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Uvod

Tento studijni text by mél slouzit pro prvni seznameni student® pfirodovédnych obord se zakladnimi
principy fyziky pevnych latek. V této védni oblasti byla v nedavné dobé publikovana celd fada velmi
kvalitnich knih. Nékteré se ale vénuji jiz pokrocilejsim tématim a navic prevazna vétsina publikaci je
dnes dostupna pouze v anglickém jazyce. Tento text by mél proto ulehc¢it studium pevnych latek i tim,
ze je v CeStiné.

Razeni kapitol tohoto textu bylo inspirovano ¢eskym piekladem knihy Ch. Kittela: Uvod do fyziky
pevngch latek [1]. Tato kniha byla od svého vydéni v minulém stoleti doporucovana jako tvodni text
pro studenty fyziky pevnych latek. Dodnes je tato kniha ucelenym textem, ktery lze doporucit i diky
vybornému ptekladu, ktery uvadi vzorce v jednotkach SI. Piiklady na konci kapitol tohoto studijniho
textu jsou cCasto prevzaty z tohoto ceského prekladu a jsou proto citovany i s odkazem na stranku jako:
Kittel, str. 49, pr. 1. Pfiklady jsou ¢asto doprovazeny vysvétlivkami a jejich feSeni miuZe napomoci k
lepsimu pochopeni probirané latky. Naro¢néjsi ulohy, které resi slozitéjsi problémy, jsou oznaceny hvéz-
dickou (*). Prestoze Ch. Kittel vydal jiz osmé upravené vydani své knihy [2], ¢esky pieklad je dodnes
dostupny pouze pro druhé vydani z osmdesatych let minulého stoleti. Je pravda, Ze fyzikalni vlastnosti
pevnych latek se neméni, nicméné toto téma by si zaslouzilo pfece jen nové upravené vydani. Navic Cesky
preklad druhého vydani je dnes dostupny pouze v knihovnach.

Pokrod¢ilejsimu ¢tenafi je mozné doporucit knihu R.F. Pierreta [3] Advanced Semiconductor Funda-

v

pevnych latek. Kniha M. Razeghiho [4] je velmi podrobné a pokryvé i pokrocild témata. Symetrii krystalii
se velmi podrobné vénuji M. De Graef a M.E. McHenry [5]. Jednou z mala pivodnich éeskych knih je
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Knihy doporucené pro doplnujici studium, presné citace jsou uvedeny v kapitole Literatura na str. 212.



text L. Eckertové a kol. [6] Fyzikdlni elektronika pevngch ldtek vydany v roce 1992.

Prevazné kovim se vénuje knizka autorat N.W. Ashcrofta a N.D. Mermina [7]. Pfestoze je tento text
jiz z poloviny sedmdesétych let, je pro vyklad kovii jedineény. Kniha C. Klingshirna [8] se v prvni poloviné
podrobné vénuje vykladu fyziky pevnych latek a v druhé poloviné probird optické vlastnosti polovodica
a ruzné optické metody studia pevnych latek.

Velmi zajimava je i kniha L. Mihalyho a M.C. Martina [9], kterd vysvétluje problematiku pevnych
latek na souboru fesenych piikladid. Tato koncepce dovoluje ¢tenédfi prohloubit si znalosti diky nutnosti
hledat feseni typickych uloh. Pfi feseni téchto uloh nezaskodi si zopakovat nékteré matematické poucky,
vhodnou knihou muZe byt napt. Matematicky apardt fyziky od J. Kvasnicy [10]. Navic problematika
pevnych latek vyuziva znama Feseni typickych tloh z kvantové mechaniky. Zaklady kvantové mechaniky
si Ize zopakovat v knize L. Skély [11] Uvod do kvantové mechaniky.

Teoreti¢téjsi pohled na pevné latky podédvaji skripta E. Majernikové [12] vydand UP v Olomouci
v roce 1999. Kniha Ch. Kittela [13] Quantum Theory of Solids je opét souborem FeSenych uloh. Symetrii
krystalt se vénuje kniha autort P.Y. Yua a M. Cordony [14], kterou lze ale opét doporuéit pouze pokroci-
lému ¢tenafi. Posledni kniha, jejiz autor je J. Cely [15] z MU v Brné, se vénuje problematice kvazi¢astic
pro popis pevné latky a riiznych interakci v pevné latce.

Seznam jmenovanych knizek, které se vénuji problematice pevnych latek, by mohl byt mnohem roz-
sahlejsi, ale dalsi hledani prenechme vlastni iniciativé ¢tenare. Navic mnoho zajimavych textl, ale i
multimedidlnich soubori na téma pevné ldtky lze najit i na internetovych strankich znamjych univerzit,
nebo na Wikipedii: http://www.wikipedia.org/. Jak zndmo, dlouhé vysvétlovani miize snadno zastou-
pit jeden obrazek a dynamiku néjakého procesu je mozné nejsnaze pochopit z reprezentativni animace.
Neni mozné zde vypsat vSechny zajimavé internetové odkazy, ale bez obav: ,Kdo hleda, najde.“


http://www.wikipedia.org/




Tento krystal je pivodné z Brazilie, ale dnes ho najdete na zemépisné pozici: 49°24°24.220”N, 11°023.203”E.
Jde o krystal ametystu SiOs, trigonalni krystalova soustava, tvrdost 7.



Kapitola 1

Prostorové usporadani krystalu

Obsah kapitoly

1.1 Historicky vyvoj pohledu na pevné latky . . .. ... ... ... ....... 6
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1.1.2 Popis atoméarnich vlnovych funkci a kvantova ¢isla . . . . . . . ... ... ... 8

1.2 Pevné latky z pohledu kvantové mechaniky . . . . . . . .. ..o 9

1.3 Krystalovd mrizKa . . . ¢ v v v v v v v v v vttt e e e e e e e e e e e e e e e 10

1.4 Sedm krystalografickych soustav . . . ... ... ... 00000, 11

1.5 Operace symetrie . . .. . . . . i i i it it it e e 12
1.5.1 Prvky bodové grupy symetrie . . . . . . ... ..o 12

1.6 Indexy krystalovych rovin . . . . . . . . ¢ v v v v v v v v v v v oo oo ouoens 13

1.7 Jednoduché krystalové struktury . . . . . . . ¢ . v v v v v v v v vttt 14

1.8 Priklady . . . v v v v it e e e e e e e e e e e e e e e e e e 24

Vsechny latky délime podle skupenstvi na plyny, kapaliny a pevne latky. Jako ¢tvrté skupenstvi
se nékdy uvadi jesté plazma. Pevné latky pak délime podle prostorového uspotradani na krystalicke,
polykrystalické a amorfni. V celé této praci se soustfedime vyhradné na latky krystalické, u kterych se
pfi popisu usporadani atoma da vyuzit prostorova symetrie.

Krystalickd pevné latka znamend periodické usporadani atomid v pravidelné miizce. O této pravi-
delnosti se mtzeme piesvédcit diky tomu, ze pfi difrakci rentgenového zafeni se za krystalem vytvari
pravidelny obrazec difrakénich maxim, ze kterého lze rozmisténi atomt dopoéitat. Céstice, ze ktergch je
latka slozena, lze rozdélit na tézka atomarni jadra a o tii fady leh¢i elektrony. Pfi pocateénim studiu
pevnych latek bylo nutné fesit oba tyto systémy nejprve oddélené. O atomech jiz vime, Ze jsou rozmistény
v periodické mfizce a fesi se pouze kinetické rovnice popisujici dynamiku kmitdni atomt kolem svych
rovnovaznych poloh. Pfitom elektrony na vnitinich energetickych hladinach jsou lokalizovany blizko jader
a spolu vytvareji kompaktni ionty. Navenek pak ptisobi celkovym nabojem, ktery je souctem kladného
naboje jadra a zadporného naboje elektrond vnit¥nich lokalizovanych orbital. Vibrace téchto atomu je
tedy prvni feSeny problém.

Pokud mame znamé periodické usporadani atomiu v prostoru, vime, Ze zbyvajici elektrony se musi
pohybovat v periodickém potencidlu, ktery tyto ionty vytvareji. Prilomem pfi hledani spravné vinové
funkce valenénich elektront byl Blochtv teorém. S jeho pouzitim se odvodi to, Ze periodicky potencial
vede na pasovou energetickou strukturu povolenych a zakézanych energetickych pasti pevné latky. Nalezeni
energetickych hladin elektroni je tedy druhy zakladni problém, ktery je nutné vyfesit a je pfedpokladem
dalstho hlubsiho studia fyziky pevnych latek.

Teorie pevnych latek vychézi ze znalosti z celého rozsahu zakladniho kurzu fyziky. Jedna se zejména
o termodynamiku a statistickou fyziku, kvantovou fyziku, dale pak elektronovou konfiguraci atomi a
popis elektronovych orbitali ze zakladd chemie. Je nutna také znalost matematické analyzy, protoze v této
problematice se musi ¢asto sumovat, integrovat, derivovat a pocitat limity funkci. V neposledni fadé je
dilezita také znalost algebry pro popis symetrii krystaltt pomoci grupové teorie. Vyhodou fyziky pevnych
latek je to, Ze se v ni daji uplatnit vSechny feSitelné modely kvantové mechaniky. Studium pevnych patek



je tedy ukéazkou praktického pouziti kvantovky. P¥i viyzkumu se postupovalo od nejednodussich modelt
a testovala se shoda teoretickych vypocti s experimentem. Shoda s naméfenymi daty tak byla vzdy

vvvvv

1.1 Historicky vyvoj pohledu na pevné latky

Nejprve pripomenme nékteré historické milniky ve vyvoji pohledu na strukturu latky. Ty jsou do znacné
miry svazény s formovanim zaklad® kvantové mechaniky na pocatku dvacatého stoleti.t

1853 — Prvni pozorovani ¢arového spektra vodiku.

1864 — Maxwellova teorie elektromagnetického pole (J.C. Maxwell).

1869 — Mendélejevova periodickd tabulka prvka (D.I. Mendélejev).

1895 — Objev rentgenového zéreni (W.C. Rontgen).

1896 — Objev radioaktivity (A.H. Becquerel).

1897 — J.J. Thomson objevil elektron a navrhl tzv. pudinkovy model atomu.

1898 — Identifikace v a 3 zareni.

1899 — R.A. Millikan provedl prvni nepfimé méfeni naboje elektronu.

1900 — M. Planck odstartoval zrod kvantové teorie vysvétlenim zafeni absolutné ¢erného télesa.

1905 — A. Einstein vysvétlil princip fotoefektu pomoci kvanta elektromagnetického zafeni.

1906 — E. Rutherford? provedl experiment s rozptylem « ¢astic na kovové félii (100 atomarnich vrstev).

1911 — Tento experiment vedl Rutherforda k zavéru, ze kladny naboj atomu je soustiedén do ,bodového*
jadra atomu.

1913 — N. Bohr pouzil planetarni model pro vysvétleni stability atomu.

1921 — Objev silné nukledrni interakce, kterd zodpovida za stabilitu jadra.

1931 — Sir J. Chadwick a kolegové objevili neutronu.

Kdybychom chtéli zacit historicky tplné na zacatku, museli bychom se vratit az k feckym filozoftim
jako byli Leukippos a Démokritos. Ti jiz v dobé 400 let pfed Kristem zavedli atom jako nejmensi dale
jiz nedélitelnou c¢astici, ze které se sklada veskerd hmota kolem nés. Trvalo dalsi dva tisice let, nez irsky
badatel, fyzik a chemik Robert Boyle roku 1661 navrhl koncept, ze se rtizné latky skladaji z rtznych
atomu, které dnes nazyvame proky. Podle Boyla bylo mozné prvky rozliSovat podle zbarveni plamene,
kdyz se dany material zapali. Timto zptisobem vlastné poprvé pouzil spektroskopii jako metodu prvkové
analyzy. Jeho kolegové (A. Lavoisier, J. Priestley a J. Dalton) pak piisli se spravnou myslenkou, Ze
pro jednotlivé prvky je charakteristické jejich atomérni hmotnost.

Kolem roku 1870 bylo znamo jiz 65 rtuznych prvka. Vyznamnym pfelomem byla pecliva prace ruského
chemika Dmitrije Ivanovice Mendélejeva, ktery zkoumal systematické opakovani vlastnosti prvki po
osmi a podafilo se mu uspotradat vSechny prvky do periodicke tabulky, ktera dnes nese jeho jméno. V jeho
tabulce nékteré prvky chybély, nebyly totiz v jeho dobé jesté znamy. Takto dokézal Mendélejev velmi
presné predpovédét vlastnosti prvku, ktery je v tabulce ve sloupci IV.A pod kiemikem. Tento v pFirodé
ne prili§ Casty prvek objevil az v roce 1886 némecky chemik Clemens A. Winkler a pojmenoval jej
podle svého naroda germanium. ((PO. 1.1: Periodicka tabulka))

Na konci 19. stoleti Joseph John Thomson objevil ve struktufe latky zaporné nabité castice, které
nazval elektrony. Poté Robert Millikan provedl méfeni, kterym stanovit pomér naboje a hmotnosti
elektronu. Déale pak ur¢il, Ze pomér hmotnosti elektronu a hmotnosti atomu vodiku (jednoho protonu)
je fadové 1/2000. Na to navazal Henry Moseley, ktery odhadl, Ze pocet elektronti jednotlivych atomt
odpovidéa atomovému ¢islu. Pokud jsou ale atomy navenek neutralni, musi zdporny néboj elektronti kom-
penzovat néjaky kladny naboj.

Prvnim, kdo navrhl planetarni model atomu byl v roce 1904 japonsky fyzik Hantaro Nagaoka.
Odmital Thomsonuv pudinkovy model, kde by se kladné a zaporné naboje prekryvaly. Kladny naboj si
predstavoval jako planetu Saturn a elektrony jako Saturnovy prstence. Pfedpovédi o hustém atomovém
jadru potvrdl svymi pokusy Ernest Rutherford, ktery pojmenoval kladné nabité ¢astice jadra protony.
Dale predpovidal ze jadro, slozené z kladné nabitych protonil, musi pro udrzeni své stability obsahovat

ITento seznam obsahuje hned nékolik nositeltt Nobelovy ceny za fyziku: 1901 - W.C. Roéntgen, 1903 - A.H. Becquerel,
1906 - J.J. Thomson, 1918 - M. Planck, 1921 - A. Einstein, 1922 - N. Bohr, 1923 - R.A. Millikan, 1929 - L. de Broglie, 1935
- J. Chadwick, pfevzato z knihy [5] na str. 51.

2Ernest Rutherford byva povazovan za zakladatele jaderné fyziky. Za studium radioaktivity obdrzel v roce 1908 Nobelovu
cenu za chemii.



néjaké dalsi neutralni ¢astice. Rutherford o nich mluvil jako o lepidlu, které drzi husté jadro pohromadé.
Tyto neutralni ¢astice jadra dnes nazyvame neutrony.

Od pocatku 20. stoleti se zacala rozvijet kvantova fyzika. V roce 1900 Max Planck zacal s kvan-
tovanim elektromagnetického pole. Céstice tohoto pole se nazyvaji fotony a maji energii hv, kde h je
Planckova konstanta (h = 6.626 07515 x 10734 J s, pfesné) a v piedstavuje frekvenci pole. Nastolenou
vlnové ¢asticovou dualitu dokoncil z druhé strany francouzsky fyzik Louis de Broglie, kdyz hmotnym
¢asticim prifadil vlnovou délku podle vztahu A = h/p. Zde h je opét Planckova konstanta a p je hybnost
Castice, kterou spocitame jako soucin hmotnosti a rychlosti ¢astice. My v tomto textu budeme pouzivat
vyhradné jenom redukovanou Planckovu konstantu definovanou vztahem A = h/27w. VSechny v textu
pouzivané konstanty a symboly jsou pro piehlednost uvedeny v seznamu na konci skripta na str. 214.

Jeden ze zadkladnich postulatt popisujicich kvantové chovani elementarnich ¢astic je princip neurdci-
tosti Wernera Heisenberga?. Ten Fik4, Ze nelze soucasné presné zméfit dvé nekumutujici veli¢iny jedné
castice. Nelze naptiklad soucasné urcit presné polohu a hybnost. Tento princip mizeme zapsat tak, ze
neurcitost mérené polohy Az a neurcitost hybnosti Ap, Castice je vétsi nez nenulova konstanta,

AxAp, > h.

Jak je patrné, konstanta, kterda omezuje maximéalni moznou pfesnost méfeni, je opét redukovand Planckova
konstanta. K vlnové ¢asticovému dualismu pfispél dale Max Born?, kdyZ navrhl pravdépodobnostni
interpretaci vlnové funkce studované ¢astice. A nakonec bylo jesté nutné, aby Erwin Schrédinger®
odvodil rovnici, kterd umoznuje pocitat vlnové funkce a energie studovanych c¢astic a predpovidat jejich
¢asovy vyvoj.

1.1.1 Bohruv model atomu vodiku

Pro vysvétleni stability atomu vodiku pouzil dansky fyzik Niels Bohr kvantovani [11]. Pfedpoklady Bo-
hrova modelu jsou:

B Elektrony se pohybuji po kruhovych drahéch, pro které je splnéna kvantovd podminka pro moment
hybnosti

]{pdr:n27rh7 n=12 ..., (1.1)
kde p je hybnost elektronu, dr je element kruhové drahy, n je kvantové celé ¢islo a & je redukovana
Planckova konstanta.

B Elektrony pii pohybu na kruhovych drahach, spliiujicich kvantovou podminku, nevyzafuji energii.
B Elektron mizZe pfijmout nebo vyzarit energii pouze pfi prechodu z jedné drahy na druhou.
Nyni pouzijeme klasickou podminku vyvazeni ptitazlivé coulombovské a odstfedivé sily ptfi kruhovém
pohybu. Tak dostaneme na zakladé téchto semi-klasickych ivah prvni rovnici,
9 1 e

4mweg mor’

kde e je elementarni naboj, mg je hmotnost elektronu a ¢¢ je permitivita vakua. Druhou rovnici ziskdme

z kvantovaci podminky (1.1),

hn
V= —"
mor

Kombinaci obou rovnic prostym dosazenim eliminujeme neznamou v a ziskdme polomér povolenych kru-
hovych drah hladiny s kvantovym ¢islem n ve tvaru

47T€0h2

e2mg

rn = nagp, kde ap =

~0.529 177 A. (1.2)
Polomér kruznice zakladni energetické hladiny ap se oznacuje Bohriv polomér. Pro energie jednotli-
vych elektronovych hladin dostaneme vztah, ktery je ve shodé s experimentalné pozorovanym ¢arovym
spektrem atomérniho vodiku

Ry e*mg

E,=—— kde Ry:2(

5 oy ~ 13:605 8 ev. (1.3)

3Werner Heisenberg ziskal Nobelovu cenu za fyziku v roku 1932 za podil na vytvofeni kvantové mechaniky.
4Max Born je nositelem Nobelovy ceny za fyziku z roku 1954.
SErwin Schrédinger je nositelem Nobelovy ceny za fyziku z roku 1933.



Energie

Obr. 1.1: Cervené je zobrazen coulombovsky potencial atomu vodiku U(r), te¢kované jsou znazornény
energetické hladiny (1.3) a modfe jsou zobrazeny atomdarni vlnové funkce 1s a 2s.

Energie zékladni hladiny se nazyva Rydberg.

Je zajimavé, Ze Bohrovu kvantovaci podminku (1.1) mizeme s vyuZitim vlnové délky pro elektron
podle L. de Broglieho (A, = 27/i/p) zapsat néasledujicim alternativnim zpisobem. Délka stabilni kruhové
drahy elektronu atomu vodiku je vidy celociselnym nasobkem vinové délky elektronu,

217, = N)e.

Podrobny kvantovy vypocet spektra, které se ziska fesenim Schrodingerovy rovnice, lze nalézt v uceb-
nicich kvantové mechaniky [11]. Vysledkem jsou kromé energetickych hladin (1.3) jesté vlnové funkce elek-
tront. Kvadrat vinové funkce predstavuje pravdépodobnost nalezeni elektronu v daném misté prostoru.
Zde uvedeme pro ilustraci pouze vlnovou funkei zdkladniho kulové symetrického stavu (1s orbitalu)

1
Vmaid

Energetické hladiny atomu vodiku a dvé vlnové funkce nejnizsich hladin jsou zakresleny v obr. 1.1.

thrs(r) = e/, (1.4)

1.1.2 Popis atomarnich vlnovych funkci a kvantova cisla

Jadro atomu vodiku pfedstavuje vlastné jeden proton, ktery vytvari sféricky symetricky potencial (obr. 1.1).

