sqrt{\frac{(h+l)^2}{a^2} + \frac{(h+k)^2}{a^2} + \frac{(k+l)^2}{c^2}}$. Pro další roviny s vyššími indexy dostaneme ještě větší úhly difrakce (viz obr. 3.6): $\theta(110) = 45.9^\circ$, $\theta(020) = 47.5^\circ$, $\theta(200) = 60.7^\circ$, $\theta(111) = 74.0^\circ$.

Obr. 3.6: Krystalová struktura india: elementární buňka je čtverečná prostorově centrovaná, vektory primitivní mřížky jsou značeny modře. Indexy krystalových rovin jsou vztaženy k primitivní buňce.

Literatura

- [1] C. Kittel: Úvod do fyziky pevných látek (č. překlad ACADEMIA Praha, 1985).
- [2] C. Kittel, Introduction to Solid State Physics, Wiley, 8th edition 2004.
- [3] R.F. Pierret, Advanced Semiconductor Fundamentals, Prentice Hall, 2002.
- [4] M. Razeghi, Fundamentals of Solid State Engineering, Springer, 2009.
- [5] M. De Graef, M.E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Cambridge University Press, 2007.
- [6] L. Eckertová a kol., Fyzikální elektronika pevných látek, UNIVERZITA KARLOVA Praha, 1992.
- [7] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Brooks Cole, 1976.
- [8] C. Klingshirn: Semiconductor Optics, Springer, 2nd edition 2005.
- [9] L. Mihaly, M.C. Martin, Solid State Physics: Problems and Solutions, Wiley-Interscience, 1996.
- [10] J. Kvasnica: Matematický aparát fyziky, ACADEMIA Praha, 2004.
- [11] L. Skála: Úvod do kvantové mechaniky, ACADEMIA Praha, 2005.
- [12] E. Majerníková, Fyzika pevných látek, skripta UP Olomouc, 1999.
- [13] C. Kittel, Quantum Theory of Solids, Wiley, 1987.
- [14] P.Y. Yu, M. Cordona, Fundamentals of Semiconductors, Physics and Material Properties, Springer, 3rd edition 2001.
- [15] J. Celý, Kvazičástice v pevných látkách, VUTIUM Brno, 2004.
- [16] O. Ivaničová, Didaktika symetrie molekul, diplomová práce, PřF MU v Brně, 1999.
- [17] I. Turek, Grupy a symetrie v pevných látkách, výukové materiály, http://theory.kfkl.cz/staff/ turek, MFF UK Praha, 2017.
- [18] R.S. Mulliken, Report on Notation for the Spectra of Polyatomic Molecules, J. Chem. Phys 23, 1997 (1955); Erratum, J. Chem. Phys 24, 1118 (1956).
- [19] C. Weisbuch, B. Vinter, Quantum Semiconductor Structures, Fundamentals and Applications, Academic Press, 1991.
- [20] S.A. Maier, Plasmonics: Fundamentals and applications, Springer, 2007.
- [21] zdroj NIST, https://physics.nist.gov/cuu/Constants/index.html (listopad 2019).
- [22] J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., 1962.

Seznam použitých symbolů

V následujícím seznamu je uvedeno značení veličin a zkratky pojmů, které se v textu častěji používají. Velikost fyzikálních konstant je uvedena s takovým počtem platných cifer, že chyba je menší než polovina poslední cifry. Většina uvedených fyzikálních konstant je dnes definována přesně, a tato přesná hodnota slouží k zafixování vzájemného poměru fyzikálních veličin. Volba fixovacích konstant byla zvolena s ohledem na maximální kompatibilitu s předchozí definicí. Zdrojem konstant je seznam z webové stránky NIST (National Institute of Standards and Technology) [21], což je instituce, která má zajišťovat dostupnost aktuálních informací o všech fyzikálních konstantách. Na těchto stránkách je zaznamenán i historický vývoj v této oblasti.