1 €2
Ur)=— —.
(r) dmeg 1

Resenim Schrodingerovy rovnice pro elektron s timto sféricky symetrickym potencidlem dostaneme sou-
stavu energetickych hladin a vlnovych funkei (7). Tyto vlnové funkee lze rozlozit na soudin sférické ¢asti
R,,; a thlové ¢asti Yy,

w(m = wnlm(ra 9, (b) = Rnl(r) 5/lm(97 (b)?

kde proménné r, 8, ¢ predstavuji sférické souradnice. Indexy n, [, m predstavuji kvantova ¢isla dané vlnové
funkce a tém se budeme dale vénovat.

B Prvni je n, které oznacuje hlavni kvantové ¢islo a nabyva hodnot n = {1,2,3,...}. Hlavni kvantové
¢islo urcuje energii kvantové hladiny podle (1.3), E,, = —Ry/n?.

B Nésleduje [ jako vedlejsi kvantové ¢islo. Pro jeho hodnoty plati: I < n—1, nebolil = {0, L...,n— 1}.
Toto kvantové ¢&islo uréuje vlastni hodnotu operatoru kvadratu momentu hybnosti L2, velikost
momentu hybnosti je rovna hodnoté: 1/I(I + 1)k.

B Ttetim c¢islem je magnetickée kvantové cislo m, které lezi v intervalu —I < m < [. Toto ¢islo je vlast-
nim ¢islem operatoru L, a urcuje projekci orbitalniho momentu hybnosti. I, = mh. Néazev tohoto



kvantového ¢isla vyplyvy z toho, zZe vlivem piisobeni magnetického pole dochézi k rozstépeni ener-
getické hladiny elektrond v zavislosti pravé na projekci momentu hybnosti do sméru magnetického
pole. Tento efekt se nazyva Zeemaniv jev®.

B Pro Gplnost uvedeme jesté ¢tvrté kvantové Cislo elektronu, kterym je spin s. Predstavuje vnitini
moment hybnosti elektronu, je ryze kvantovy a nema klasickou paralelu. Pri pisobeni magnetického
pole se energické hladiny elektronu $tépi pouze na dvé hodnoty. Projekce spinu je totiz pouze dvoji

s=+1/2.
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Obr. 1.2: Atomarni orbitaly odpovidajici vlnovym funkcim atomu vodiku. Kazdy Fadek odpovida jedné
hodnoté hlavniho kvantového ¢isla. V jednotlivych sloupcich jsou uvedeny povolené kombinace vedlejsiho
a magnetického kvantového ¢isla. Oblasti Cervené a modré barvy predstavuji oblasti a kladnou a zapornou
hodnotou. Pfevzato z webu WIKIPEDIA: https://en.wikipedia.org/wiki/Atomic_orbital

Protoze elektrony maji jen dvé mozné projekce spinu, pouzivd se pro jejich znaceni ¢asto jenom
Sipka. Podle Pauliho vylucovaciho principu” musi mit kazdy elektron unikatni kvantova ¢isla. Musi se
lisit alespon projekci spinu, proto se elektronové obsazeni daného atomu casto maluje do schémat. Na
ukazku zde uvedeme schématicky obrazek pro draslik s atomovym c¢islem 19.

2s 2p 3s 3p 4s
T

1s
oK [y [ [refeane] [y [refrafry] [

1.2 Pevné latky z pohledu kvantové mechaniky

Pevné latka obsahuje fadové 1022 atomt na krychlovy centimetr. Matematicky lze systém interaguji-
cich ¢astic latky popsat pomoci Hamiltonova operatoru energie. Hamiltonian popisujici perfektni krys-

2
tal mé ¢leny odpovidajici kinetické energii elektrond, > 2’7;'”, a coulombovské interakci mezi elektrony,
i
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—=1— _— kde proménné m, 7;, p; znaci hmotnost, po-
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vzdjemné interakci mezi elektrony a jadry, — >

2%
lohy a hybnosti elektront a proménné M;, Z;, R;, P; zna¢i hmotnosti, atomové ¢islo, polohy a hybnosti
jader. Atomové ¢islo udava pocet protonit (elektrontt) daného neutrélniho atomu.

6Nizozemsky fyzik Pieter Zeeman ziskal za popis $tépeni energetickych hladin v magnetickém poli Nobelovu cenu za
fyziku v roce 1902.
"Wolfgang Pauli za formulaci vylu¢ovaciho principu ziskal Nobelovu cenu za fyziku v roce 1945.
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Cely systém popiSeme hamiltonidnem, ktery je souctem vsech zminénych c¢lent,

Z; Zfe
H= om 2 Z47r50|r — 7y +ZQM 3 Z47r»30|R — Rj Z R;| (15)

7 dmeo |n

Problém takového poctu interagujicich ¢astic nelze fesit a ani by to nemélo smysl. Z pohledu klasického
pozorovatele nas stejné budou zajimat makroskopické parametry, jako je tfeba vodivost daného vzorku.
Je tfeba provést zjednoduseni daného feseného problému.

0) Rozdéleni elektronu na valenéni a vnitini slupky

Nulté zjednoduseni mtzeme provést tak, ze rozdélime elektrony na valencni, které vstupuji napiiklad
do vazeb v latce, a na elektrony v uzavienych orbitalech. Pro kiemik jsou uzaviené orbitaly elektronové
slupky 1s2, 252, 2p%. Tyto elektrony jsou lokalizované u jader a neméni se béhem procesu krystalizace.
Od této chvile budeme proto pouzivat indexy ¢ pouze pro elektrony ve valenéni slupce, protoze prostorové
rozloZeni téchto elektront se béhem krystalizace méni. Pro kiemik jsou to elektrony ve slupkéach 3s a 3p,
valence kifemiku je Z* = 4. Jadro s elektrony v uzavienych orbitalech budeme povazovat za fixni iont.

1) Bornova-Oppenheimerova® aproximace (adiabatickd aproximace)

Hmotnost elektronu je o tfi fady mensi nez hmotnost protonu. Proto elektrony mohou reagovat na zménu
polohy jader prakticky okamzité. To umoznuje pouzit pro elektrony aproximaci, kdy se polohy jader berou
jako stacionarni. Naproti tomu atomova jadra nemohou sledovat pohyb elektronti a vidi tedy pouze ¢asové
zprumeérovany adiabaticky elektronovy potencial. Takze hamiltonian lze prepsat nasledovné

H:Hj(éj)+He(7:;,ﬁj0)+He,J(7:;‘,§ﬁj)7 (16)

kde H; popisuje pohyb ionti v poli samotnych iontt plus prumérny adiabaticky potenciél elektroni. H,
znaci hamiltonian elektronii s ionty zamrzlymi na stacionarnich polohach ﬁjo. Konecéné H._; popisuje
zmény energie elektroni pfi posunu jader z jejich rovnovazné polohy o (5]%}. Tento ¢len odpovida za
elektron-fononovou interakci, ktera se bude diskutovat az v pozdéjsich kapitolach.

Elektronovy hamiltonidn mé tedy tvar

4 2 * 2
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2) Aproximace stfedniho pole (jedno-elektronova aproximace)
V této aproximaci predpokladame, ze kazdy elektron citi stejny stfedni potencial V(7). Schrodingerova
rovnice, ktera popisuje pohyb libovolného zvoleného elektronu v pevné latce, bude mit néasledujici tvar

Hispn(?) = (L 4 V() ) o0l = Bun) (18)

kde ¢,, oznacuje vlnovou funkci jednoho elektronu.

Reseni jedno-elektronové Schrédingerovy rovnice spoéiva ve dvou krocich. V prvnim kroku se spocita
elektronovy potencial V(7). Ve druhém kroku se nalezne feseni Schrodingerovy rovnice, takto ziskdme
spektrum energetickych hladin a vypocitame obsazeni téchto hladin elektrony. Kazda energetické hladina
miuZe byt obsazena pouze dvéma elektrony s opa¢nym spinem, diky Pauliho vyluCovacimu principu.

1.3 Krystalova mrizka

Krystal je periodické usporadani atomt, které je pravidelné na velkou vzdalenost. Krystalova struk-
tura je definovdna pomoci miizky a baze atomi v kazdé jeji elementarni butice. (PO. 1.1: Periodicka
tabulka)

Krystal se da chapat jako periodické opakovani jedné elementarni bunky, ktera je dand tfemi elemen-
tarnimi translaénimi vektory @y, da, ds. Objem elementérni buniky oznaéime V. = |@; - da x ds|. Primitivni

8Robert Oppenheimer byl $éfem projektu Manhattan, ktery se v Los Alamos vénoval vojenskému vyzkumu jadernych
reakci. Dne 16.7. 1945 zde provedli prvni pokusny vybuch atomové bomby Trinity.
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bunka je elementarni buika s nejmensim objemem. Pro kubické krystaly se ¢asto misto primitivni bunky
pouziva burika elementarni, jejiz objem je celistvym nasobkem objemu primitivni buriky.
(PO. 1.2: Kubické SC, BCC, FCC)

Obrazek 1.3 ukazuje elementarni buitku jednoduché kubické miizky (SC) soli CsCl. Jednotlivé mriz-
kové body jsou Cervené zobrazené atomy chléru. Tyto miizkové body jsou v prostoru vzdéaleny vzdy o
celociselny nasobek elementédrnich transla¢nich vektorii. Bdzi tohoto krystalu tvofi dvojice atomu (Cs-Cl),
kde atom cesia je posunuty vuci atomu chléru o polovinu télesové tihlopficky. Abychom spravné popsali
cely krystal, musime jednotlivé atomy baze umistit pfesné stejné do vSech elementarnich bunék miizky.

Volba elementarni bunky krystalu neni jednoznacna, proto se nékdy zavadi Wignerova-Seitzova bu-
tika’, jejiz definice jiz jednoznacéné je. V obr. 1.3 bychom si Wignerovu-Seitzovu butiku mohli zakreslit
jako prostor, ve kterém je v kazdém bodé zvoleny pocéateéni atom chloru (erveny) blize, nez kterykoliv
jiny atom chloru. Prestoze takto definovana buiika dobfe odrazi symetrii krystalu, moc se nepouziva.
K jeji definici se ale dostaneme v kapitole o difrakei (kap. 3).

Obr. 1.3: Elementarni bunka a ele-
mentarni translaéni vektory v mfizce
soli CsCl. Elementarni a soucasné pri-
mitivni burika je jednoduché kubicka.
Bazi tvori dva atomy. Cely krystal lze
vytvorit opakovanim této elementarni
bunky.

® CI
® Cs

1.4 Sedm krystalografickych soustav

Tabulka 1.1 shrnuje 7 krystalografickych soustav. M¥izky v nékterych soustavich maji nékolik variant,
takzZe zapoctenim vSech variant dostaneme 14 Bravaisovych mfizek, které popisuji vSechny mozné varianty
usporadani pravidelného tiirozmérného krystalu. U kubické mfizky se t¥i varianty miizky casto znaci jako:
prostd miizka (P = SC), prostorové centrovana (I = BCC) a plosné centrovana (F = FCC). U ortorombické
a monoklinické m¥izky je jesté navic bazalné centrovana varianta (C).

(PO. 1.3: 14 Bravaisovych miiZzek, 7 skupin)

Tab. 1.1: Parametry ¢trnacti typ prostorovych mfizek v sedmi krystalografickych soustavach véetné ve-
likosti stran a thld elementarniho rovnobéznosténu. U kubické mfizky budeme pouzivat anglické zkratky
typt miiZek: prostd miizka (P = SC), prostorové centrovana (I = BCC) a plosné centrovana (F = FCC).

Soustava Alternativni Pocet jednotlivé strany uhly
Cesky nazev miizek typy a,b, c a, B,y
kubicka krychlova 3 P,ILF a 90°
tetragonalni ¢tverecna 2 P, 1 a,a,c 90°
ortorombické kosoctverecna 4 P,C,ILF a,b,c 90°
trigonalni klencova 1 P a «
hexagonalni Sesterecnd 1 P a,a,c 90°, 90°, 120°
monoklinicka jednoklonna 2 P, C a,b, c 90°, 3, 90°
triklinické trojklonna 1 P a,b,c a, B,y

9Bugene Paul Wigner je nositelem Nobelovy ceny za fyziku z roku 1963. Frederick Seitz byl jeho Ph.D. student na
Princetonské univerzité
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1.5 Operace symetrie

Definice operace symetrie: Operace symetrie krystalu je transformaci, ktera vede na stav
krystalu, ktery je fyzikalné nerozlisitelny od vychoziho stavu.

Jak jiz bylo feceno, krystal mizeme zobrazit prostym opakovanim jeho elementarni bunky. Elemen-
tarni burka je tedy takova stavebni cihlicka a jejim opakovanim poskladame cely krystal. Proto je prvni
operaci symetrie idedlniho nekonecného krystalu operace mrizkové translace dané vektorem mrizkové
translace T = hdy + ks + lds, kde {h, k,l} jsou celd ¢isla. Navic samotnd elementarni buiika mtze mit
nékteré prvky symetrie podobné jako tfeba molekuly. Tyto prvky symetrie se oznacuji jako operace bo-
dove symetrie. VSechny operace bodové symetrie nechavaji na misté jeden vyznac¢ny bod. U molekul je

vvey

~evz

skupinu symetrie, kterd je typickd pouze pro slozitéjsi krystaly, jsou potom jesté slozitéjsi operace, jako
je napf. posunuti se soucasnym pootocenim. Tuto symetrii ma usporadani atomi do sroubovice. V tomto
textu se budeme vénovat pouze prvnim dvéma typtm symetrie, t.j. bodové a transla¢ni symetrii.

1.5.1 Prvky bodové grupy symetrie

V této kapitole se budeme vénovat pouze bodové symetrii. K bodovym prvkim symetrie patfi rotace,
zrcadleni a jejich rtizné kombinace. Pfestoze atomy v mifiZzce neustale kmitaji, pro popis symetrie nas
zajimaji pouze rovnovazné pozice atomu. Nasledujici seznam obsahuje vSechny typy prvkid bodové syme-
trie:

I = identita,

c, = n-Cetné osa rotace,

o = zrcadleni (podle roviny 6, horizontélni, &, vertikdlni, 64 diagondlni),
S, = n-Cetné osa rotace se zrcadlenim podle roviny kolmé k ose,

i = inverze.

(PO. 1.4: Zobrazeni prvkid symetrie)

Uvedme nékolik jednoduchych piiklad. Osa nejvyssi symetrie C,, se obvykle znaci jako svisld osa z.
Uhel rotace kolem této osy ¢ini 27/n. Pokud provedeme tuto operaci rotace m—krat, znaéi se vysledna
operace jako énm. 7Z toho plyne, ze pokud provedeme tuto rotaci n-krat, otoc¢ime se o 360° (énn =1 ).
Zrcadleni v horizontalni roviné se znaci &,. Operace nevlastni osy rotace lze zapsat jako rotaci a poté
zrcadleni v roviné kolmé na osu rotace (§,L =0 dn) Na tomto zapisu je patrné, ze operace symetrie se
provadi zprava doleva. Pokud operator symetrie piisobi na néjakou funkci, ktera se zapise aplné vpravo,
budou se jednotlivé operace provadét postupné pravé v tomto poradi smérem od této funkce. Je to
podobné jako poradi provadéni derivaci funkce. Pomoci uvedeného popisu mizeme nyni zapsat nasledujici
dvé identity a) pro zrcadleni & = S;, b) pro inverzi i = S,.

Kubicka
Hexagonalni Tetragonalni
] . \ i o Obr. 1.4: Diagram hierarchie symetrie jednotlivych
Trigonalni Ortorombicka krystalovych soustav. Zvolenid krystalovid soustava
L l obsahuje vSechny prvky symetrie nizsich soustav, t.j.
Jednoklonna téch, ke kterym se lze dostat ve sméru Sipek.
Trojklonna

Podle poctu vsech prvkii symetrie 1ze sedm Bravaisovych krystalovych soustav usporadat do diagramu
podle obr. 1.4. Nejméné prvkii symetrie mé trojklonna soustava (mtze mit pouze jediny prvek, identitu).
Naopak nejsymetrictéjsi soustava je kubickd miizka. Pro detailnéjsi vyklad krystalovych symetrii lze
doporucit knihy [5, 14]. Jako cvifeni hledani prvki symetrie zadaného objektu se doporucuje si najit
vSechny operace bodové grupy symetrie napt. krychle. Téchto 48 prvki symetrie krychle je zakresleno

v obr. 1.5. Symetrii krychle se vénuje téz pf. 1.1 na konci této kapitoly.
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Vsechny operace bodové symetrie daného krystalu tvori grupu. Grupova teorie je rigorézni matema-
ticka disciplina, ktera se probira v ramci prednasek matematické algebry. Na tomto misté nejsou uvedeny
detaily této teorie, ale stoji za to zopakovat zakladni vlastnosti grupy.

Definice: Grupa G je mnozina prvki {a,b,c,...}, pro které je definovina operace nasobeni libovolngch
dvou prvki. Tato operace musi podle definice splriovat ¢tyri vlastnosti:

Uzavienost: Vysledek nasobeni dvou prvka grupy G, ¢ = ab, je opét prvek grupy G.

Asociativnost: Pro libovolné tii prvky a,b, ¢ plati: (ab)c = a(be).

Identita: Grupa musi obsahovat identitu I, pro kterou plati I = = pro libovolny prvek = z grupy G.
Inverzni prvek: Ke kazdému prvku grupy z existuje inverzni prvek z~! spliiujici podminku: 2 'z = I.

3C,, 6Cy, 6S, 8C,, 85

6C',
30’h 60’d
Obr. 1.5: Operace symetrie krychle: horni ¥adek osy symetrie, spodni fadek roviny symetrie. Jednotlivé

sloupce odpovidaji prvkim symetrie ve sméru os [000], [110] a [111]. Nad jednotlivymi krychlemi jsou
vycty odpovidajicich prvka symetrie, napt. 654 zahrnuje operace Sy a S_4 podle t¥i zobrazenych os.

1.6 Indexy krystalovych rovin

Libovolnou rovinu lze zadat tfemi body, které nelezi na pfimce. Mizeme zadat pruseciky této roviny
s osami miizky vyjadiené prostfednictvim miizkovych konstant, napf. {3, 2,2} pro obr. 1.6. Pfevrdcenou
hodnotu téchto ¢isel pfevedeme na celd ¢isla se stejnym pomérem: (%%%) — %(233). Odpovidajici rovina

se oznadi (233), v8echny roviny k ni rovnobézné oznac¢ujeme jako ekvivalentni roviny {233}.
4

Millerovy indery = Konvence pro oznaceni sméru a

rovin v krystalografii:

Notace Vyznam _
(hkl) rovina o
{hkl} ekvivalentn{ rovina
[hkl] smeér
(hkl) ekvivalentni smér ar S

214

h

N¢

'
<
-3
"

(PO. 1.5: Indexy rovin &tvercové m
(PO. 1.6: Indexy rovin v kubické m¥iZce).
Obr. 1.6: Rovina ekvivalentni s rovinou (233).

Pokud chceme zadat néjaky symetricky smér v krystalu, mizeme k tomu pouzit translacni vek-
tor, ktery je celodiselnou linearni kombinaci elementarnich translac¢nich vektord, T = hdy + kds + lds.
Pro zjednodusSeni zapisu se tento smér zapisuje jako trojice ¢isel v hranatych zavorkach [hkl]. VSechny
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ekvivalentn{ sméry, které jsou ekvivalentni diky symetrii daného krystalu, oznac¢ujeme (hkl). V pfipadé
kubickych krystalt plati, ze rovina (hkl) je kolma na smér [hkl]. Napfiklad normalu k roviné (233) je
smér [233]. To plati ale pouze u kubickych krystalii. U jinych krystalovych soustav toto obecné neplati.

Takto zavedené znaceni smértl a rovin se v krystalografii nazjva Millerovy indexy'?. Je t¥eba jesté
doplnit, ze pokud je nékteré ¢islo v zapisu roviny ¢i sméru zaporné zapisuje se znaménko minus jako ¢arka
nad ¢islo. Jako ptiklad uvedme (110), [111], (PO. 1.6: Indexy rovin v kubické m¥izce). Nakonec je
dilezité jesté zdiaraznit, ze Millerovy indexy souvisi vzdy s danou volbou elementarnich transla¢nich
vektori dy, ds, d3. Pokud si zvolime sadu jinych vektori, budou mit zkoumané sméry a roviny v krystalu
odlisné indexy.

Polovodicové soucastky se velmi Casto vyrabéji litograficky na substratu kfemiku. Protoze krystal se
Stipe podél rovin symetrie, byla zavedena jednotna syntaxe pro orientaci substratii s riznou orientaci
krystalovych os. Znaceni krystalt ve formé kruhovych desti¢ek se provadi pomoci odlomeni priméarni a
sekundarni tsece na kraji desticky. Smér lomu odpovida prislusné roviné symetrie. Jako priklad je uvedeno
znaceni kfemikovych substratd (PO. 1.7: Kfemikové substraty).

1.7 Jednoduché krystalové struktury

Soli:
CsCl— SC, bazi tvori jeden atom Cs a jeden atom Cl posunuty o 1/2 télesové uhlopficky.
NaCl— FCC s bazi s jednim atomem Na a jednim Cl posunutym o 1/2 té&lesové uhlopticky.

Kovy:

HCP — hexagonalni struktura s nejtésnéjsim usporddanim (Mg, Ti, Zn, Cd).
FCC — kubicka struktura s nejtésnéjsim usporddanim (Al, Cu, Ag, Au).

BCC — kubické struktura s méné tésnym uspofaddnim (Li, Na, K).

Nejlepsi zaplnéni prostoru koulemi (p = 74 %) spliiuji struktury HCP a FCC.
BCC struktura mé koeficient zaplnéni prostoru koulemi o néco mensi (p = 68 %).

@
SERY B,

': .

: [ &

: o @ :

! . ; ® Obr. 1.7: Struktura koordinacnich vazeb ve sfaleritu jako napf.
: 4 5 @ : GaAs. Cervené jsou zakresleny atomy galia a modfe arsenu.
E SRR :

L LT e

o -

.__."

Polovodice IV skupiny:

Diamant — kubicky FCC, koordina¢ni uspofadéni vazeb (C, Si, Ge, Sn).

Polovodice ITI-V:

Sfalerit — kubicky jako diamant, ale stfidaji se dva atomy (GaAs, ZnS, CuCl, InAs), viz obr. 1.7.

Polovodice II-VI:
Wurtzit — hexagondlni struktura (ZnS, ZnO, ZnSe, CdSe).

(PO. 1.8: Obrazek nejtésnéjSiho usporadavani kouli v prostoru),
(PO. 1.9: Pfiklady uspotadani krystald typickyjch soli),
(PO. 1.10: Pfiklady uspofadani krystald kovid).

10Tndexy jsou pojmenované podle britského mineraloga Williama Hallowese Millera (1801-80). Ptestoze byly tyto indexy
navrzeny jesté difve jinymi mineralogy, oznacuji se podle Millera, protoze ve své knize Treatise on Crystallography (1839)
vysvétlil jejich zavedeni.
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PO. 1.1: Krystalova struktura prvku. Kazdé policko obsahuje chemickou znacku prvku, krystalovou

10719 m). Prvky

dné c. Parametry jsou uvedeny v A (1 A

~7

, Pripa

v

stejné krystalové soustavy maji policko podbarvené stejnym barevnym odst

N

soustavu a mriizkové parametry a

tav je

’

mem, oznaceni sous

’

N2

shrnuto v tab. 1.1, navic diam. oznacuje diamantovou strukturu a cmplx. neperiodické mtizky. Data

byla prevzata z [2].

15



SC BCC, Fe

diamant, GaAs

PO. 1.2: Kubické krystalové struktury.
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Simple cubic Body-centered cubic Face-centered cubic

A—T

\ N

Simple tetragonal Body-centered tetragonal

e A=

I e \ e

Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
Simple Base-centered Triclinic
monoclinic monoclinic
o Fa
Trigonal
a
Hexagonal

PO. 1.3: Ctrnact Bravaisovych krystalografickych mifzek. Pfevzato z [4].

17



a (11) (23)

PO. 1.5: Ukazka krystalovych rovin ve 2D ¢tvercové mrizce.
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http://en.wikipedia.org/wiki/Miller_index

Si monokrystal

(100) S El] Bl}]
p-typ
[011] [017]
[110] [110]

[112] \ [011]

PO. 1.7: Pfiklady znaceni orientace krystalografickych os u kifemikovych substratu.

Kfemik se uméle vyrabi Czochralského metodou rustu. Polsky chemik Jan Czochralski objevil tuto
metodu jiz v roce 1916. Pfi této metod€ se precizné orientovany primarni krystal zanoii do taveniny
k¥emiku. Tento primarni krystal se potom velmi pomalu vytahuje z taveniny (10-100 mm za hodinu) a
na jeho povrchu dochazi ke krystalizaci. Touto metodou se da vypéstovat monokrystal ve tvaru dlouhého
valce, viz fotografie vlevo pfevzata z webu WIKIPEDIA:
http://en.wikipedia.org/wiki/Czochralski_process

Monokrystalicky vélec se rozieze podélné na tenké desticky (substraty), které se brousi a lesti.
Tyto substraty se pak pouzivaji pro litografickou vyrobu polovodicovych soucastek. ProtoZe je substrat
tenka desticka pravidelného krystalu, Stipe se pifi ohybu podle rovin vyssi symetrie. Odstipnutim jedné
nebo dvou tseci z kruhového substratu se provadi oznaceni typu krystalu. Pokud jsou napf. priméarni a
sekundarni Gse¢e provedeny kolmo na sebe, jedné se o krystal, ktery rostl ve sméru [100] a jde o kiemik
s dopovanim na p-typ.
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121
HCP

7 12’

123
FCC

PO. 1.8: Geometrie nejtésnéjsiho usporadani kouli vedouci na kubickou strukturu FCC (123123123,
kolmo z obrazku vystupuje osa [111]), nebo hexagonalni HCP (121212, kolmo z obrézku vystupuje
6-ticetna osa Cp).
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a) NaCl, kubickd mfizka FCC b) CsCl, kubicka miizka SC

-
-
h

c¢) GaAs, kubickd mtizka sfalerit d) ZnS, hexagonalni miizka wurtzit

PO. 1.9: Priklady prostorového uspofaddani atomt typickych soli: a) aZ c) kubické mfizky, d)
hexagondlni m¥izka s osou shora doli. V obrazku a) jsou zobrazeny elektronové obaly, v obrédzku b) jsou
zobrazena atomdrni jadra. U obrazki ¢) a d) jsou zobrazeny smérové vazby. 3D modely téchto krystalii

si 1ze vytvofit a prohlédnout pomoci programu z webu OpenRasMol: http://www.rasmol.org/
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b) Kubickd miizka BCC

c¢) Hexagonalni miizka HCP d) Kubickd miizka SC

PO. 1.10: Piiklady prostorového uspofadani atomii kovii. VSechny mfizky jsou kubické. a) az c) jsou
mifzky s tésnéjsim usporddinim, d) mfizka SC je méné obvykla.
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1.8 Piiklady

Pr. 1.1: Symetrie krychle: NapiSte 48 operaci symetrie krychle O a nadrtnéte priklady prvka
symetrie do obrazku krychle.
O =A{ 1, 3C%(100), 6C4(100), 6C%(110), 8C5(111),

Napovéda:
apoveda i, 30,(200),  6S4(100),  604(110),  8Ss(111)}.

Pr. 1.2: Symetrie tetraedru: Symetrie ¢tyfsténu odpovida symetrii krychle ale bez operace inverze.
Celkovy pocet prvki symetrie je tedy poloviéni. Napiste 24 operaci symetrie tetraedru 7y.

Néapovéda: Tg = {I,3C3(100),654(100), 604(110),8C5(111)}.

Pr. 1.3: Symetrie krystalu: NapiSte operace symetrie ortorombické (kosoctverecne) krystalové sou-
stavy, Doy, neboli mmm. Navic sestavte matice transformujici souradnice R =TR.

Népovéda: Dyp, = {1, Ca(x), C2(y), C2(2), 4, Ony, Oxz, Oy}

cos(a) —sin(a) 0
Cy'(z) = sin(a) cos(a) 0 |, o= 2mm
0 0 1 "
cos(28) sin(28) 0 10 0
o, = | sin(28) —cos(28) 0 |, on=1_101 0
0 0 1 00 —1

Pt. 1.4: Tetraedrické tihly: Uhly mezi tetraedrickymi vazbami v diamantu jsou stejné jako thly
seviené télesovymi uhloprickami krychle, viz obr. 1.8. Uzitim elementarni vektorové analyzy spocitejte
velikost tohoto thlu. Kittel, str. 49, pr. 1

Diamant

Obr. 1.8: Schéma prostorového usporadani tetraedru v krychli.

Pr. 1.5: Bohrav model atomu vodiku: Postupujte podle semi-klasického planetarniho modelu atomu
vodiku popsaného v sekci 1.1.1. Odvodte vztahy pro Bohrtiv polomér ap (1.2) a pro energii jeden Rydberg
(1.3), které pocitaji tyto parametry vodiku pomoci elementarnich konstant elektronu.

Napovéda: Je nutné pouzit rovnovahu sil pfi kruhovém pohybu elektronu a kvantovaci podminku.
Pr. 1.6: Elektronova 1ls funkce atomu vodiku: Zéakladni stav atomu vodiku je dany 1s funkci ato-

mérniho orbitalu (1.4). UkaZte, Ze: a) tato vinova funkce je normovand, b) nejpravdépodobnéjsi vzdélenost
elektronu od protonu (jadra atomu vodiku) je Bohrv polomér ag.

Napovéda: a) Pravdépodobnost vyskytu elektronu (n(r) = |¢14(r)]?) v celém prostoru je rovna jedné.
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Integraci per-partes ukazte, ze
(o]

/47r7’2 dr 721/ — a3,
0

b) Pravdépodobnost vyskytu elektronu ve vzdalenosti r je danéd n(r), mnozstvi bod s touto vzdalenosti
je 4mr?. Maximum pravdépodobnosti je dané podminkou

di(élm“2 e_27"/‘“3) =0.
r

7 této podminky pfimo dostaneme 7y, = ap.

Pt. 1.7: Indexy rovin: V miizce FCC uvazujte roviny (100) a (001). Indexy se vztahuji k Bravaisové
elementarni kubické buice. Jaké indexy maji tyto roviny vzhledem k transla¢nim vektoriim primitivni
bunky a}, a5, a5 podle obr. 1.9. Kittel, str. 49, pt. 2

elementédrni bunka FCC

—

Obr. 1.9: Schéma prostorového usporadani vektoru primitivni bunky FCC.

Pr. 1.8: Koeficient zaplnéni: Vypocitejte koeficient zaplnéni prostoru tuhymi koulemi v geometrickém
usporadéani daném zakladnimi m¥izkami

SC: w/6 = 52 %,
BCC: V3r/8 = 68 %,
FCC=HCP: V2r/6= T4 %,
diamant: \/377/16 = 34%.

Pr. 1.9: Optimalni HCP mrtizka: V pfiblizeni nejtésnéjsiho usporddani kouli HCP spoditejte pomér
vysky a zékladny elementérniho Sestihranu ¢/a. (Pokud je v redlném krystalu tento pomér vyrazné vétsi,
miZeme krystal poklddat za slozeny z tésné uspofadanych rovin, které jsou na sebe volné vrstveny.)
Kittel, str. 49, pt. 3

Néapovéda: Vyska c¢ je dvojnasobkem vzdalenosti vrstev kouli nad sebou, strana zakladny a je rovna
prameéru kouli.

Reseni: ¢/a = /8/3 ~ 1.633.

P¥. 1.10: Rekrystalizace Zeleza: Zelezo krystalizuje pii teploté T < 910°C v BCC miizce. P¥i vyssi
teploté krystalizuje v FCC mfiZce. Z geometrie usporadani urcete, jaky je pomér hustot téchto riznych
krystalt zeleza. Vypocet provedte za predpokladu, Ze atomy Zeleza jsou tuhé koule o poloméru r.
Reseni:

prcc 4 |2

= ~y/2=1.09
ppcc 3V 3
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Pr. 1.11: Krystaly soli: Pro krystaly GaAs, CaF5 nacrtnéte elementarni buriku, urcete o jakou krys-
talovou strukturu jde a jaké jsou vektory primitivni bunky a;, i = 1,2, 3.

Reseni: GaAs (sfalerit): polohy prvk — Ga na (0,0,0), As na 2(1,1,1). Elementéarni buika je kubicka
FCC s 4 atomy Ga a 4 atomy As.

CaF, (sfalerit): polohy prvk — Ca na (0,0,0), F na %(1,1,1) a na 32(1,1,1). Elementérni buiika je
kubickd FCC s 4 atomy Ca a 8 atomy F.

Pr. 1.12: Kfemikové substraty: Pomoci vektorové algebry dopiste do obr. 1.10 oznaceni chybéjicich
smeért, podle kterych se délaji typické zlomy kiemikovych substrati.

[001]

\ /

(111) Si [110]
Obr. 1.10: Nékres kiemikového substratu se
smérem ristu (111). Cervend oznadené sméry, [1200] [010]
které odpovidaji kubickym osim X, y¥ a 2z,
sméfuji mirné doptedu. Na obvodu substratu / l \
je provedeno 12 symetrickych zlom.

Pr. 1.13: De Broglieho vlnova délka: S vyuzitim de Broglieho vztahu spocitejte vinovou délku pro
uvedené Castice v angstromech: a) kulicku o hmotnosti 0.01g s rychlosti 10m/s; b) elektron s energii
10eV.

Regeni: 107194, 4A
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V této kapitole si podrobné probereme, jak se d4 matematicky aparat grupové teorie aplikovat na
bodovou symetrii krystalu. K tomuto tématu je mozné najit velké mnozstvi riznych vyukovych texta
[16, 17]. Nicméné pro nezasvéceného Ctendfe muze byt jejich ¢teni obtizné. Zkusme to tedy shrnout v
této kapitole. Zopakujme si vSechny mozné prvky bodové grupy symetrie krystalu:

I = identita,

c, = n-Cetné osa rotace,

o = zrcadleni (podle roviny o}, horizontélni, o, vertikalni, o4 diagondlni),
Sn = n-Cetna osa rotace se zrcadlenim podle roviny kolmé k ose,

) = inverze.

Kdybychom chtéli zapsat operatory téchto uvedenych operaci symetrie, pouze bychom nad znacky
operace pridali operatorovou stfisku, napf. I nebo C),. Pokud bychom grupovou teorii aplikovali na
molekulu, je zfejmé, Ze vSechny prvky dané grupy symetrie, G = {a, b, ¢, ...}, musi zachovivat nehybny
Také u krystalu musi mit vSechny prvky symetrie jeden spole¢ny bod, ale prvky symetrie se aplikuji na
elementarni buriku daného krystalu.

U molekul i krystald m4a symetrie nékolik dtlezitych dusledki, které se hojné pouzivaji. A) Dipdlovy
moment molekuly mtze byt jen ve sméru symetrické osy C,,. Molekula smi mit rovinu zrcadleni, ale pouze
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vertikalni o, ve které lezi osa symetrie. Jiné operace mit nesmi. B) Materidl, ktery mé byt opticky aktivni
(chiralni) nesmi mit inverzi ¢, ani zddné zrcadleni o a tedy ani zaddnou osu se zrcadlenim S,,. Chiralni
materidly jsou totiz schopny stacet rovinu polarizace prochazejiciho svétla a déli se proto vzdy na dvé
chiralni varianty, které se oznacuji jako levotoc¢iva a pravotociva.

2.1 Grupa prvka bodové symetrie

To, jaka je souvislost mezi jednotlivymi prvky dané grupy symetrie, se da shrnout pomoci multiplika¢ni
tabulky. Ta ndm ukazuje vysledek nésobeni libovolnych dvou prvka této grup. Jako piiklad zvolime
molekulu amoniaku NHj. Molekula amoniaku neni rovinné, ale vypada jako trojnozka namalovana na
obr. 2.1. Multiplikac¢ni tabulka této molekuly je zapsana v tab. 2.1. ProtozZe grupa je uzaviend vuci operaci
nasobeni, musi byt kazdy radek nebo sloupec této tabulky permutaci vSech prvkt grupy. Z toho plyne,
Ze v multiplika¢ni tabulce je v kazdém fadku/sloupci kazdy prvek préavé jednou. Tvrzeni této véty lze
dokazat jednoduse sporem.

a) b) C) y
©

101.7 pm_w 3¢ 1
H" /H X

H 107.8°

Obr. 2.1: Molekula amoniaku NHjs, pfevzato z webu Wikipedie.

Tab. 2.1: Multiplika¢ni tabulka pro molekulu

031, I 03 032 a b C
7 7 Cs C? a b c NHj, ktera méa symetrii Cs,. Pro zjednodu-
C C o2 7 . a b Seni jsou roviny symetrie {o,,0p, 0.} zapsany
C‘;’ Cg IS o b . u pouze indexem {a, b, c}.
3 3 3 5 Pro symetrii D3 by byl rozdil pouze v tom,
a a b ¢ IQ Cs C3 ze symboly {a,b,c} by znamenaly dvojcetné
b b ¢ a C3 I Cs osy rotace kolmé na hlavni osu symetrie
c c a b 03 Cg I {02(1) 02b7 020}'

Pocet prvku grupy definuje 7dd grupy (h). Grupa popsand v tab. 2.1 mé fad h = 6. Prvky grupy
délime do t7id vzdjemné sdruzenych (konjugovanych) prvki. Pocet tiid budeme oznafovat pismenem
t. Prvky a a b jsou sdruzené, pokud v dané grupé existuje prvek x s jehoz pouzitim muzeme zapsat
podobnostni transformaci:

a=z"tbx. (2.1)
Pro zjisténi, které prvky jsou spolu sdruzené, pouzijeme podobnostni transformaci na vsechny prvky
grupy Cs,. Vysledek je zapsany v tab. 2.2.

Csy I Cs C3 a b c
1 I Cs C2 a b c
03 1 03 Cg b C a
C3 1 Cs C3 c a b
5 Tab. 2.2: VSechny podobnostni transformace
a 1 Cs Cs a c b . N ) .
5 prvku grupy Cs,. Napf. na fadku a ve sloupci
b I Cs Cs c b a b d csledek p "
) e . je uveden vysledek podobnostni transfor-
¢ I Cs 3 a ¢ mace aba~! = c.

Sdruzenost prvkl je vzajemna a tranzitivni vlastnost. To znamend, ze v ramci tfidy jsou prvky
sdruzené kazdy s kazdym. Z definice t¥id a z tab. 2.2 je zfejmé, ze grupa Cs3, ma 3 t¥idy (¢ = 3). Prvni
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t¥ida m4 pouze jeden prvek a tim je identita I. Druh4 t¥ida méa dva prvky, kterymi jsou rotace C3 a C3.
Treti t¥idu tvofi tfi operace zrcadleni {og, oy, 0}

Pro porovnévani riiznych grup se zavadi vztah izomorfie. Dvé grupy (G;, G;), které maji stejné mul-
tiplikacni tabulky jsou vzajemné izomorfni. Kazdému prvku a; z prvni grupy odpovida ekvivalentni prvek
a; z druhé grupy. Pfitom se mohou nékteré prvky u obou grup rtiznit, nicméné identité bude urcité od-
povidat identita. Izomorfni jsou tedy napfiklad grupy D3 a Cs,, pro které je shoda multiplika¢ni tabulky
patrna z tab. 2.1.

2.1.1 Abelovské grupy

Grupa G se nazyva abelovskd neboli komutativni, pokud pro libovolné dva prvky a,b této grupy plati
rovnost ab = ba. D4 se ukéazat, ze v8echny grupy do fadu ¢tyfi (h < 4) jsou abelovské neboli komutativni.
Tato uloha se fesi v pfikladu 2.3. Abelovy grupy maji jednu zajimavou vlastnost, totiz ze kazdy prvek
této grupy ma svou vlastni tf¥idu, musi tedy pro né platit ¢ = h.

2.1.2 Vlastnosti t¥id prvki libovolné grupy

Vlastnosti t¥id 1ze shrnout do tfi zakladnich tvrzeni.
Véta 2.1.1 KaZdd trida je jednoznacné uréend svym libovolngm prvkem.

Véta 2.1.2 Grupa je sjednocenim trid konjugovanych prvkid, kde tyto tridy jsou neprdazdné a navzdjem
disjunktny.

Prosté kazdy prvek grupy patii pravé do jedné tridy. Grupa je jako Skola s zdky, kde kazdy zak patii
pravé do jedné ttidy.

Véta 2.1.3 Pocet prvku p kaZdé tridy je delitelem tdadu grupy h.