Symboly v latince

značka	popis
1D	jednodimenzionální, jednorozměrný
2D	dvoudimenzionální, plošný
3D	trojdimenzionální, prostorový
$\hat{x}, \hat{y}, \hat{z}$	osy kartézského souřadnicového systému
a	mřížková konstanta 1D, čtvercových nebo kubických mřížek
$a_{\rm B}$	Bohrův poloměr, $a_{\rm B} = 0.529178{\rm \AA}$
$a_{\rm ex}$	poloměr excitonu
A_n	plocha magnetické orbity v k -prostoru
$\vec{a}_1, \vec{a}_2, \vec{a}_3$	elementární mřížkové vektory
$ec{b}_1, ec{b}_2, ec{b}_3$	elementární mřížkové vektory reciproké mřížky
$\mathcal{A}_{\vec{G}}$	amplituda rozptylu
\vec{A}	vektorový potenciál
\vec{B}	vektor magnetické indukce
с	rychlost světla ve vakuu, $c = 299792458 \text{ m/s}$ (přesně)
C_p	silové konstanty
\overleftarrow{C}	tuhost
C_n^m	operace symetrie n -četná osa rotace zopakovaná m -krát
C_V, c_V	tepelná kapacita, měrná tepelná kapacita
d	vzdálenost krystalových rovin
D	degenerace Landauovy hladiny
D_e, D_h	difuzní koeficient elektronů, děr
\vec{D}	vektor elektrické indukce
\mathcal{D}	hustota stavů
e	Eulerovo číslo, $e = 2.718281828$
e	elementární náboj, $e = 1.602176634 \times 10^{-19}\mathrm{C}$ (přesně)
eV	elektronvolt, energie, kterou získá elektron přechodem potenciálu 1 ${\rm V}$
$ec{E}$	elektrické pole
E	energie
$E_{\rm at}$	energie základní hladiny jednoho atomu
$E_c(k), E_v(k)$	vodivostní a valenční energetický pás
E_g	šířka zakázaného pásu
$E_{\rm koh}$	kohezní energie krystalu