R4d grupy C3, z tab. 2.1 je: h = 6. Cislo Sest ma tii délitele {1,2,3}. Jak jsme si ifkali, grupa Cs,
mé pravé tii t¥idy, ¢ = 3, s poéty prvki v jednotlivych tiidach pravé {1,2,3}.

2.2 Reprezentace grupy

Soubor ¢tvercovych matic dimenze (n x n), které se pii provedeni operace nasobeni chovaji stejné jako
elementy dané grupy, definuje reprezentaci grupy. Operaci nasobeni prvku grupy zde predstavuje nasobeni
¢tvercovych matic. Cislo n uréuje dimenzi této reprezentace. Mé&me operaci symetrie a, reprezentaci této
operace necht je ¢tvercovd matice D(a). Dimenze této reprezentace je n a vSem prvkim grupy, do které
nalezi a, musi byt pfifazena stejné velka ¢tvercova matice. Zopakujme, Ze pocet prvkl grupy a tedy i
pocet ¢tvercovych matic reprezentace grupy se nazyva fad grupy a znaci se pismenem h.

Uvazujme grupu G = {a, b, ¢, ...}. Pro kazdy prvek teto grupy a k nému inverzni prvek musi platit, ze
maji v libovolné reprezentaci k sobé navzajem inverzni matice. To lze zapsat pro jednu konkrétni operaci
takto, D(a™!) = [D(a)]~!. Déle musi platit, Ze operaci identita I musi v kazdé bazi odpovidat jednotkova
matice. Jind matice by totiz nesplnila definiéni podminku pro identitu: Iz = I = z,Vzr € G.

2.2.1 Reprezentace ',

Tato reprezentace popisuje, jak se pomoci prvka symetrie méni polohovy vektor # = (z1, 1, x1). Dimenze
této reprezentace je samoziejmé n = 3, nebot popisujeme zobecnénou rotaci vektoru ve 3D prostoru.
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ZapiSme si tyto transformac¢ni matice pro nasi oblibenou grupu Cs,.

1 0]0 -1/2 —V/3/2]0 -1/2 V3/2 |0
I=]0 1[0 [, Cs=1| v3/2 —-1/2 |0 |, ci=1 —/3/2 —1/2|0 |,
0 01 0 0 |1 0 0 |1
/2 V3/21]0 /2 —V/3/2|0 -1 010
oa=1| V3/2 —-1/2|0 |, op=| —V3/2 -—-1/2 |0 |, o= 0 1]0 |. (2.2
0 0 |1 0 0 |1 0 01

Protoze jde o matice transformace prostoru, kterd musi zachovavat skalarni soucin, maji tyto matice
vzajemné ortogonalni Ffadky a sloupce. Provedeme-li skalarni soucin dvou riznych radkt, dostaneme
nulu. Soucin Fadku sama se sebou da jako vysledek jedni¢ku. Pokud bychom oznaédili prvky nékteré
z matic jako a;;, potom mulzeme zapsat vztah ortogonality jako a;xa;r = ariar; = ;5. V tomto zapisu je
pouzito Einsteinovo sumaéni pravidlo. S¢ita se automaticky pres pravé dvakrat uvedeny index, coz
vyrazné zjednodusuje zapis skaldrnich soucint. Funkce d;; je Kroneckerovo delta.

Jak je zfejmé, jsou matice (2.2) blokové diagondlni. Tato reprezentace je tedy reducibilni a jednotlivé
bloky jsou samy o sobé ireducibilni reprezentaci. Levy horni blok je dimenze 2 a pravy dolni je dimenze
1. Reducibilni reprezentaci I',, 1ze v tomto konkrétnim pripadé zapsat jako direktni soucet dvou neekuvi-
valentnich ireducibilnich reprezentaci (NIR), Ty, = E @& A;. Abychom pochopili, co tento zépis znamen4,
musime postupné zavést nékteré terminy. Tak tfeba reprezentace E, ktera je popsand maticemi dimenze
2, se nazyva vérnd reprezentace, nebot vSechny operace maji riizné matice. Naproti tomu reprezentace
A je tzv. Gplné symetrickd reprezentace (nékdy oznacovand téz totalné symetrickd), vSechny operace
maji pfifazenou stejnou jednicku, a proto reprezentace A; neni vérnd. Vsechny operace nasobeni lze
v reprezentaci A; zapsat jako vyraz: 1-1 = 1.

S maticemi jakékoliv reprezentace grupy by se dalo rtzné tocit. Nejsou tedy dané jednoznacné a
vlastné nas z pohledu symetrie ani nemusi zajimat konkrétni hodnoty jednotlivych prvkid matice. Co je
ale pfi vSech otockich matice stéle invariantni, je jeji stopa. Stopa matice D(a) proto uréuje dulezitou
vlastnost, kterd se nazyva charakter a zna¢i se pismenem Yx:

x(a) = Tr(D(a)). (2:3)

Z definice je zfejmé, ze charakter identity je roven dimenzi reprezentace (x(I) = n). Déle plati, ze cha-
raktery operaci symetrie téze t¥idy musi byt stejné (viz Véta2.1.1). Proto pro charakterizaci grupy staci
uvést charaktery vSech neekvivalentnich ireducibilnich reprezentaci (NIR). Tabulku charakteri grupy Cs,
ukazuje tab. 2.3, viz také (PO. 2.1: Tabulky charaktert).

Tab. 2.3: Tabulka charaktertt pro molekulu NHs, Csy I 20, 30,
kterda ma symetrii Cs,. Pro symetrii D3 by byl A, 1 1 1
rozdil pouze v tom, Ze posledni sloupec by mél A, 1 1 1
nadpis 3C5. Posledni fadek k tabulce nepatfi, E 9 1 0
ukazuje charaktery reducibilni reprezentace. - 3 5

x

2.2.2 Blokoveé diagonalni reprezentace

Pokud bychom zvolili jinou soustavu os ve 3D, vysly by nam jiné matice reprezentace nez ty v rovnicich
(2.2). Vzdy by v8ak bylo mozné najit transformacni matici s stejného fadu pravé tak, ze by bylo mozné
k blokové diagonalnimu tvaru pfejit pomoci podobnostni transformace: a’ = s~ !as. Pomoci stejné trans-
formac¢ni matice s bychom transformovali vSechny matice vSech operaci grupy z necarkované do ¢arkované
soustavy. Jednotlivé ¢tvercové bloky, vyriznuté z ptivodnich matic, pfedstavuji NIR.

D) 0 .. 0
0o DR ... 0
D(R) =] . o .- (2.4)
0 o ... Dm
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Tento rozpis znamend, ze reprezentaci D(R) lze rozepsat do direktniho sou¢tu m NIR. Matematicky by
to bylo:

’D(R) — ’D(l) @'D@) @ @'D(m).
Pritom plati, ze nékteré ireducibilni reprezentace se mohou v rozepsaném zapisu vyskytovat vicekrat.

PovSimnéme si, Ze vysSe uvedend podobnostni transformace, je totozna s transformaci hledajici sdru-
7ené prvky (2.1). Z pohledu matic maji tedy vSechny prvky sdruzené do jedné tiidy vzajemné ekvivalentni
matice.

Zopakujme zavedené znaceni. Reprezentace, které jsou svazané podobnostni transformaci, jsou vza-
jemné ekvivalentni a maji stejné charaktery. Reprezentace, mezi kterymi neexistuje podobnostni transfor-
mace, jsou neekvivalentni. Reprezentace, kterou lze pomoci podobnostni transformace prevést na blokové
diagonélni, je reducibilni (redukovatelnd). Kazdy blok odpovida jedné ireducibilni (neredukovatelné) re-
prezentaci.

2.2.3 Véty pro neekvivalentni ireducibilni reprezentace

Abychom popsali symetrii grupy, sta¢i nalézt charaktery vsech jejich NIR. Pro né musi platit urcité
zakonitosti, které si nyni popiSeme. Veskeré znaceni k tomu je shrnuto v obrazku (PO. 2.2: Popis
syntaxe grup symetrie).

Véta 2.2.1 Pocet NIR grupy je roven poctu trid t.

Napriklad grupa C3, ma 3 tfidy, a proto bude mit i 3 NIR. Tabulka charaktert pro grupu je tedy ¢tverec
a konkrétné pro grupu Cs, ma rozmér 3 x 3.

Véta 2.2.2 Soucet c¢tverct dimenzi vSech NIR dané grupy je roven vadu grupy h.

Jako ptiklad si vezmeme opét grupu Cs,,, kterd ma fad h = 6. Je typické, ze v tabulce charakteri odpovida
prvni sloupec identité a jeji charakter je roven dimenzi NIR. Staci tedy secist ¢tverce ¢isel v prvnim sloupci
a dostaneme ¥ad grupy, 12 + 12 + 22 = 6.

Véta 2.2.3 Soucet étverct absolutnich hodnot charakteri x(R) vSech proki R grupy G v libovolné NIR
je roven tadu grupy h.

S° X (RX(R) = (25)

RegG

Véta 2.2.4 Charaktery dvou libovolngch NIR i a j spliuji podminku ortogonality.

Obé posledni véty lze zapsat pomoci jednoho matematického vztahu.

Y X (R)x;(R) = hdyy, > pixi (R)x;(R) = héyj, (2.6)
Reg k=1

kde %, j jsou indexu dvou reprezentaci a d;; je Kroneckerovo delta. Jako priklad si spocitame skaldrni
soucin dvou reprezentaci A; - Ay pro grupu Cs,. Vysledek je nasledujici: 1-1-14+2-1-1+3-1-(—1) =0.
V tomto vypoctu jsme provedli sumaci pies tfidy, které maji shodné charaktery a vynasobili soucin
poctem prvka dané t¥idy pi. Pouzili jsme tedy zkraceny vypocet podle vztahu uvedeného v ramecku.

Véta 2.2.5 Spliuji-li charaktery studované reprezentace podminku (2.5), pak je tato reprezentace iredu-
cibilni.
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S pouzitim téchto péti vét miZeme opustit jakoukoliv multiplika¢ni tabulku, ktera obsahuje zbytec¢né
redundantni informace a pfejit k tabulce charakterid, kterd je mnohem mensi a obsahuje veskerou po-
tFfebnou informaci popisujici symetrii dané grupy. Jako priklad si provedte prepis multiplika¢ni tabulky
(tab. 2.1) pro grupu Cs, na tabulku charaktert. Vysledek si srovnejte s tab 2.3. Posledni fadek do tabulky
jiz nepatii, nicméné ndm umoziuje spocitat rozklad reducibilni reprezentace I';, do NIR. K tomuto téelu

pouzijeme posledni vétu této sekce, coz je véta o rozkladu 2.2.6.

Véta 2.2.6 Kolikrdt je konkrétni NIR i v néjaké reducibilni reprezentaci T' je dané vztahem (2.7).

> X (R)xe(R). (2.7)
k=1

==

1
air = o > X (R)xr(R), air =
Reg

Grupova teorie se s pouzitim znamych tabulek charaktert snazi fesit tfi stupné tloh:

1. Nalezeni vSsech NIR dané grupy. Toto je mozné si vyhledat pro danou G v tabulkach, které jiz davno
zpracovali matematici.

2. Rozklad zadané reprezentace D do NIR. To souvisi s G a D. Vypocet se provede podle (2.7).

3. Vyuziti ziskaného rozkladu k nalezeni spektra hamiltonidnu. Nebot hamiltonidn je invariantni vaci
operacim symetrie, lze najit feSeni Schriodingerovy rovnice s vyuzitim spoleé¢nych funkci. Zde se jiz
promitd G, D a hamiltonian H.

2.3 Znaceni grup symetrie

Vsech moznych grup popisujicich bodové symetrie molekul nebo krystali je omezeny pocet. Typicky tyto
grupy délime na tfi kategorie, kde krystaly mohou byt pouze prvni dvé uvedené kategorie.

Grupy typu I jsou grupy rotaci. P¥ikladem jsou {C, Cry, Crny Sny Dy Didy Din b
Grupy typu II jsou grupy vyssi symetrie. P¥ikladem uvedme {T, T4, Tp, O, O, I, Ip}.

Grupy typu III jsou grupy s operaci Coo, napi. {Cooy, Doon, K1 }. Prvni dvé odpovidaji linedrnim mo-
lekuldm a posledni je sféricky symetricka koule.

Pro urcovani bodové grupy symetrie zkoumané molekuly nebo krystalu a nalezeni odpovidajiciho
oznaceni se pouziva vyvojovy diagram uvedeny jako tvodni obrazek této kapitoly. Ptifazeni jednotlivych
krystalografickych soustav ke grupam symetrie s odpovidajicim oznacenim ukazuje tabulka na konci ka-
pitoly: (PO. 2.3: Symetrie krystalografickjch soustav).

2.3.1 Mullikenova domluva o znaceni NIR

Robert S. Mulliken byl americky fyzik a chemik, ktery se vénoval vyvoji teorie molekularnich orbitala a
ziskal za svou praci Nobelovu cenu za chemii v roce 1966. Pro sjednoceni znaceni rtznych NIR zavedl
nésledujici pravidla pro volbu pismena a indext [18]. Uvedeny ¢lanek je velmi podrobny, ale zajimavy
je i tim, Zze u néj pfi tisku omylem zapomnéli uvést jméno autora. Jméno bylo doplnéno az v Erratu
k tomuto ¢lanku. Z Mullikenova nazvoslovi vybereme jen pét hlavnich bodt, coz bude pro nas zakladni
néhled stacit!.

1. Pismeno je podle dimenze reprezentace n,

n | 1 2 3 4 5
mak | AB E FT G H

Ihttp://www.pci.tu-bs.de/aggericke/PC4e/Kap_IV/Mulliken.html
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2. Volba pismena u 1D se provede podle symetrie C),, v ose nejvyssiho fadu, kterd se bere jako svisla
osa,

11, A

3. Horni index je podle horizontdlni roviny o} kolmé na svislou osu, napt. pro A,

+1, A
x(on) = 1. A"

4. Prvni dolni index je podle rotace C; kolmo na osu nejvyssiho fadu. Pokud grupa nemé kolmou
dvojéetnou osu, pak se tento index uréi podle o,. Uvedme piiklad pro A,

1, A

5. Druhy dolni index je podle charakteru prvku inverze ¢, napi. pro A,
) +1, A,
X(Z) - { 717 Au

Znaceni u, g je podle némeckych slov gerade/ungerdde ve vyznamu céeskych slov sudy/lichy. Specialni
postaveni mé totalné symetrickda NIR A;, kterd ma vSechny charaktery 4+1 a odpovida reprezentaci
invariantni vic¢i iplné vSem operacim symetrie.

2.4 Vyuziti symetrie pfi praci s vinovymi funkcemi

Pokud chceme vyuzit grupovou teorii pro kvantové-mechanické vypocty vlnovych funkci napt. elektroni,
musime uvedenou teorii aplikovat na vlnové funkce atomarnich orbitala.

Definice: Soubor n linedrné nezavislych funkei {f,y} = {f1,..., fn}, ktery se plisobenim operatort
symetrie pfislusné grupy G transformuji na linedrni kombinaci téchto funkci, tvofi bazi n-dimenzionalni
reprezentace grupy.

Jak je ziejmé, funkce, které tvoil bazi, predstavuji uzavieny systém vii¢i operacim symetrie. Necht
R € G a k této operaci symetrie je prifazen operator R, ktery ptsobi na bazi funkci. Potom z definice
miizeme zapsat vztahy pro transformace funkci {f,)} takto,

Rf; =Y _rij(R)f;, (2.8)
J

kde r;;(R) pfedstavuje matici koeficientt transformace podle operace R. Dimenze této ¢tvercové matice
n je shodnd s poc¢tem funkci béze. Je zfejmé, Ze grupa G je izomorfni s grupou operatort a matice r;;(R)
je reprezentaci této grupy. Pokud bychom funkce { f(,)} zamichali provedenim néjaké linedrni kombinace
téchto funkci, vznikla by nam nova baze, ktera by byla s tou ptvodni bazi ekvivalentni. Z pohledu matic
ri;(R) by 8lo pouze o jejich transformaci, kterd nezméni vysledek feSeného problému. MtzZeme si tedy
bez Gjmy na obecnosti zvolit takovou bazi, se kterou se nam bude dobie pocitat.

Jak bude vypadat ptisobeni operaci symetrie na vlnové funkce, které jsou rfesenim Schridingerovy
rovnice a jsou tedy vlastnimi stavy energie?

R(H;,) = R(Ejy;,) = Ej(Riyj,) = H(Ripj), (2.9)

kde Ej; je energetickd hladina s degeneraci v a systém funkci 1;, tvori Uplny systém. Tento zépis Fika,
7ze pokud ma byt vysledek po pouziti operace symetrie nerozlisitelny od pocateéniho stavu, nesmi se
zménit energie. Operdtor symetrie tedy milzeme pouzit pfimo na vlnovou funkci, nebot hamiltonidn
a operace symetrie komutuji, [R, H] = 0. Ke kazdé energetické hladiné E; je pfifazena sada funkci
Vi1, .-, VYj0, kterd tvori bazi I',. Tato béze tvoii NIR pokud neni hladina pouze ndhodné degenerovana
prekryvem riznych hladin. Energetické hladiny se transformuji podle grupy symetrie a kazda hladina
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musi odpovidat jedné z NIR bodové grupy molekuly. Je proto obvyklé, Ze se energetické hladiny oznacuji
stejnym pismenem které odpovida prislusné NIR. Jak jiz vime, dimenze této reprezentace je urcena
degeneraci této energetické hladiny F;.

Pro nézornost uvedme nékolik pfikladt degenerace energetickych hladin. Setkdvame se s tim u grup
s operaci C,,. Potom musi platit x(I) = x(C?) = w™ = 1. Z toho plyne, ze x(C,) = ¢>™/™. Dale plati,
ze kazdy volny atom ma symetrii koule K}, a ma ireducibilni reprezentace pouze liché dimenze 1, 3,5, .. ..
Vzpomenime, Ze magnetické kvantové ¢islo volného atomu mé také lichy pocet povolenych hodnot (21+1),
viz sekce 1.1.2.

2.4.1 LCAO - MO jako vlnové funkce elektront

Elektronovou vinovou funkci molekuly zapiSeme jako linedrni kombinaci atomérnich orbitald. Budeme
uvazovat funkci bez spinu a pouze dodame, ze kazdou tuto hladinu mizeme obsadit dvéma elektrony s opa-
¢énym spinem. Musime se ujistit, Ze nase volba atomarnich funkci souhlasi s grupou symetrie studované
molekuly. Linedrni kombinace atomarnich orbitald jako molekuldrni orbitaly se zna¢i LCAO - MO. Ato-
marni orbitaly pouzijeme jako béazi { f(,)} a ziskanou reprezentaci rozlozime do NIR, 'np = T'1 @ - & T,.

Spocitat molekularni vilnové funkce vlastné znamena, ze musime provést symetrizaci atoméarnich vl-
novych funkci. Od atomérnich orbitali {f(,)} chceme pfejit k symetrizovanym funkcim {g(,)}, které
respektuji symetrii dané molekuly. Zvolime si jednu konkrétni NIR reprezentaci s oznacenim I'y, ktera
mé dimenzi ny. Nyni spo¢itdme symetrizovanou funkci g ze zvolené funkce f s vyuzitim vSech operaci
symetrie R grupy G dané molekuly. Vysledek je zapsan v ramecku.

n

9= LMREBL] gi= 50 (BB (2.10)
Reg ReEG

Pravy vztah je vypocet celé sady symetrizovanych funkci s vyuzitim matic r;;(R). Z jiného pohledu lze
vztah (2.10) chépat tak, Ze s vyuZzitim operaci symetrie ziskdm sadu atomérnich orbitall, které jsou
v molekularni funkci zastoupeny s koeficientem danym charakterem zvolené NIR (T'). Pouziti tohoto
vztahu si vysvétlime na piikladu molekuly vody. Vysledkem bude odvozeni symetrizovanych vlnovych
funkci LCAO - MO pro tuto molekulu HyO.

Obr. 2.2: Molekula vody, ktera lezi v roviné yz. Osa
x vystupuje kolmo z roviny obrazku. Molekula neni
linearni, thel mezi vazbami ¢ini 104.45°.

Pr. 2.1: Molekula vody: Molekula H,O nemé vsechny atomy na pfimce. Proto nemé osu C, ale
ma symetrii jen Cy,, viz obr. 2.2. Zvolime si minimélni soubor atomovych vlnovych funkeci.

n= 7) {fla .. ',f7} = {1817 1525 150528072p$72py72p2}'

Prvni a druhé funkce jsou orbitaly na prvnim a druhém vodiku. Ostatni orbitaly odpovidaji kysliku. Mo-
lakula HoO ma 10 elektronii, a proto 7 zvolenych AO by mélo diky spinové degeneraci stacit. Reprezentaci
I'ao odpovidaji ¢tvercové matice r;;(R) velkosti (7 x 7) nésledovné.
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1 10
1 1
D) = 1 , D(Cy(2)) = 1
1 -1
1 —1
1 1
01 1
10 1
1 1
D(oy,) = 1 , D(oy.) = 1
1 -1
-1 1
1 1

(2.11)

Zapis jsme zjednodusili tak, Ze jsou uvedeny jen diagonalni a nenulové prvky matic. Je jasné ze reprezen-
tace zaloZend na téchto maticich r;; se pfi vypoctu charakterti dané operace symetrie pté na to, ktery
atomarni orbital zistava pii dané operaci na svém ptivodnim misté. Zopakujme, ze charakter reprezentace

se spocita jako stopa matice. Vysledek je:

I'ao I Ca(2) Oz Tyz
x |7 1 3 5

Standardnim rozkladem reprezentace I'yo do NIR pro Cs, pomoci vztahu (2.7) dostaneme vysledek,
Tao = 4A; @ By @ 2Bs. Molekuldrni orbitaly vody spoéitané podle (2.10) maji nésledujici symetrii:

NIR LCAO - MO

Ay g1 = 150, g2 =250, g3 = 2pz, ga = (151 + 1s3)/2
Bl : gs = 2px
By:  ge =2py, gr=(1s1 — 1s2)/2

2.4.2 Interak¢ni diagram molekuly — elektronové hladiny

AO kyslik MO H,O AO vodiky
2b1
. 4a1
A a1+bl

a;+by+h,

1S_H_ --------------- ﬂH_

Obr. 2.3: Kvalitativni interakéni diagram vody. Popis je uveden v textu.

Na zékladé tvah o symetrii molekuly vody mutZeme sestrojit kvalitativni interakéni diagram s ener-
getickymi hladinami. Protoze ze symetrie nemtizeme zjistit velikost dané energie, je tento diagram pouze
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kvalitativni. Hodnoty energie odhadujeme ze zkusenosti. Pro zpfesnéni je potieba vytesit pro takto urcené
molekularni orbitaly Schréodingerovu rovnici. Alternativné je samoziejmé také mozné urcit energie hladin
méfenim.

Obrazek 2.3 je potieba vysvétlit. Molekularni reprezentace se oznacuji malymi pismeny, aby se odlisily
od atomaérnich, které pouzivaji podle Mullikena pismena velka. Nejnizsi hladina kysliku la; se nepodili
na vazbé. Hladiny 2a;, 1b; jsou vazebné, protoze sdili atomarni funkce kysliku i vodikt. Toto sdileni je
mozné diky shodné symetrii. Dale nasleduji dvé nevazebné hladiny 3aq, 105, kde jsou umistény posledni
dva elektrony molekuly vody. Dalsi dvé hladiny 4a1,2b; jsou antivazebné.

Elektrony umisténé do energetického schématu vody na obr. 2.3 jsou na hladinach ve dvojicich s opa-
¢nym spinem. Prvni excitovany stav by odpovidal pfesunu jednoho elektronu z posledni obsazené hladiny
1b5 na prvni volnou hladinu 4a;.

2.4.3 Studium vibraci jader

Pokud chceme studovat vibrace jader, musime vzit do ivahy vzajemné polohy vsech N atomi. Jde tedy
o problém 3N proménnych, kterému bude odpovidat reducibilni reprezentace I'sy. Tuto reprezentaci
je potieba nalézt, rozlozit ji na soucet NIR a odedcist reprezentace nalezici translaci a rotaci. To co
zbude bude odpovidat symetrii vibracnich médi. Kazda NIR jednomu povolenému vibra¢nimu mdédu.
Pro jednoduchost vezméme opét vodu, ktera ma jen tii atomy.

+1 -1
D(0s2) = —1 , Dloy:) = 1 : (2.12)
+1 1
+1 -1
-1 1
+1 1

Kdyz se spocita stopa téchto matic, je zfejmé, Ze charaktery v této reprezentaci je mozné stanovit
pfimo bez nutnosti sestavovat transformacni matice. Charakter ziskdme jako souin poctu atomu Ng,
které se pri provedeni operace symetrie R nepohnou z mista, a ur¢itého geometrického koeficientu.

X(Cr) = Nr(2cosa+1), x(Sp)=Ngr(2cosa—1),
X(I):3N7 X(U):Noa X(i):_?’Ni-

a = 2w /n, je thel otofeni pfi pouziti dané operace symetrie. Druhy fadek lze spocitat jako specidlni
pfipady rotaci podle vztahi z prvniho fadku. Vysledek vypoctu charakterd pro vodu je:

F3N I CQ(Z) Orz Jyz
X 9 -1 1 3

Tuto reducibilni reprezentaci rozlozime s pouzitim vztahu (2.7) a dostaneme, I'sy = 341 P Ay H2B, ®3Bs.
Tato reprezentace respektuje 3N stupnd volnosti pro danou molekulu. To znamend, ze musi platit,

FSN = I_‘trans + Frot + I_‘vib~ (213)
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Pro ziskdni piehledu o vibra¢nich stupnich volnosti je tedy nutné od I'sy odecist translaci a rotaci.
Translaci odpovida reprezentace I',, kterou jsme jiz udélali v sekci 2.2.1. Zatimco translace odpovida
transformaci vektoru &, rotace je transformaci pseudovektoru (axiélniho vektoru) R. To znamena, ze
translace a rotace maji stejné matice pro operace I,C,. Pro operace S, 0,7 maji translace a rotace

u matic opa¢né znaménko. Pro vodu by nam vyslo, I'tyans = A1 © B1 @ Ba, I'iot = As ® B, & Bs.

Prostym odec¢tenim dostaneme symetrii vibra¢nich stavi jako: I'y;p, = 241 @ Bs. Pokud si chceme
zjednodusit praci, je mozné pro urceni ['t;ans a 'yt vyuzit toho, co je jiz napsané na pravé strané
(PO. 2.1: tabulek charakterf). Translace odpovida slozkdm vektoru Z a rotace slozkdm vektoru R.

Ziskané vibra¢ni stavy vody jsou zakresleny v obr. 2.4. Vlevo jsou totélné symetrické vibrace Ay,
vpravo je vibrace se symetrii podle reprezentace By. Pro vibrace musi platit, ze molekula se nesmi
otacet a pii vibracich se nesmi posunovat tézisté. Smér do tézisté je pro jednotlivé atomy molekuly
vody vyznacen teckovanou ¢arou. Navic musi platit, Ze jednotlivé vibrace jsou navzajem nezavislé, neboli
ortogonalni vibraéni médy. Z IC méfeni a Ramanovych spekter vody je znadmo, Ze jednotlivym vibracim
nalezi frekvence: 11 = 1.08 x 10* Hz (3601 cm™1), vy = 4.83 x 1013 Hz (1609 cm™1!), v3 = 1.11 x 1014 Hz

(3696 cm—1).

Al: 14

Obr. 2.4: Vibra¢ni médy molekuly vody a jejich symetrie popsana NIR.

2.4.4 Vybérova pravidla

V pfedchozim textu jsme si odvodili tii vibraéni médy molekuly vody (obr. 2.4). Dva médy maji symetrii
Ay a jeden méa symetrii Bs. Pro tyto nalezené vibrace popiSeme vybérova pravidla, ktera urcuji, ktery
z téchto médi bude aktivni ve spektrech IC absorpce a ktery v Ramanovych spektrech.

Véta 2.4.1 Vibrace je aktivni v absorpcnim IC spektru, jestlize patii ke stejné NIR jako sloZka vektoru
T, ktery symetrit odpovidd elektrickému dipolovému momentu.

Protoze jsou povoleny viechny slozky (z,v, 2), ma molekula HyO v IC aktivni vSechny tii vibrace.

Véta 2.4.2 Vibrace je aktivni v Ramanové spektru, jestliZe patri ke stejné NIR jako sloZka kvadratické
formy x2, kterd symetrii odpovidd polarizovatelnosti.

V Ramanové spektru jsou vSechny tfi médy vibrace vody rovnéz aktivni, nebot jsou u nich uvedeny
nékteré ze slozek (12,142, 2%, vy, x2,y2).

Ve chvili, kdy je jasnd symetrie vibraci, je mozné se posunout ke kvantovému feSeni. Vyuzije se
znadmé kinetickd a potencidlni energie jader, hamiltonian se dosadi do Schréodingerovy rovnice a ziskame
kvantovanou energii ulozenou ve vibracich. K tomu se propracujeme v nasledujici sekci.

2.5 Vyuziti symetrie pfi vypoctu integraliu

V kvantové mechanice se pro vypocet stfedni hodnoty néjaké veli¢iny pouziva integral z vlnové funkce a
operatoru dané veli¢iny. Do vysledku tohoto vypocétu zna¢nou mérou prispiva symetrie. Nyni si ukazeme,
jak na to. Celé je to zalozené na jednoduchém tvrzeni.
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Véta 2.5.1 Uvazujme funkci fo z bdze {f(n)} se symetrii odpovidagjici reprezentaci I'y. Pokud neni I,
totdlne symetrickd reprezentace, potom je integral pres cely prostor z této funkce f, identicky roven nule.

Tvrzeni této véty plyne z nasledujici ivahy. Pokud neni I',, totalné symetrickd reprezentace, mohu na
funkci provést operaci symetrie pfi které integral zmeéni znaménko, ale systém popsany funkci ztstane
nezménén. Vysledkem integrace je tedy ¢islo, které se rovna své zaporné vzaté hodnoté, coz plati pravé
jen pro nulu.

2.5.1 Direktni soucin reprezentaci

Méjme grupu symetrie v reprezentaci F' se souborem bazovych funkci { f1, ..., fin }. Dale méjme analogicky
pro stejnou grupu reprezentaci G se souborem bézovych funkci {g1,...,g,}. Obé reprezentace mohou

mit rtiznou dimenzi (m # n). Transformace funkci obou bézi pfi plisobeni operatort prvki symetrie
muzeme vyjadiit pomoci transformac¢nich matic. Pro zvolenou operaci symetrie R je tato matice rr pro
reprezentaci F' a rg pro reprezentaci G. Direktni soucin obou reprezentaci, J = F ® G, definuje novou
reprezentaci J, pro kterou plati:

XJ(R) = xrec(R) = xr(R)xc(R). (2.14)
Pritom plati, Ze matice reprezentace J lze ziskat tenzorovym soucinem matic, ry = rp ® ra.

Na zakladé téchto vztaht je mozné spocitat direktni soucin reprezentaci a vysledou reprezentaci pak
rozepsat na direktni soucet zastoupenych NIR. FR G=T11®---d T,

Véta 2.5.2 Direktni soucin dvou ireducibilnich reprezentaci I', ® I'g obsahuje ve svém rozkladu totdiné
symetrickou reprezentaci Ay tehdy a jen tehdy, pokud jsou obé reprezentace vici sobé vzdjemné komplexné
sdruzené, I', = 1"2‘3.

Pii vypoctu kvantové-mechanickych stiednich hodnot veli¢in se pocita integral z operatoru dané
veli¢iny. Naptiklad pro energii je jim hamiltonian. Tento integral ma tvar:

/V UinFiys dr. (2.15)

Jednotlivé ¢leny integralu odpovidaji symetrii reprezentacim I'y, I'r a I'g. Pro vypocet hodnoty integralu
vyuzijeme symetrii. Soucin funkci dava jako vysledek funkci se symetrii I', kterou mtzeme rozepsat,

I=T*@lpol=T10ld....

Pokud v rozkladu reprezentace T' je i totdlné symetrickd A; mtze (ale nemusi) byt vysledny integral
nenulovy. Obracené, pokud v rozkladu integrované funkce A; chybi, je naprosto jisté, Ze vysledny integral
musi byt identicky nulovy diky symetrii.

Symetrie ndm umoznuje si zjednodusit vypocty kvantové-mechnickych integrala diky tomu, Zze u nék-
terych rovnou urc¢ime nulovy vysledek. U jinych integrala si alespon zvolime spravnou miniméalni bazi
funkci, kterd odpovidaji symetrii feSeného problému.

2.5.2 Normalni vibrace a normalni soufadnice

Vibrace se pfedpokladaji v harmonické aproximaci, kdy mtzeme vyuzit znamého feSeni kvantového har-
monického oscilatoru. Reseni je obdobné pro molekuly i pro pevné latky. Energii kmitani na frekvenci
w je mozné zapsat jako E, = (n + 1/2)hw. Kvantové ¢islo n uréuje obsazeni daného vibra¢niho mdédu.
V kap. 6 zavedeme oznaceni, Ze v latce mame n fononi s frekvenci w. Pro toto zavedeni bude nutné
znormovat amplitudy vibraci tak, Ze je vynasobime odmocninou z hmotnosti daného kmitajiciho atomu.
Potom bude pfispévek ke kinetické energii vSech atomt zaviset pouze na znormované souradnici. Nakonec
bude jesté nutné provést diagonalizaci hamiltonidnu, aby byly jednotlivé vibra¢ni médy vzajemné neza-
vislé. Tomuto postupu se ¥iké pfechod k normalnim soufadnicim. Celkovou kinetickou energii uloZenou
v kmitech krystalu je potom mozné spocitat jako prosty soucet energii vSech vibra¢nich médi.

P1i vypoctu energie molekuly s N atomy, pracujeme s 3N stupni volnosti. Z nich 3 stupné pfipadaji
na translaci, 3 na rotaci (u linearnich molekul 2). Zbytek 3N — 6 jsou vibrace (respektive 3N — 5). Pro
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translace a rotace by nam vysly nulové frekvence pohybu. V pevnych latkach se stupné volnosti ptivodniho
transla¢niho pohybu uplatiiuji v periodickych mezimolekularnich pohybech jako mezimolekularni vibrace.
Jde o vibrace pfenasené mezi jednotlivymi elementarnimi bunkami v periodické mfizce. V pevnych latkach
mame tim padem 3N vibrac¢nich stupnd volnosti, kde N udava pocet atomiui v elementarni burice.

Podivejme se nyni na klasicky a kvantovy popis vibraci. Potencial V', kterym se ovliviiuji dva kmitajici
atomy «, 3, lze jisté zapsat pomoci harmonické aproximace,

1
V=35> kijRiaR;s.

,J

Je to vlastné prvni nenulovy ¢len Taylorova rozvoje, nebot konstantu mohu polozit rovnou nule a linearni
¢leny musi byt v minimu nulové. Tenzor k;; popisuje silové konstanty. Kinetickou energii vybraného atomu
« zapiseme jako

1 .
T =M, EZ:R?&.

Provedeme prechod k vazenym soufadnicim, & = vV MyRio. Tim ndm ze zapisu energii zmizi hmot-
nosti. Abychom dostali nezavislé harmonické oscilatory, musime diagonalizovat hahiltonian s klasickymi
soutadnicemi &; a prejit k soufadnicim kvantovym Q;. Tyto normadini souradnice ndm umoznuji vyjadrit
hamiltonian celé molekuly jako soucet nezavislych harminickych oscilatort, kde jsou pouze kvadraty této
soutadnice v potencidlu a kvadraty derivace v kinetické energii. Protoze se ndm tam nemotaji hmotnosti,
miuZeme zaspat soucet ¢lent do sumy pres jednotlivé stupné volnosti.

h23N_6 82 13N—6
Hop =25 21N 202
vib = 7 ZanJrQ;w"Q’

Klasickym feSenim by byly samoziejmé harmonické funkce, §; = A; sin(w;t+0b), kde A; a b jsou ampli-
tuda a faze vibraci v Case t s frekvenci w;. Kvantové musi pro kazdy vibrac¢ni mdd platit Schrodingerova
rovnice, H;x; = F;x;. ProtoZe TeSeni je znamé, lze to celkové rovnou zapsat,

3N—6 3N—6 3N—6
Ban= Y Ei= Y (ni+1/Qhwi, xu= ] xi(Qi)
i=1 i=1 i—1

Kvantovéa ¢isla n; uréuji obsazeni jednotlivych vibra¢nich méda.

2.6 Symetrie ve fyzice

Symetrie je tstfednim pojmem védy, ktery se prolina fyzikou, matematikou a geometrii. Zkoumany jev
nebo vlastnost mé urcitou symetrii, pokud na tento objet mohu pouzit urcitou operaci symetrie, ale na
daném objektu se to neprojevi zddnou pozorovatelnou zménou. Symetrie se projevuje v mikrosvété, kde
nam umoziuje popsat tfeba polohy atomu v krystalické mfizce, ale také vnitini strukturu ¢astic, kterou
popisuje v kvantové mechanice vinova funkce. Kdyz se posuneme k makroskopickym objektiim, obvykle
vidime jisty stupen symetrie mezi levou a pravou stranou lidského téla, nebo v rozlozeni objektd v nasi
Galaxii. Nicméné tato symetrie je pouze Casteénd dand néjakym zakladnim principem, ale je patrny i
urcity stupen nahodnosti ¢i chaosu. Symetrie dava pozorovateli tendenci vnimat pozorovany objekt jako
krasny, ale jistd nedokonalost tento objekt zlidstuje.

Ve fyzice je zajimava symetrie védeckych pojmu a teorii. Pokud méa byt néjaka teorie, popisujici
nasi realitu, uvétitelna, musi mit tato teorie urc¢itou symetrii. Musi byt svym zptsobem krasna. Lapi-
darné feCeno, teorie, ktera plati pouze v pondéli a jindy ne, neni dobra teorie. Symetrie nam tedy casto
umoznuje kriticky nahlizet i na dtsledky, které néjaka teorie predpovida a urcit omezeni jeji pouzitelnosti
a spravnosti.
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Cy|I Cy|| 1D 2D
All 1| zR, 22, y2, 22, xy
B |1 1|y R, Ry | 72,yz

CS I Op 1D 2D
A1 1|z R |22 yR 2%y
A" |1 —1|| 2Ry, Ry | z2,y2

C; |1 i || 1D 2D
g 1 1 szRy»Rz 332792722793%%2,92
|1 =1 2,y,2

Con|I Cy i o] 1D 2D

A RZ $25y2a227my
B, |1 -1 1 —-1||R;,R,|22,yz

A, |1 1 -1 -1}z
B, -1 -1 1) x,y
D2 1 CQ(Z) Og(y) CQ(JU) 1D 2D
Cop | I Cy oy(xz) o0,(yz) 1D 2D
A/A; |1 1 1 1 z 22,2, 22
Bi/As |1 1 -1 11| z;R. | R, Ty
By/By |1 -1 1 —1||y;Ry |z Ry | 22
Bs/By | 1 -1 -1 1| z;R: | y; Ry | yz
Ds | I 2C; 3C, || 1D 2D
Cso | T 205 30, 1D 2D
A |1 1 1 z 22 4+ y?, 22
Ay |1 1 -1} z;R, R,
E |2 -1 0 (2,y);(RRy) | (2,9); (Bay Ry) | (2% — y*, 2y); (22, y2)
ng I 203 302 7 256 30‘d 1D 2D
Ay |1 1 1 1 1 1 x? 12, 22
Al 1 -1 1 1 —1|R.
E, |2 -1 2 -1 0| (R, Ry) | (2% — y% 2y), (z2,y2)
A1 1 1 -1 -1 -1
Ay | 1 1 -1 -1 -1 11z
E.|2 =1 0 -2 1 0|(zy

PO. 2.1: Tabulky charaktera ireducibilnich reprezentaci nékterych bodovych grup. Dvojita svisla cara
oddé€luje na pravé strané uvedené funkce spliujici symetrii dané NIR. Symbol & predstavuje polarni
vektor a symbol R axiélni vektor. Ve 2D je chovani radialnich a axiilnich tenzort stejné. Tabulky
dalsich grup lze nalézt napi. na webu: http://symmetry.jacobs-university.de/
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h, tad grupy
G- {,L—G:F} «— R, typicky prvek grupy

tiidy > pr=h
=

\\~\ /"' =l
C3, (20y

tot. sym. rep.