$E_{\rm F}$	Fermiho energie
f	statistické rozdělení (např. $f_{\rm FD}, f_{\rm BE}$)
f_i	atomový rozptylový faktor
$\vec{\vec{F}}$	síla
F_{kl}	tenzor napětí
\vec{G}	mřížkový vektor reciproké mřížky (celočíselná kombinace vektorů \vec{b})
ħ	redukovaná Planckova konstanta. $\hbar = 1.054572613 \times 10^{-34}$ J s
	Planckova konstanta $2\pi\hbar = 6.626.075.15 \times 10^{-34}$ Js (přesně)
Н	hamiltonián
H .	hamiltonián jednoho stomu
\vec{u}	voltor magnetické intenzity
11	$\frac{1}{1}$
<i>i</i>	infiguratini jeunotka $(i = \sqrt{-1})$
i I	operace symetric identity, nobe proud
<i>1</i> <i>→</i>	operace symetrie identita, nebo proud
Ĵ ≓	nustota proudu
J	tok, proud
$\vec{k}_{\rm B}$	Boltzmannova konstanta, $k_{\rm B} = 1.380649 \times 10^{-23}\mathrm{J/K}$ (přesně)
k_{\downarrow}	vlnový vektor (elektronu, často vybraný z 1.BZ)
\vec{K}	vlnový vektor v rozšířeném pásovém schématu
l	střední volná dráha
L	délka vzorku
L_n, L_p	difuzní délka elektronů, děr
\mathcal{L}	Lorentzovo číslo
m	hmotnost elektronu
m_0	klidová hmotnost volného elektronu, $m_0 = 0.910938370 \times 10^{-30}\mathrm{kg}$
m^*	efektivní hmotnost nosiče v pásu
m_e, m_h	efektivní hmotnost elektronů, děr
M	hmotnost atomárního jádra
M_n	klidová hmotnost neutronu, $M_n = 1.674927498 \times 10^{-27}{\rm kg}$
n	koncentrace elektronů
n_{opt}	optický index lomu
N	počet elementárních buněk krystalu
$N_{\rm A}$	Avogadrova konstanta, $N_{\rm A} = 6.02214076 \times 10^{23} \mathrm{mol}^{-1} \mathrm{(p\check{r}esn\check{e})}$
N_a, N_d	koncentrace akceptorů, resp. donorů
p	hustota děr v polovodiči
$\sum_{j}^{\prime} p_{ij}^{-i}$	mřížkové sumy $\sum'_j p_{ij}^{-6}$ a $\sum'_j p_{ij}^{-12}$
\vec{p}	hybnosti elektronu
\vec{P}	hybnosti jádra
$\vec{P_e}$	vektor polarizace
\tilde{q}	náboj elektronu $\tilde{q} = -e$, resp. náboj díry $\tilde{q} = e$
\overline{Q}	náboj kationtu (aniontu) v soli
\vec{q}	vlnový vektor fononu
Q_T	absolutní termoelektrická síla
\vec{r}	polohový vektor elektronu
r_s	Wignerův poloměr, poloměr koule s jedním valenčním elektronem
\vec{R}	polohový vektor atomárního jádra
$R_{ m H}$	Hallův koeficient
Ry	Rydberg, energie základní hladiny atomu vodíku, Ry $=13.6056726\mathrm{eV}$
$R_{\rm ex}$	excitonový Rydberg
\vec{s}	spin
\vec{S}	element plochy
S_n	plocha magnetické orbity v reálném prostoru
S_n^m	operace symetrie <i>n</i> -četná nevlastní osa rotace zopakovaná <i>m</i> -krát
$\mathcal{S}_{\vec{c}}$	strukturní faktor
\overleftrightarrow^{G}	noddeinest
ر +	poudajnost
ι T	cas tapleta
1	reprota

$T_{\rm F}$	Fermiho teplota
\vec{T}	mřížkový translační vektor přímé mřížky (celočí selná kombinace vektorů $\vec{a})$
$ec{u}_{kl}$	vektor výchylky atomu z rovnováhy
$u_{\vec{k}}$	periodická část Blochovy vlnové funkce
$U^{}$	potenciál pro elektrony
$U_{\vec{G}}$	koeficienty rozvoje potenciálu
\mathcal{V}	potenciál jader
\vec{v}	vektor rychlosti
$ec{v_{\mathrm{f}}}, ec{v_{\mathrm{g}}}$	fázová, resp. grupová rychlost
V_0	difuzní potenciál p-n přechodu
V_c	objem elementární buňky krystalu
$V_{\rm ck}$	objem celého krystalu
w, w_0	šířka oblasti prostorového náboje p-n přechodu
W_j	pravděpodobnost přechodu do stavu j
z	počet nejbližších sousedů v mřížce
Ζ	atomové číslo
Z^*	valence