(3o,
Iy A
3 NIR Iy Ao t
1—\3 E (Z - ]., . ,t)
t
n; = xi(I) (k=1,...,1)

Xi(R) = TI‘Dz‘(R)|

fad matice, dimenze (n X n)

NIR: T;—— {D(I),D(a),D(b),...} jlng _h

(2

1-ta irecucibilni reprezentace

PO. 2.2: Souhrn syntaxe pouzivany v této kapitole na ptikladu tabulky charakteri.
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Crystal Holohedral Bravais Crystal Number of space
system group lattice class groups
triclinic C; 1 P (o] 1 1
C; 1 1
monoclinic Cap % p bfc C'y 2 1
Cs m 2
Cop 2 4
rhombic Doy %%% p bfc be fc Do 222 4 2 2 1
Coy 2mm 10 3 7 2
Dy 2221 16 4 6 2
trigonal Day 32 p Cs 3 4
Ss 3 2
D3 32 7
Czy 3m 6
Dy, 3% 6
tetragonal Dy %%% p be Cy 4 4 2
S4 4 1 1
Can A 4 2
Dy 422 & 2
Cliy 4mm 8 4
Dyy  42m 8 4
Dy 2212 16 4
hexagonal Dgp, % % % p Cg 6 6
Can 6 1
Con £ 2
Dg 622 6
Cou 6mm 4
Dgy, 6m2 4
Du $22| 4
cubic o, 432 p be fe T 23 2 21
T 23 3 2 2
o 432 4 2 2
Ta 43m 2 2 2
Oy %3;?; 4 2 4

PO. 2.3: Rozpis bodovych grup symetrie pro jednotlivé krystalografické soustavy. Upraveno z webu

MUNI.cz: http://mineralogie.sci.muni.cz/
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2.7 Piiklady

Pr. 2.2: Vzajemné vztahy mezi prvky grupy bodové symetrie: Vypoditejte nasledujici mocniny
prvki bodové symetrie: a) C”, b) Co™ %, ¢) o~ 1, d) 02, e) S, f) Si, g) i~', h) 2.

Pr. 2.3: Multiplika¢ni tabulky malych grup: Sestavte multiplikacni tabulky grup do fadu h = 4.
Ukazte, ze jsou tyto grupy abelovské neboli komutativni.
Néapovéda: Prvky grupy musi zac¢inat identitou I a teprve potom nésleduji dalsi prvky {a,b,...}

P¥. 2.4: Inverzni prvek: Pov§imnéte si, Ze pro matice reprezentace (2.2) plati R~! = RT. Provéite
toto tvrzeni a odivodnéte, proc¢ to tak musi byt.

Pr. 2.5: Ortogonalita radku transformacnich matic: Vyberte nékolik pfikladi z matic reprezentace
(2.2) a provéite vztah ortogonality fadka a sloupci.

Pi. 2.6: Symetrie benzenu:* Molekula benzenu odpovida symetrii grupé Dgj,. Rad této grupy je
24. Najdéte vSechny prvky symetrie této grupy, urcete 12 t¥id a sestavte tabulku charaktert s vyuzitim
vlastnosti symetrie NIR.

Napovéda: Pro h = 24 a t = 12 je jen jediné feseni véty 2.2.2: 24 = 8- 12 + 4 - 22,

Pi. 2.7: Hybridizace uhliku:

Najdéte symetrizované vlnové funkce uhliku pro pfipad molekul: A) 1D linedrni molekulu CO4, B) 2D
plo$né uspofadani vazeb v tuze CHs, C) 3D uspofadani diamantu CHy.

Népovéda: Jde o orbitaly sp hybridizace, sp? hybridizace a sp® hybridizace.

Pr. 2.8: Direktni soucin reprezentaci vody: Pro molekulu vody se symetrii Cs, najdéte soucin
reprezentaci As ® By.

Pr. 2.9: Potencial vibrace vody: Odhadnéte, jak by mél vypadat potencial pro vibrace molekuly

vody Aj,vs podle obr. 2.4. Uvazujte vibrace, které prekracuji pfipad protaZeni molekuly do linedrniho
tvaru.
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Lauegram krystalického vzorku

e — S — . ~q

e ¥ . 5 : - . ’ : I: B ; e ’
; L1 " w : * N . # P n ! - ) P "
. . "‘ - ..‘ - ) _ ; . - L ] . i
| ' eacil ' | , :
4." = - L & " " : JI
* LI AlFe e D=4 ['ica ALFe D=2¢p%
LiCaAlFg, trigonalni LiCaAlFg, trigondlni krystal,
krystal, trojéetna osa trojéetnd osa rovnobézna
kolma K roviné snimku s rovinou snimku (svisla)

© Jiti Hybler, Fyzikalni tstav AV CR, Praha. Pfevzato z webu XRAY:
http://www.xray.cz/kryst/difrakce/hybler/monokrystal.htm

Debyegram nebo difraktogram praskového vzorku

Prevzato z webu XRAY: http://www.xray.cz/kurs/

Dalsi uzite¢né odkazy:
http://www. jcrystal.com/steffenweber/JAVA/jlaue/jlaue.html
http://cst-www.nrl.navy.mil/lattice/
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Kapitola 3

Difrakce na krystalu, reciproka
miizka
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Pokud na krystal dopadé optické zafeni ve viditelné oblasti (typicky 5 000 A), je atomarni struktura
materidlu (2-3 A) pod rozliSovaci schopnosti této viny. Pro odrazenou a proslou vlnu plati tedy standardni
zakon odrazu a lomu. Prostiedi se jevi jako homogenni, popsané danym indexem lomu.

Pokud je pouzito tvrdé rentgenové zafeni, které ma vlnové délky v rozmezi od 0.2 A do 2 A, potom je
vlnova délka mensi nebo srovnatelnd s miizkovou konstantou. V tomto pfipadé se $iri difraktované viny
ve smérech zcela odlisnych od sméru dopadu.

3.1 Krystalografie pomoci riznych svazki

Jaké ¢astice jsou tedy vhodnymi kandidaty na studium krystalové struktury? Dualita castic a vinéni
v pripadé svétla znamend, Zze v zavislosti na uspofadani experimentu a na zptisobu pozorovani mizeme
svétlo popisovat bud jako vinu, nebo jako diskrétni kvanta energie, ¢astice — fotony.

Fotony: rentgenové paprsky interaguji s elektrony.

_ 27he 2mhe 12.4

A= tj.  AA]=

E A ~ eEleV]’ - ElkeV]’

U téchto vzorci se energie Castice zadava v jednotkach elektronvolt, kladné vzaty elementarni néboj
elektronu e = 1.602 189 2 x 107! C.

Neutrony: nemaji naboj, interaguji s magnetickymi momenty elektront a jsou tedy vhodné pro struk-
turni analyzu magnetickych krystalti. V nemagnetickych materidlech interaguji s jadry. De Broglieova
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vlnova délka'! hmotné &éstice je dand vztahem p = 27h/\. Pfipometime hmotnost neutronu, M, =
1.674 927 x 1027 kg.

2 2
_p® (27h) . A _ _0-285
E=o, = e W AAT = EleV]

Elektrony: maji ndboj a proto kvili coulombovské interakci pronikaji jen tésné pod povrch studovaného
materidlu. Energie elektronti je dand podobné jako pro neutrony, ale s hmotnosti o 3 faddy mensi, my =

0.910 953 4 x 10730 kg.
12.2

\/E[eV]'

Energetické vztahy jsou pro jednotlivé ¢astice zakresleny v obr. 3.1. Pokud budeme chtit, aby vyse
uvedené Estice mély vinovou délku A = 1 A, potom budeme potiebovat, aby mély nasledujici energii:

MA] =

foton neutron elektron
12.4 keV 0.081 eV 149 eV

10
—— foton, energie v keV

—— neutron, energiev 0.01 eV

5 elektron, energie v 100 eV

2
Os 1
/<
5
2
10™ ,
1 2 5 10 2 5 10

Energie

Obr. 3.1: Zavislost vlnové délky na energii fotonu, neutronu a elektronu.

3.2 Fourierova analyza

K rozptylu rentgenového zareni dochazi na elektronech v krystalu. Hustota elektrontt v periodickém
krystalu musi byt periodickou funkci s periodou danou translacemi o mfizkové vektory. Matematicky to
lze zapsat tak, ze elektronova hustota ztustane stejnd pfi posunu o libovolny vektor mfizkové translace,
n(7+ T) = n(7). Periodickou funkei elektronové hustoty lze zapsat pomoci 3D Fourierova rozkladu

n(r) = Z neg G (3.1)
é

1Louis de Broglie ziskal za objev vlnové povahy elektronu Nobelovu cenu za fyziku v roce 1929.
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Vsechny vektory G , které vystupuji v sumé, lze zapsat jako celociselnou linedrni kombinaci zédkladnich
translac¢nich vektord reciproké mrizky, které jsou definovany takto:

L9 -
by = ‘;T(ag x ds), kde V. = |dy.ds X dsl, analogicky pro bs, bs. (3.2)

c

Protoze tyto vektory uréuji diky Fourierové transformaci prostorové frekvence, je jejich jednotkou m~!.
S danou krystalovou strukturou jsou tedy svazany dvé mfizky. Pfimé mfizka je definovana transla¢nimi
vektory di, do, d3 a popisuje rozlozeni atomu v krystalu. Reciprokd mftizka definovana transla¢nimi

vektory reciproké miize by, by, b3 ma stejnou symetrii a velmi tizce souvisi s rentgenovou difrakei.

Pro vektory pfimé a reciproké mtizky plati nékteré uzitecné identity:

b = 2775”,
exp[zT Gl=1,

pro libovolny vektor T primé miizky a libovolny vektor G reciproké miizky.

Nyni nas bude zajimat amplituda pruzného rozptylu rentgenového fotonu. Vektor zmény sméru vl-
nového vektoru tohoto fotonu mizeme zapsat jako Ak =K — k. VInovy vektor dopadajicitho zafeni
oznacujeme k a difraktovaného zéfeni k’. Amplitudu rozptylu A zapiSeme jako integral pfes objem krys-
talu s tim, Ze intenzita rozptylu je v kazdém misté imérna hustoté elektront a jednotlivé prispévky
z riznych mist se musi s¢itat s odpovidajicim fazovym faktorem. S vyuzitim (3.1) dostaneme

A(AF) = / v n(r) —Wﬂ“—zng / AV e (G-aF)-7 (3.3)

Integral v sumé odpovida delta funkci 6((? — AE) Vztah (3.3) lze tedy interpretovat tak, ze v idedlnim
krystalu je mozny pruzny rozptyl rentgenového zafeni pouze pod podminkou, Ze zména vlnového vek-
toru dopadajiciho fotonu je rovna néjakému vektoru reciproké miizky G. Amplituda rozptylu v tomto
konkrétnim sméru je pak imérnd slozce Fourierova rozkladu elektronové hustoty, A= = Vikngz. V tomto
vztahu Vi oznacuje objem celého krystalu. Podminka pro sméry difrakce ma v tomto pripadé tvar

— —

Ak=F —-k=0G. (3.4)

Tuto podminku muzZeme fesit efektivni geometrickou konstrukci, ktera se podle jejiho autora oznacuje
jako Ewaldova konstrukce.

3.3 Zakony rozptylu, difrakéni podminky

3.3.1 Bragguv zakon

Uvazujeme odraz na rovinach krystalu, které jsou umisténé pod sebou ve vzdalenosti d. Ke konstruk-
tivni interferenci odrazi z jednotlivych rovin dojde, pokud se budou jednotlivé odrazy k sobé pri¢itat
konstruktivné ve fazi, t.j. pokud budou vzajemné zpozdéné o celodiselny nasobek vinové délky A. Tuto
geometrickou podminku lze zapsat ve tvaru Braggova zakona®:

(PO. 3.1: Geometrie Braggova zakona)

2dsin @ = n\, n=12 ..., (3.5)

kde 0 oznacuje tthel dopadu a d je vzdélenost krystalovych rovin. Vzdélenost sousednich rovin (hkl) lze
spocitat z velikosti odpovidajicitho vektoru G v reciprokém prostoru,

2 — - — —
d(hkl) = |C§|, kde G = hby + kby + Ubs. (3.6)

Diikaz tohoto vztahu je fesen v pi. 3.2 na konci této kapitoly.

2Sir William Henry Bragg a jeho syn William Lawrence Bragg ziskali za tuto metodu uréovani krystalové struktury
pomoci rentgenového zareni Nobelovu cenu za fyziku v roce 1915.
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3.3.2 Brillouinuv zakon

Uvazujeme-li, ze dopadajici foton s vlnovym vektorem k se odrazi pruzné, potom bude mit jeho vlnovy
vektor stale stejnou velikost, ale odlisny smér. Plati tedy |k’| = |k|. Dosadime-li do této rovnosti podminku

difrakce k' = k — G, dostaneme?®:

- =

k2 —2k.G+G? =k? = 2%.G = G2.

Ef - (2)2 (3.7)

Vlnové vektory dopadajicich fotoni E, které splnuji tuto podminku, predstavuji hranici tzv. Brillouinovy
zony (BZ) v reciprokém prostoru. Tuto BZ muZeme sestrojit tak, ze v poloving kazdého vektoru reciproké
mitzky G sestrojime kolmou rovinu. Prvni Brillouinova zéna (1.BZ) je takto definovéna jako Wignerova-
Seitzova buiika v reciprokém prostoru a je proto jednoznac¢na. Brillouinovo vyjadieni zédkona rozptylu lze
prevést na Braggovo s vyuziti rovnosti (3.6).

(PO. 3.2: Brillouinovy zény &tvercové miiZe),

(PO. 3.3: Zaplnéni reciprokého prostoru 1.BZ),

(PO. 3.4: Model prvni Brillouinovy zény FCC m¥iZzky).

Odtud dostaneme Brillouiniv zédkon

3.3.3 Laueho podminky pro rozptyl

Posledni vyjadieni tého# zdkona rozptylu je mozné zapsat pomoci Laueho rovnic*. Tyto rovnice odvodime
tak, Ze vektorovou rovnost (3.4) vynasobime skaldrné bazovymi vektory miizky.

@ - Ak = 2rh,
@ - Ak = 27k, (3.8)
_’3 . AE = 2ml.

Reseni difrakce pak odpovida splnéni viech tif uvedenych podminek soudasné.

3.4 Experimentalni difrakéni metody

K difrakci mize dochazet pouze, pokud je polovina vinové délky mensi nez vzdéalenost rovin v krystalu,
A/2 < d. Zéznamy typického lauegramu a debyegramu, které jsou diskutovany v této sekci, byly uvedeny
na avodnim obrazku k této kapitole.

Intenzita

M A]

Obr. 3.2: Schéma Laueho difrakéniho uspofadani. Krystal (zeleny) je umistén na goniometrickém drzaku
s naklony. Rentgenovy svazek se spojitym spektrem je oznacen cervené. Modie zobrazené fotografické
desky umoznuji ziskat lauegram na priichod nebo na odraz.

3Volba znaménka je opaéna proti (3.4). Znaménko si mizeme zvolit, nebot pokud je G vektor reciproké mrizky, tak -G
je také vektor reciproké miizky.
4Max von Laue ziskal za tento vyzkum Nobelovu cenu za fyziku v roce 1914.
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3.4.1 Laueho metoda

Touto metodou se zkouma monokrystalicky vzorek pomoci dopadu kolimovaného svazku se spojitym spek-
trem v oblasti 0.2 A az 2 A. Lze sledovat priichod i odraz na rovinném zéznamovém médiu, viz obr. 3.2.
Krystal vybird sméry (odraz na rovindch symetrie) a vlnové délky, pro které je splnéna difrakéni pod-
minka. Tato metoda se pouziva pro presnou orientaci krystalt. Teoreticky se da predpovédét rozmisténi
difrakénich maxim v lauegramu geometrickou metodou (PO. 3.5: Ewaldova konstrukce lauegramu).

3.4.2 Metoda rotujiciho krystalu

Pri této metodé se pouziva monokrystalicky vzorek a monochromaticky svazek s jednou vlnovou délkou
A. Vzorkem se otaci kolem pevné osy kolmo na smér paprski. Svazek je difraktovan, pokud dojde pii
otaceni ke splnéni Braggovy rovnice. Geometrické uspotadani je schematicky znézornéno v obr. 3.3.

—
_.e:@:
=y

Obr. 3.3: Schéma uspofadani méfeni difrakee s rotujicim krystalem. Krystal (zeleny) je umistén na rotuji-
cim drzéku v ose vélce, na kterém je zevnitf rozlozen zaznamovy film (zobrazen modie). Monochromaticky
rentgenovy svazek je oznacen Cerveneé.

Intenzita

0‘1 2‘3
AA]

3.4.3 Debyeova-Scherrerova praskova metoda

Tato posledni metoda pouziva pragkovy vzorek® a monochromaticky svazek. Pragkovym vzorkem se miize
navic jesté rotovat. Splnéni Braggovy podminky pro jednu vlnovou délku a zcela nahodny smér orientace
krystalu odpovid4 difrakci ve sméru kuzelovych ploch s thlem odklonu 260 od osy svazku.

Intenzita

0 1 2
AA]

Obr. 3.4: Schéma usporadani méreni difrakce Debyeovou-Scherrerovou praskovou metodou. Prasek krys-
talu je umistén v tenkosténné kapilafe (zelend). Zaznamovy prouzek filmu (zobrazen modfe) je umistén
na sténé valce. Zaznamenany debyegram je sloZen z difrakénich kruZnic s poloméry danymi geometrii
usporadani. Smér priuchodu monochromatického rentgenového svazku je oznacen Cervené.

5Praskovou metodu difrakce vypracovali Peter Debye a jeho doktorand Paul Scherrer. Za tento vyzkum ziskal P. Debye
v roce 1936 Nobelovu cenu za chemii.
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3.5 Fourierova analyza baze a strukturni faktory

Je-1i splnéna difrakéni podminka Ak =G pro néjaky konkrétni vektor Ci je amplituda rozptylu podle
(3.3) dané
Ag=N / AV (i) T = NS, (3.9)
buka

Rozptyl na krystalu sloZzeného z N bunék je N ndsobkem strukturniho faktoru Sz, coz je piispévek od
jedné elementarni bunky. Pokud kazda elementarni bunka obsahuje s atomii baze, mizeme elektronovou
hustotu v builce zapsat jako sumu piispévki od jednotlivych atoml na pozicich 7; takto,

n(i) = 3 (= 7).

Strukturni faktor daného krystalu pak mtzeme spocitat z geometrie usporadani jednotlivych atomi
baze jako

Sq = ij e_lé'ﬂ', kde f; = /dV n;(p) A (3.10)
j=1

je atomouvy rozptylovy faktor a pri jeho vypoctu se integruje pres elementarni buritku v relativnich sou-
fadnicich p' s pocatkem v tomto j-tém atomu. Atomovy rozptylovy faktor je fakticky charakteristikou
daného atomu a v prvnim pfibliZzeni odpovida poétu elektronti daného atomu. Casto je vyhodné zapsat
strukturni faktor S5 pomoci relativnich soufadnic atomt béaze 7; = ({d; + nd2 + (d3) a danou krystalo-
vou reflexi zapsat pomoci indext pfislusné krystalové roviny (hkl). Vyraz (3.10) se potom zredukuje na
geometrickou sumu v bezrozmérnych jednotkach

N Z fi e e ke, (3.11)

Jj=1

3.5.1 Strukturni faktory kubickych mtizek

Vysledkem studia strukturnich faktord dané mfizky se daji odvodit vybérova pravidla, popisujici, ktera

vvvvvv

atomu do baze krystalické struktury dojde ke zhaSeni nékterych difrakénich sméra.

Jako exemplarni piiklad se da vy¢islit strukturni faktor pro elementarni mfizku BCC. V tomto pfipadé
ma elementarni buitka dva atomy (s = 2). Prvni leZi v poc¢atku (¢ = n = ¢ = 0) a druhy ve st¥edu krychle
(¢ =n = ¢ = 1/2). Rozptylovy faktor obou atomt je identicky (f = fi1 = f2), a proto se vztah (3.11)
zjednodusi na

Sty = f {1 + e—m(h—i—k-&-l)}.
Pro mfizku BCC je tedy S = 0 pro (h+ k + 1) liché a S = 2f pro (h + k + 1) sudé &islo.

Obdobné se da postupovat i pro mrizku FCC. Tady vyjde, ze nenulové difrakéni fady jsou pouze
pripady, kdy jsou {h, k,{} bud vSechny liché, nebo vSechny sudé.

Pro diamantovou miizku je to jesté slozitéjsi. Bud jsou indexy {h,k,l} vSechny liché, nebo jsou
vsechny sudé, ale musi soucasné platit i to, ze jejich soucet je délitelny Ctyfmi.

Chovani difrakce riznych miizek si lze prohlédnout napt. pomoci programu WinWulff nebo WinLaue
z webu: http://www. jcrystal.com/.
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Bragguv zékon
72dsin(d) =n\”

\ “ tihel rozptylu 8 = 30° /

PO. 3.1: Braggtiv zdkon rozptylu na krystalu. Cerné tecky oznacuji polohy atomii v miizce.
Rentgenovy svazek se odchyluje od ptuvodniho sméru o thel 26.
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1.BZ 2Bz | [ 3Bz | [ 4Bz | [ 5BZ |

AN \ %/
- _ S -
>~ ' >
™~ _

PO. 3.2: Sestrojeni Brillouinovych zén ¢tvercové 2D mriizky. Miizkové body reciproké miizky jsou
oznaceny Cervenymi teckami. Hranice BZ lezi na kolmici v poloviné spojnice dvou mfizkovych bodi
reciproké miizky.
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FCC
jednotky (27/a)

PO. 3.3: Zaplnéni prostoru pomoci opakovani prvni Brillouinovy zény kubické struktury FCC.
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PO. 3.4: Nakresy Brillouinovych zén pro kubocné miizky BCC a FCC (nehote). Model 3D
Brillouinovy zény ke kubické struktuie FCC si lze poskladat z vystiihovanky dole.
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b)

PO. 3.5: Metoda konstrukce sméri difrakénich maxim lauegramu podle P.P. Ewalda. Body znaci
reciprokou mfizku a jejich vzdalenost odpovida translacnim vektorim reciproké miizky. Rentgenovy
svazek je pii Laueho difrakci Sirokospektralni, ale kolimovany. VIinovy vektor k vychézi danym smérem
ze zvoleného bodu A. Pro nejkratsi vinovou délkou je zobrazen modie a pro nejdelsi vinovou délku
¢ervené. Po difrakci musi vysledny vinovy vektor K lezet ve zluté podbarvené oblasti mezi kruznicemi a
musi zaéinat v nékterém bodé reciproké miizky, napf. v bodé B. Body A a B jsou takto spojeny
vektorem reciproké mfizkové translace G. Uhel odklonu rentgenového svazku pii difrakcei je 26.
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3.6 Priklady

P1. 3.1: Inverze Fourierovy rady: (a) Ukazte, ze koeficienty rozvoje n, periodické funkce n(z) v 1D
splnuji vztah

p=—o0

a
oo
x 1 z
n(x) = n, e 2T aP, n, =— [ den(z)e 2 aP,
W= y= [dznt)
0
(b) Ukazte, Ze ve 3D pfejde tento vztah na analogii trojrozmérné Fourierovy transformace

o 1 o
n(r) = Zné el nG =17 / dV n(F)e T,
C_j (&

buka

Kittel, str. 81, pt. 1

Napovéda: Pouzijte nasledujici dvé identity, které 1ze odvodit pfimou integraci nebo z defini¢nich vztahii:

a
/

/dxezQﬂ'%(p—P/) — 5(29 -bp ) = O,(S(p _p/)7
a
0

61' . gj = 27"61‘]’-

Pt. 3.2: Krystalové roviny: Uvazujeme rovinu (hkl) krystalové miizky. Ukazte, ze
a) vektor reciproké miizky G = hby + kb + lbs je kolmy na rovinu (hkl);

b) vzdalenost sousednich rovin d(hkl) = 27 /|G|;

c) pro SC mtizku je d? = a?/(h? + k2 + 1?).

Kittel, str. 82, pr. 2

Napovéda:

as/l

n o UupXuy

Uy

32/k
al/h

Obr. 3.5: Vektor kolmy k roviné lze ziskat jako vektorovy soucin dvou vektord, které lezi v této roviné.

Pi. 3.3: Vztah pfimé a reciproké mrizky:
- 2 R N .
by = — dy X ds, Ve =|a; - da X ds|.
C

Dokazte, ze vektory reciproké k vektorim b jsou praveé vektory d.

Napovéda: Pouzijte vektorovou identitu: @ x (b x &) = b(@ - &) — & - b).

58



Pr. 3.4: Objem 1. Brillouinovy zény:

(a) Jaky je objem primitivni reciproké buiiky (1.BZ)? Kittel, str. 83, pt. 5 (b) Pro¢ je 1.BZ k primitivni
buiice krystalu vétsi, nez kdyz si zvolime pro popis neprimitivn{ elementarni buitku? (c¢) S ohledem na
(b), jak se d4 vysvétlit nezavislost difrakénich maxim na vybéru elementarni butiky daného krystalu?

Napovéda:
(2m)°

c

:|51-52X53|:

Pr. 3.5: Reciproka mrizka k variantam kubické mrizky: Naleznéte vektory reciproké miizky pro
primitivni buiiky rtiznych variant kubické mfizky (SC, BCC, FCC)

sc, @ =a(1,0,0), @ =a(0,1,0), @ = a(0,0,1);
BCC? a; = 5(13 1771) y = %(71717 ]-)a 63 = %(17713 1)3
FCC? a; = %(L 170)7 y = %(Oa 1,1)7 C_i3 = %(1,071)
Resent:

SC, b1 = 25(1,0,0), by = 27(0,1,0), b3 = 27(0,0,1);
BCC, by =25(1,1,0), by=25(0,1,1), by = 25(1,0,1);
FCC’ by %(1 1 71) by = Tﬂ—( 1)171) b3 = Tﬂ-(l -1 1)

Pr. 3.6: Nejblizsi sousedi: Reciproka mfizka k FCC je BCC. Urcete pocet a polohu nejblizsich bodu
T" v sousednich BZ. Najdéte hranici BZ v daném sméru. S tim souvisi tvar 1.BZ ve 3D, ktery je zobrazen
na (PO. 3.3: Zaplnéni reciprokého prostoru 1.BZ).

Regeni: 8 bodit v télesovych thloptickach G = 27 (+1,+1,+1), TL = |G| = /3.
Dalsich 6 bodi v oséch, napt. G = by + by = 27’“(2,0,0), X = %|C3| = %T’T

Pr. 3.7: Rozptyl na vodiku: Zakladni stav atomu vodiku je dany 1s funkci atomarniho orbitalu (1.4).
Hustota elektront je dana kvadratem této funkce:

n(r) = [ip1s(r)|* = (maiy) ™" exp(—2r/ap),

kde ap je Bohrtv polomér. Odvodte vztah pro atomovy rozptylovy faktor fq. Kittel, str. 84, pr. 9

Reseni:
oo ™
fG _ /dV 13 e—2r/a]3 e—zé-F: 27; dr r2 e—zr/aB /da sin o e—zGrcosa
Tay, Tag,
0 0
o) 1 o]
2 4
= —3/dr r2e2r/an /d{ e 0T = 3 /drrefzr/“B sin(Gr)
ag Gaj,
0 1 0
4 4Ga} B 16

T Gal (4+ G232 (4+ GPdd)?

Pro malé vektory G je rozptylovy faktor blizky jedné, nebot vodik m4 jeden elektron. S rostoucim vek-
torem G rozptylovy faktor klesd, fq oc G4

P¥. 3.8: Krystalografie praskového india: Pomoci rentgenového zafeni s A = 2 A zkouméame pragek
india (tetragonalni prostorové centrovana miizka, a = 3.244 A, c=4.938 A) Spocitejte thly, pod kterymi
se odklangji kuzely difraktovaného zafeni (26).

Napovéda:

elementérni, (a,0,0), (0,a,0), (0,0, c¢);
primitivid, a1 = (5,3, -5), @2 =(-3,5.5), =[5, -5 5);
reciprokd, b1 = 22(c,¢,0), b1 =2(0,c,0), b= 2(c,0,0),

Objem elementarni bunky V.= 7a c. Rozptylovy zakon sinf = % |é |
Pro smér [100], G = b; dostaneme 6 = 25.8°.
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Pro smér [010], G = by dostaneme 6 = 21.6°.

Obecné pro G = hby + kby + by vyjde tihel sin@ = 2,/ 402 4 (thf)Q 4+ kD2

2 a? c2

Pro dalsi roviny s vy$$imi indexy dostaneme jesté vétsi ahly difrakce (viz obr. 3.6):
6(110) = 45.9°, 0(020) =47.5°, 6(200) = 60.7°, O(111) = 74.0°.

Roviny krystalu india
o
..‘_.;;:7 777777777 P ‘ . . ,:Jff, __________
; e ;'
e e
o P

(110)

Obr. 3.6: Krystalova struktura india: elementarni bunka je ¢tvereéna prostorové centrovand, vektory
primitivni mfizky jsou znaceny modfre. Indexy krystalovych rovin jsou vztazeny k primitivni bunce.
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Fyzikalni a strukturni vlastnosti ¢tyt krystalovych vazeb?.

Vlastnost Tontova vazba Kovalentni vazba
strukturni Presné uspotradani Smeérové vazby s malym poctem sou-
sedl, maléa hustotou krystalu

mechanické Silna vazba, tvrdé krystaly Silna vazba, tvrdé krystaly

tepelné Velmi vysoky bod tani, maly koefi- Vysoky bod tani, maly koeficient
cient teplotni roztaznosti, v taveniné teplotni roztaznosti, v taveniné jsou
jsou ionty molekuly

elektrické Izolatory, vodivost mohou zptisobo- Dobré izolatory v pevném skupen-
vat ionty v taveniné nebo roztoku stvi a jako tavenina

optické Absorpce a dalsi vlastnosti jako Velky index lomu, v pevném skupen-
maji samotné ionty stvi je jina absorpce nez u taveniny

Vlastnost Kovova vazba Van der Waalsova vazba

strukturni Tésné usporadani s velkym poctem Tésné usporadani s velkym poctem
sousedt sousedl

mechanické Rizné sila vazby, mtze se pfi napi- Velmi slaba vazba, mékké krystaly
nani bez pretrzeni protahovat

tepelné Rbzny bod téni rtznych kovi, Si- Nizky bod tani, velky koeficient tep-
roky teplotni interval kapalné faze lotni roztaznosti

elektrické Vodivé diky vodivostnim elek- Izolatory
trontim

optické Neprihledny, kovove leskly Stejné vlastnosti jako maji molekuly

%R.C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press,

2nd edition 1964, Re-issued 2011.
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Kapitola 4

Krystalova vazba
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Za stabilitu (soudrznost) krystalt musi byt zodpovédnd pFitazliva elektrostatickd interakce mezi zé-
pornymi naboji elektront a kladnymi naboji jader. Magnetické sily maji jen slaby vliv, gravitacni sila je
zanedbatelné a jaderné interakce maji dosah pouze na vzdalenosti odpovidajici velikosti jadra. Porovna-
vat stabilitu jednotlivych krystal je mozné pomoci kohezni energie. Ta se definuje jako energie potifebna
k roztrhani krystalu na jednotlivé atomy a normuje se na jeden atom. Krystal je stabilni, pokud je tato
kohezni energie kladné, t.j. Eyon > 0.

4.1 Prehled krystalovych vazeb

Vazby, které se podileji na soudrznosti krystalt, délime na ¢tyii typy:

Vazba inertnich plynii: typické pfiklady Ne, Ar, Kr. Protoze inertni plyny maji uzaviené elektronové
slupky, vytvari krystaly s nejtésnéjsim usporddanim kouli diky van der Waalsové interakci.

Iontova vazba: typickym piikladem jsou soli jako NaCl, LiF. Krystal vznikd pravidelnym stfiddnim
kladnych kationtt a zapornych aniontti, které se elektrostaticky pritahuji.

Kovalentni vazba: typickym prikladem jsou krystaly prvka ze IV. skupiny prvkua periodické tabulky
jako C (v krystalu diamantu), Si, Ge. Tyto prvky maji ¢tyfi valenéni elektrony, které vytvareji kovalentni
vazby maximalné se ¢tyfmi sousednimi atomy. Tyto vazby jsou usporddany geometricky do tetraedru.
Kovova vazba: vétsina prvki periodické tabulky vytvaii kovové krystaly — alkalické kovy (Na), kovy
alkalickych zemin (Ca), pfechodové kovy (Fe, Pt, Cu, Au) a kovy pod diagonalou (Al, Pb). Krystal je
tvoren modifikaci elektronové struktury, kdy se z atomarnich hladin tvori vodivostni pasy. Rozdéleni kovi
do skupin je znézornéno na obr. 4.1.
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’ polokovy ‘ ‘ nekovy ‘ ‘ halogenidy ‘ ‘ vzacné plyny ‘

Obr. 4.1: Rozdéleni kovt a nekovi do skupin je znazornéno barvou poli jednotlivych prvki v periodické
tabulce. Dole je uvedena barevna legenda.

4.2 Krystaly inertnich plyni

Jako priklad si muzeme vzit napt. argon, viz (PO. 4.1: Periodickad tabulka). Z tabulky miizeme
vycist, ze argon krystalizuje ve struktufe s nejtésnéjsim usporadanim FCC s teplotou tani 84 K. Kohezni
energie krystalu na jeden atom argonu je 0.08 eV, naproti tomu ionizac¢ni energie, nutnd pro odtrzeni
jednoho elektronu, je 15.76 eV. Elektronové slupky jsou zcela zaplnény a rozloZeni naboje elektronu
volného atomu je zcela kulové symetrické. Pti vytvareni krystalu se rozlozeni elektront pfili§ nezmeéni a
atomy si sednou do nejtésnéjsiho usporadani kouli. Velmi mala distorze rozlozeni naboje elektroni vede
k van der Waalsové interakei* neboli indukované dipdl-dipSlové interakci. Jeji vznik si popiSeme pomoci
nejjednodussiho modelu.

4.2.1 Pritazliva van der Waalsova interakce

fo— Xo—+] , .« . p
Obr. 4.2: Znadeni souradnic dvou vaza-

MWW - WWW-) njch oscildtort.

| R | X, 1

Uvazujme dva atomy ve vzdalenosti R s jednim elektronem na atom, zavedeme znaceni podle obr. 4.2.
ZapiSeme nejprve hamiltonidn dvou stejnych neinteragujicich oscildtort

p 1 5 5, D) L o9 o
Ho = om + 5w 71 + o + S - (4.1)

Nezavislé oscilatory maji vlastni frekvenci wg a m oznacuje hmotnost elektronu. Poruchou k tomuto ha-
miltonidnu je vzajemna coulombovskd interakce mezi dvéma nabitymi ¢asticemi vlevo a dvéma c¢asticemi
vpravo,

e? 1 1 1 1

H1:47T€0 §+R+$1—$2 _R—Fl‘l _R—JZQ

(4.2)

Pro malé vychylky x;,x2 ve srovnani se vzdalenosti R lze omezit rozvoj jmenovatelti pouze do tfetiho
radu:

1 E1 x+9:2 1 E1_}_:v_|_x2 (4.3)
R+xz R R?2 R¥ R-xz R R2 R '
S pouzitim téchto rozvoju ziskdme interakéni hamiltonian ve tvaru
e? 1 1 (x1—x2) (21— 22)2 1 1 x? 1 Ty T3
Hi = -+ = - ===+ =]-l=+==+=1], 4.4
I |RTRT T R T ® (R R2+R3> <R+R2+R3>} (44)

1Johannes Diderik van der Waals je nositelem Nobelovy ceny za fyziku z roku 1910.
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kde se vétsina roznasobenych ¢lenti odeéte, prvni nenulovy élen je fadu 1/R3. Interakéni hamiltonidn se
takto zjednodusi na

2e% 11T
H, 2 ——" 4.5
! 47T{:‘()]%‘3 ( )
Po dosazeni bude celkovy hamiltonian dvou oscilatort s interakci obsahovat kiizovy ¢len
2 2 2
_ _ P L 9 o D3 L 9 o 2e°mixo
H—HO‘FHl—%‘FimwOI1+%+§mwoz2—m. (46)

Soustavu dvou nezavislych harmonickych oscilatort lze ziskat zpét standardnim pfechodem k normalnim
soufadnicim xg, T4 a sdruZzenym hybnostem pg,pa. Pfechod se provede pomoci transformace

L= \%(ws +x4), T2= %(fs —ra),
P = %(PS +pa), p2= \%(PS —pa). (4.7)

V téchto normalnich soufadnicich ma hamiltonian tvar

2 2 2 2 2 2
g mwg e 9 D% mws e 9
Y= |ZS _ Z4 R . 4.8
[2m * ( 2 47r50R3) xs] * [2m * ( > " 47r50R3) xA] (48)
To odpovida dvéma linearnim harmonickym oscilatorim na posunuté frekvenci vlastnich kmiti:
2 1 e? 1 e? ?

2 € ~

= - i) - ] 4.9

w4 “o F ommeoR? 3 (2mw§7r50R3> 8 (2mw§7rsoR3> * (4.9)

Energie zédkladniho stavu je tedy snizena o posun energie nulovych kmitt

h h . - 2
AU = [Q(ws —I—wA)] - [Q(WO +W0)] = hwo [_8 (WWEORB)

Vysledny posun energie je zaporny, vzajemnou interakci obou dipdlid dojde ke snizeni energie zakladniho
stavu. Protoze AU je energie ziskand pfi vzniku vazby, je kohezni energie Fyo,n, x —AU. Navic se ndm
podarilo ukazat, ze tato pritazliva interakce je nepfimo imérné Sesté mocniné vzdalenosti dipdla R.

A
=75 (4.10)

4.2.2 Odpudiva interakce

Interakce mezi dvéma atomy snizuje energii zakladniho stavu (stavu nulovych kmiti) se zavislosti AU =
—A/R®. Pokud mé nastat rovnovédha na néjaké vzdalenosti, musi existovat odpudivéa interakce, ktera bude
ptisobit proti dalsimu pfiblizovani. Pti pfiblizovani dvou atomt se za¢nou postupné prekryvat rozlozeni
naboja. Diky Pauliho vylucovacimu principu nemohou dva elektrony obsazovat stejny kvantovy stav.

v s

Proto se elektron musi posunout do vyssiho excitovaného stavu, jak ukazuje obr. 4.3.

O @

R=4.4a, Obr. 4.3: Odpudiva interakce vznika
prekryvem elektronovych  vlnovych
funkci. Nahofe jsou dva dostatecné
vzdalené atomy bez interakce. Dole
© ® jsou atomy natolik blizko, Ze se jejich
prostorové rozlozeni elektronti prekryva
ve zluté zvyraznéné oblasti.

Teoreticky vypocet by byl komplikovany, nicméné experimentalni hodnoty lze dobie popsat em-
pirickym potencidlem AU = B/R!'2. Celkové lze zapsat odpudivou i pfitazlivou interakci do jednoho
potencialu, ktery se nazyva Lennard-Jonestiv potencial

U(R) = 4e [(;)12 - (2)6] , (4.11)
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kde £ a o jsou empirické parametry, které lze ziskat z méfeni na atomech inertnich plynd v plynném
skupenstvi. Typické hodnoty jsou uvedeny v tab. 4.1. Rovnovazna poloha R( se nalezne jako minimum
potencidlu. Derivace potencidlu ndm dava pisobici silu, takze rovnovaha je samoziejmé dand podmin-
kou, ze v rovnovazném bodé je vysledna sila nulova. Takto dostaneme teoretickou rovnovaznou vzdalenost
atomt R§" = V/20 = 1.1224620. Pro srovnani jsou v tab. 4.1 uvedeny i experimentalni hodnoty Rg*.

Tab. 4.1: Parametry Lennard-Jonesova potencidlu (4.11) inertnich plynt. Rovnovazné vzda-
lenosti Ry odpovidaji dvojci atomil. Hodnoty jsou extrapolovany k nulové teploté (0 K) a
nulovému tlaku. Data v této a nasledujicich tabulkich této kapitoly byla pfevzata z [2].

Prvek  ¢[10722J] o [A] RY (Al Rg[A]

He 14 2.56

Ne 50 2.74 3.08 3.13
Ar 167 3.40 3.82 3.76
Kr 225 3.65 4.10 4.01
Xe 320 3.98 4.47 4.35

4.2.3 Rovnovazné miizkové konstanty

Pokud zanedbame kinetickou energii, je kohezni energie krystalu inertniho plynu dana sou¢tem potencialu
(4.11) pfes vSechny pary atomi v krystalu. Pro N atomu je celkova energie

1 ' o \" ' o \° ' _12 (012 ' _6 [0\
Uiot = 5N 42 |3 ( ) -3 ( ) =2Ne | 3 g (E> - (R) . (412)
J J

— \pij It — \pi It

kde p;; je relativni vzdalenost atomu j od referencniho atomu ¢ v jednotkdch vzdalenosti nejblizsich
sousedi R. Sumaci pfes index 7 referen¢niho atomu ziskame celkovy pocet atomti N a numericky faktor
% eliminuje zapo¢itavani dvojic (¢, j) dvakrat. Mrizkové sumy Z; pi_j? jsou uréené pouze geometrii dané
mrizky, takze je lze napocitat jednou pro vzdy pro vSechny krystaly se shodnou krystalovou strukturou
najednou, viz tab. 4.2. Interakce v Lennard-Jonesové potencialu jsou pouze kratkodosahové a do miizkové
sumy nejvice prispivaji nejblizsi sousedi, kterych je v mfizkach s nejtésnéjsim usporddanim 12.