Symboly v řecké abecedě

značka	popis
α	Madelungova konstanta; silová konstanta nejbližších sousedů
β	převrácená hodnota součinu Boltzmannovy konstanty a teploty, $\beta = 1/k_{\rm B}T$
δ	Diracova δ -funkce
δ_{ii}	Kroneckerovo delta
ϵ_{ii}	tenzor malé deformace
ε	relativní dielektrická konstanta (permitivita)
ε_0	permitivita vakua, $\varepsilon_0 = 8.85418781 \times 10^{-12}\mathrm{F/m}$
$arepsilon,\sigma$	parametry Lennard-Jonesova potenciálu inertních plynů
θ	Braggův úhel rozptylu
Θ	Debyeova teplota
λ	vlnová délka světla; tepelná vodivost
λ_B	magnetická délka elektronu
μ	chemický potenciál
μ_0	permeabilita vakua, $\mu_0 = 4\pi \times 10^{-7} \mathrm{H/m}$
μ_e, μ_h	pohyblivost elektronů a děr
$\mu_{ m B}$	Bohrův magneton
π	Ludolfovo číslo, $\pi = 3.1415926536$
Π_e, Π_h	Peltierův koeficient pro elektrony a díry
ho	měrný odpor; hustota; hustota volného náboje
σ	měrná vodivost
$\sigma_h, \sigma_v, \sigma_d$	operace symetrie různě orientované roviny zrcadlení
au	doba života, relaxační doba, časová konstanta
$arphi,\psi$	vlnová funkce
$\Phi(kl,k'l')$	tenzor silových konstant
Φ_n	magnetický tok plochou orbity v reálném prostoru
$\psi_{ec{k}}(ec{r})$	Blochova vlnová funkce
ω	kruhová frekvence ($\hbar\omega$ je energie fotonu nebo fononu)
ω_c	cyklotronová frekvence (elektronu v magnetickém poli)
$\omega_{ m D}$	Debyeova frekvence
$\omega_{\mathrm{T}}, \omega_{\mathrm{L}}$	frekvence příčného a podélného optického fononu
ω_p	plazmová frekvence elektronů v kovu
Ω	objem primitivní reciproké buňky

Jednotky a veličiny v soustavě CGS

V některých knížkách se stále ještě používá značení v soustavě CGS. Proto je vhodné na tomto místě uvést převodní vztahy do soustavy SI, podobně jak to mají autoři Yu a Cardona na zadní předsádce knihy [14].

veličina	SI jednot	ka koe	koeficient konverze		CGS jednotka
	-	SI-	\rightarrow CGS	$CGS \rightarrow SI$	-
délka	metr [m]	10^{2}		10^{-2}	centimetr [cm]
hmotnost	kilogram [k	$[10^3]$		10^{-3}	gram [g]
energie	Joule [J]	10^{7}		10^{-7}	erg
náboj	Coulomb [C] $3 \times$	10^{9}	$1/3 \times 10^{-9}$	statcoulomb
potenciál	Volt [V]	1/3	00	300	statvolt
odpor	Ohm $[\Omega]$	1/9	$\times 10^{-11}$	9×10^{11}	statohm
veličina		hodnota v CC	S	výpočet z	z SI konstant
náboj elektro	onu	$4.803205 \times 10^-$	10 esu	10ec	
hmotnost ele	ktronu	9.109384×10^{-2}	²⁸ g	$10^{3} r$	n_0
energie $1\mathrm{eV}$		1.602177×10^{-1}	12 erg	$10^{7} e$	

Pro převod vzorců, které najdete v literatuře v CGS, použijte následující tabulku (viz Appendix Jacksonovy knihy [22]). Například pokud se bude ve vzorci vyskytovat c, nahradí se hodnotou $1/\sqrt{\varepsilon_0\mu_0}$.

veličina (podobně pro další)	výraz v CGS	nahradit výrazem v SI
rychlost	c	$1/\sqrt{\varepsilon_0\mu_0}$
elektrická intenzita (potenciál, napětí U)	$ec{E}$	$\sqrt{4\pi\varepsilon_0}$ \vec{E}
elektrická indukce	$ec{D}$	$\sqrt{4\pi/arepsilon_0}~ec{D}$
náboj (proud \vec{j} , polarizace \vec{P})	ho	$1/\sqrt{4\pi\varepsilon_0} ho$
magnetická intenzita	$ec{H}$	$\sqrt{4\pi\mu_0}~ec{H}$
magnetická indukce	$ec{B}$	$\sqrt{4\pi/\mu_0}~ec{B}$
vodivost (kapacitance)	σ	$\sigma / (4\pi\varepsilon_0)$
permitivita	ε	$\varepsilon/arepsilon_0$
permeabilita	μ	μ/μ_0
odpor (impedance, induktance)	R	$(4\pi\varepsilon_0) R$