Tab. 4.2: Mrizkové sumy pro krystaly inertnich plynii.

Struktura Z; pi_j12 Z; pi_j6
FCC 12.131 88 14.453 92
HCP 12.132 29 14.454 89
BCC 9.114 18 12.253 3

Z podminky nulovosti derivace dUqt/dR = 0 ziskdme pro dvé nejtésnéjsi konfigurace (FCC a HCP)
prakticky stejnou rovnovaznou vzdalenost Ry = 1.09 0. Kohezni energie na jeden atom potom vychézi

Eyon = *Umt(Ro)/N = 8.6¢. (4.13)

Tvar odpovidajiciho potencidlu je zakreslen v obr. 4.4a).

4.3 Tontové krystaly soli

Krystaly soli jsou slozeny z kladnych kationti a zadpornych aniontt, které se v mfizce st¥idaji tak, aby
nejblizsi sousedi jednoho iontu byly ionty opacné nabité. Za stabilitu krystalu je zodpovédna elektrosta-
tickd coulombouvskd interakce. Typické piiklady krystalt soli (NaCl, CsCl, GaAs a ZnS) byly popsény
v (PO. 1.9: Krystaly soli). Budeme pfedpokladat nejjednodussi soli, kde se stfidaji pouze dva ionty,
kationt s nédbojem (+@Q) a aniont s ndbojem (—@Q). Hodnota @ je celoéiselny nasobek elementarniho
naboje dany oxidac¢nim ¢islem iontt v soli. Pro NaCl je Q = e.
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Obr. 4.4: Zavislost energie na meziatomdarni vzdélenosti v krystalu a) inertniho plynu b) soli KCL

Kohezni energii krystalu NaCl lze odvodit z energetické bilance pro jednu molekulu nasledovné:

Na + 5.14 eV = Nat + e~
e” + Cl = Cl~ + 3.61 eV
Nat + CI~ = NatCl™ +79eV

Celkové dostaneme kohezni energii na jednu molekulu, Eyon, = (7.9 + 3.6 — 5.1) eV = 6.4 V.

4.3.1 Pritazliva elektrostaticka neboli Madelungova energie

Coulombovska interakce dosahuje dale nez jen k nejblizsim sousediim a navic se st¥idaji pfitazlivé a od-
pudivé sily. Interakce i-tého atomu s okolnimi atomy lze zapsat jako U; = Z; U;;. ProtoZe pro atomy soli
nemame empirické parametry jako u vzacnych plynt, budeme predpokladat odpudivou interakci v expo-
nencialnim tvaru Ae~"/?, kde silu interakce A a dosah p bereme jako konstanty, uréené z pozorovanjch
hodnot mfizkovych konstant a stlacitelnosti. Pfispévek energie od jednoho atomu ma tvar

4meg R

1 Q7 ,
Tree DT (ostatni)

Uij = e "/P 4 (4.14)

1 Q* {/\eR/f’ ~ L9 (nejblizsisousedé)

471'80 Tij

Soucet U; nezavisi na tom, zda je referenéni atom aniont nebo kationt. Cely krystal obsahuje N
molekul nebo 2N iontl, protoze ale nechceme pocitat pfispévky od part atomt dvakrat, je celkova

energie

1 2
Utot = ]\/v(]Z =N (ZA e_R/p — 4:7.(.5()0[16%2> , (415)

kde z je pocet nejblizsich sousedu kazdého atomu a « je Madelungova konstanta definovana vztahem

/!

(£)

a= —_—. (4.16)
Z Dij

J

Protoze znaménko elektrostatické interakce se u aniontt a kationtu stfidé, je tfeba toto zohlednit pfi

vypoctu sumy. Diky tomu, ze se vypocet Madelungovy konstanty provadi v relativnich soufadnicich, je

jeji velikost dana opét pouze geometrii usporadani krystalu a nikoliv velikosti mfizkové konstanty. Pro

typické soli je vysledek uveden v tab. 4.3.
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Tab. 4.3: Madelungova konstanta « typickych kubickych soli.

Sul Struktura z @
NaCl chlorid sodny 6 1.747 565
CsCl chlorid cesny 8 1.762 675
GaAs kubicky sfalerit 4 1.638 1

4.3.2 Podminka rovnovahy soli

V rovnovaze musi platit podminka minima celkové energie. Toto minimum ziskdme z nulovosti derivace
dUiot /dR = 0. Takto ziskdme vztah pro rovnovéznou vzdalenost nejblizsich sousedt

2
R2 e Ro/r — ﬂ. 4.17
0¢ degz ( )

Celkovou energii krystalu slozeného z 2N iontid v rovnovaze dostaneme dosazenim Ry do (4.15)

Utot=N<erRo/ﬂ—L“—Qz)=N< p aQt 1 O‘Qz),

4dmey Ro 4ey RZ " 4mey Ry
NaQ@? )
Upor = — 1—2). 418
fot 47T80R0 < RO ( )

Pomér dosahu odpudivé interakce a délky vazby p/Ry ~ 0.1. Hodnota zavorky je blizkd jedné a velikost
celkové energie, ktera je oznacovana jako Madelungova energie, je prakticky rovna konstanté pred zavorkou
ve vyrazu (4.18). Tvar odpovidajiciho potencidlu je pro sl KCl zakreslen v obr. 4.4 b).

S 0.00 I ]
v Ge 0.00 I I
V-1V SiC 0.18 I '
InP 0.42 I ]
InAs 0.36 I ]
Hi-v InSb 0.32 . )
GaAs 0.31 I ]
MgO 0.84 [ |
MgS 0.79 e E—
MgSe 0.79 e E—
1-VI Cds 0.69 s
CdTe 0.67 s E—|
Zn0O 0.62 e ———— ]
ZnS 0.62 e ]
RbF 0.96 |
NaCl 0.94 [
LiF 0.92 |
-Vl AgCl 0.86 (S —)
AgBr 0.85 [ —
Adgl 0.77 [E —

Obr. 4.5: Podil iontové a kovalentni vazby u typickych krystali. Krystaly jsou rozdélené do skupin podle
sloupcii periodické tabulky obsazenych prvki. Cislo ve tietim sloupci predstavuje zastoupeni iontového
charakteru ve vazbé u dané soli, cerveny vodorovny prouzek ukazuje tuto hodnotu na skale od nuly do
jedné. Typicky kovalentni krystal jako kifemik ma hodnotu iontovosti nula. Data pfevzata z [2].
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4.4 Kovalentni krystaly

Typickym piikladem kovalentniho krystalu je tfeba kfemik nebo uhlik ve formé diamantu. Tyto prvky
vytvareji krystal vazbou valencnich elektrond mezi sousednimi atomy. Tyto atomy maji 4 valen¢ni elek-
trony a vytvareji tedy tetraedrické smérové vazby se ¢tyfmi nejblizsimi sousedy. Sila kovalentni vazby
v diamantu je 7.3 €V, coz je srovnatelné se silou iontovych vazeb soli. Dva elektrony, které se podileji
na vazbé, jsou prevazné lokalizovany v oblasti mezi atomy, mezi kterymi vytvareji vazbu. Spiny obou
elektrond jsou orientovany antiparalelné.

Vyznam kovalentni vazby je znac¢ny, uhlikové vazby jsou zakladnim prvkem organické chemie a bi-
ologie. Na kiemiku zase stoji znacnéa ¢ast mineralogie a majoritni ¢ast polovodicovych technologii. Nej-
jednodussi model kovalentni vazby mizeme studovat u molekuly vodiku Hy. Diky Pauliho vylucovacimu
principu se modifikuje rozlozeni naboje rtizné pro souhlasné a opacné orientace spinti. Tato spinové zavisla
coulombovské energie se oznacuje jako vymeénnd interakce.

Pokud se vratime jesté jednou k diamantu, uhlik v zdkladnim stavu mé elektronovou strukturu
15225%2p2. Aby mohl vytvoiit sp® tetraedrické vazby musi prejit do excitovaného stavu 1s22s'2p3, na coz
potfebuje 4 eV. Po vytvoreni vazby ale ziskd mnohem vice energie, coz zptisobi vznik stabilniho krystalu
s kohezni energii 7.3 eV.

Je tfeba podotknout, zZe ¢isté kovalentni vazba je pouze u krystalt ze IV. skupiny, ale i u krystala
soli se na kohezni energii podili ¢astec¢né. Podil iontové vazby roste s tim, jak se dva odpovidajici prvky
soli od sebe vzdaluji v periodické tabulce, viz obr. 4.5.

4.5 Kovové krystaly

Kovy jsou charakteristické vysokou vodivosti. Velké mnozstvi elektronti se miize pohybovat volné v celém
krystalu kovu, typicky jeden nebo dva elektrony na atom. Tyto elektrony oznacujeme jako vodivostni
elektrony. Krystal alkalickych kovt je stabilni diky sniZzeni energie elektrond v péasech v1ic¢i energii na
hladin€ v izolovaném atomu. U pfechodovych kovl k vazebné energii pfispivaji i kovalentni vazby, které
se vytvareji mezi vnitinimi stavy d-slupek atomt. Podrobny vyklad bude néasledovat v samostatné kapitole
kovy (kap. 7).

K vytvafeni vodivostnich past je tfeba dostatecny piekryv elektronovych stavi sousednich atomii,
proto kovové krystaly preferuji tésné usporadani FCC, HCP, BCC, jak to ukazuje (PO. 4.1: Periodicka
tabulka).

4.6 Krystaly s vodikovou vazbou

Atom vodiku ma pouze jeden elektron a logicky by mél tvorit pouze jedinou vazbu. Je ale znamo, Ze vodik
mize vytvatet vodikove mistky mezi dvéma atomy s vazebnou energii ~ 0.1 eV. V této vazbé je vodik
ionizovan, elektron se presouva na néktery z propojovanych atomt a vazbu tvori kladné nabity proton
mezi dvéma atomy spojenymi mustkem. Vodikové mustky jsou dulezité pro popis neobvyklych fyzikalnich
vlastnosti, které jsou typické pro vodu. Jsou dulezité také pro formovani biologickych sloucenin jako je
DNA.
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4.7 Priklady

Pr. 4.1: Madelungova konstanta v 1D: Dokazte, ze pro 1D fetizek soli, kde se stifidaji ionty s
nabojem +e a —e, vyjde Madelungova konstanta o = 21n(2) ~ 1.386 294.

Napovéda: Z definice dostaneme pro 1D fetizek

1 1 1
—21—4-_Z4...].
@ R

Porovnejte s Taylorovym rozvojem funkce logaritmus v okoli hodnoty 1,

2 3 2t

In(1 - T
n(l+z)=ux s t3 -7+

Pr. 4.2: Kohezni energie neonu se strukturou FCC a BCC:

Porovnejte rovnovazné mrizkové konstanty a kohezni energie neonu ve dvou konfiguracich FCC a BCC.
Pouzijte zépis Lennard-Jonesova potencidlu podle (4.12) a miizkové sumy podle tab. 4.2.

Kittel, str. 115, pr. 2

Napovéda: Pozor, rovnovazné vzdalenost Ry se pro ob€ varianty miizky lisi.

Reseni: Podil kohezni energie vyjde 0.9566.

Pi. 4.3: Krystalicky molekularni vodik:

7 méfeni plynného vodiku Hy jsou znamy parametry potencidlu (4.12): ¢ = 5 x 10722 J, 0 = 2.96 A
Povazujte krystalicky vodik za FCC strukturu nejtésnéjsiho usporadani kouli molekul Hs. Najdéte kohezni
energii v jednotkach kJ /mol. Srovnanim s mnohem mensi experimentalni hodnotou 0.751 kJ/mol mtZeme
usoudit, ze kvantové opravy musi byt velmi dilezité. Kittel, str. 115, pr. 3

Népovéda: Pro FCC strukturu mtzeme pouzit obecny vysledek odvozeny v rovnici (4.13).

Reseni: e = 3.12 meV, Fi,, = 2.59 kJ/mol.

Pi. 4.4: Kohezni energie dvou konfiguraci soli KCI:

Parametry potencialu (4.15) pro stil KCI jsou ve struktuie NaCl: z\A = 2.05 x 10~'° J, Ry = 3.147 A,
p = 0.326 A. S vyuzitim Madelungovy konstanty podle tab. 4.3 spoéitejte kohezni energii KCI: 1) v kubické
struktufe sfaleritu, 2) v kubické struktute soli NaCl. Vysledné energie komentujte. Kterou krystalovou
strukturu bude sul KCl pii krystalizaci preferovat?

Kittel, str. 116, pi. 6

Néapovéda: Pro obé struktury se lisi parametry z a «.

Reseni: 1) Pro sfaleritovou strukturu vyjde kohezni energie 7.002 eV (Ro = 3.003 A), 2) pro usporadani
ve struktuie NaCl vyjde kohezni energie 7.174 eV.

Pr. 4.5: Kvantové opravy pro krystaly inertnich plynt:

Pouzijte parametry inertnich plynt uvedené v tab. 4.1 a spocitejte teoretickou hodnotu kohezni energie
pro neon, argon a krypton. Porovnejte vysledky s experimentalnimi hodnotami kohezni energie pro tyto
krystaly inertnich plynt ((PO. 4.1: Periodicka tabulka)).

Népovéda: Staéi dosadit do (4.13).

Pi. 4.6: Urcete kohezni energii kovového sodiku jako krystalu soli Na®™Na:

Uvazujte krystal sodiku jako iontovy krystal soli ve struktufe NaCl. Pouzijte parametry z vypoctu uve-
dené v sekci 4.3. Elektronova afinita, t.j. energie potfebna na vytvoreni iontu Na™, je 0.78 eV. Mezia-
tomarni vzdalenosti (vzdélenost nejblizsich sousedit) spocitejte z krystalové struktury kovového sodiku
((PO. 1.1: Periodicka tabulka)). Vysledek porovnejte s experimentalni hodnotou pro kovovy krystal
sodiku: 1.113 eV. Kittel, str. 115, pi. 4

Reseni: Eyon = £(6.88+0.78 — 5.14) eV = 1.26 eV.
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Kapitola 5

Fonony I - kmity mrizky
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5.1 Popis dynamiky miizky v harmonické aproximaci

N>

Obr. 5.1: Rovnovézné polohy atomt v miizce soli CsCl. Cerveny atom chléru mé index k = 1 a modry
atom cesia ma index k = 2.

Pro popis kmiti mfizky musime zavést vhodné znaceni. Jednotlivé primitivni bunky krystalu budeme
¢islovat indexem [. Jednotlivé atomy v burice budeme znacit indexem k. Protoze rozmisténi atomt je stejné
v kazdé primitivni bunce, sta¢i nam pro zapis hmotnosti vSech atomt v krystalu M} pouze jeden index.
Pro popis poloh atomérnich jader v mfizce zavedeme rovnovazné polohy jader, které budeme oznacovat
vektorem s indexem nula ﬁo, viz obr 5.1. Tyto polohy jsme probirali v kapitole 1. Aktualni pozici atomu
pak muzeme psat pomoci vychylky z rovnovazné pozice jako

E:E0+ﬁ,

kde vektor i oznacCuje vychylku z rovnovazné polohy. Pro ionty muZeme napsat celkovy hamiltonian jako
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soucet kinetické energie a potenciadlu pro ionty V. Tento potencidl miizeme rozepsat jako
V= VO(RO,kl, .. ) + V’(ﬂ:kl, .. )

Prvni ¢len odpovida energii miizky s atomy v rovnovaznych polohach a je konstantni, pro feseni dynamiky
miizky ho nemusime uvazovat. Tim si pouze zvolime nulovou hodnotu na energetické Skale. Protoze
vektory Ry popisuji rovnovazné polohy atomt, nemuZe zaviset V' na vychylkdch z rovnovahy lineirné.
Pro minimum potencidlu musi byt prvni derivace podle vychylek nulova. Prvni netrividlni pfiblizeni je
tedy kvadraticky rozvoj ve vychylkach ;. K celkové energii pfispiva jeden konkrétni iont & v cele [ svou
kinetickou energii a kvadratickym neboli harmonickym potencidlem nésledovné

1 di \* 1
Hl(ﬁkl) = *Mk (gfl) + 5 Zﬁkl@(kl, k},l/)ﬁk/l/. (51)
k'l

Prvni ¢len je kinetickéd energie, kde M} zna¢i hmotnost atomu. Druhy ¢len urcuje zménu energie zptiso-
benou vychylkou iontu s indexy (kl) zatimco ostatni atomy jsou ponechény na misté. Silové konstanty
jsou dané derivaci potencidlu jader!

R
SELE)= ——.
(kt, K1) Ol Oty

Z definice piimo vyplyvaji nékteré vlastnosti silovych konstant ®(ki, k'l’):

p—

. jsou redlné: ®(kl, k'l") = ®*(ki, k'l');

2. jsou symetrické: ®(kl, k'l") = O(K'U', kl);

3. z&avisi na indexech jen pres vzdalenost primitivnich bunék: |R} — Ry l;

4. celkova suma silovych konstant je nulova: ) _,,, ®(ki, k'l") = 0 (odpovida posunu celého krystalu);

5. silu pisobici na jeden atom je mozné zapsat pomoci vychylek ostatnich atom:

. dv
Fu= o = =S Ok, K )i
kl dﬁkl ; ( ; )ukl

Silové konstanty zahrnuji dvé interakce: a) pfimou coulombovskou interakci jader, ktera je odpudivé;
b) nepfimou interakci zprostiedkovanou elektrony. Pohyb iontu vede ke zméné rozlozeni hustoty elektront,
coz dava vzniknout sile ptisobici na okolni ionty.

Reseni dynamiky mifzky popsané hamiltonidnem (5.1) se d4 provést klasicky, kdy se fesi klasické
pohybové rovnice. Pti klasickém popisu je celkova energie souctem energie jednotlivych atomii konajicich
malé oscilace kolem rovnovazné polohy. Tento problém mnoha vazanych oscilatora lze zjednodusit pre-
chodem do normaélnich soufadnic. Norméalni souradnice maji tu vlastnost, ze jednotlivé oscilatory jsou
v soustavé téchto souradnic nezavislé, tyto kmity se oznacuji jako normalni mody. V druhém kroku se
energie téchto normalnich médt kvantuji. Energie systému popsaného pomoci normélnich méda se mize
zvétSovat pouze prechodem nékterého normalniho harmonického oscildtoru na vyssi energetickou hladinu.
Tyto hladiny jsou, jak zndmo, ekvidistantni [11]. Pfechod na vy$§i energetickou hladinu je tedy dopro-
vazen zvySenim energie o jedno kvantum mfizkovych vibraci. Toto kvantum energie se nazyva fonon.

Z transla¢ni symetrie silovych konstant ®(kl, k'l’) vyplyva, Ze vlastni funkce feseného problému vy-
chylek iontti jsou rovinné vlny. Vychylku k-tého iontu v [-té primitivni bunce lze vztahnout k vychylce
odpovidajiciho iontu v primitivni butice v po¢atku soufadného systému (I = 0) podle

U (§,w) = o e TR, (5.2)
kde ¢ je vlnovy vektor a w je frekvence §ifici se vlny. Kvazic¢éstici fonon charakterizujeme pomoci stejnych
parametru ¢ a w. Diky diskrétnosti rozlozeni iontu v latce staci pro popis vSech vibra¢nich méda vybrat
vlnovy vektor ¢ pouze z 1.BZ. Substituci (5.2) do (5.1) dostaneme pohybovou rovnici pro jeden vybrany

LObecné jsou silové konstanty ®(kl, k'l’) tenzor druhého Fadu.
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atom. ReSeni miizeme provést také tak, ze si pifmo zapiSeme Newtonovu pohybovou rovnici pro iont k
v nulté primitivn{ butice: (hmotnost) x (zrychleni)=(sila)

Mo = > (KO, K'T') e TR0 . (5.3)
k'l

Za zrychleni jsme dosadili druhou derivaci uy; podle casu.

Nyni provedeme 3D Fourierovu transformaci silovych konstant s modifikaci na hmotnost podle
Diw () = > ®(k0, k') e TR0 /\/ My M, .
l/

Silové konstanty jsou funkci polohovych vektord vSech atomi miizky, naproti tomu dynamickd matice
Dy (@) je funkei vlnového vektoru rovinné deformaéni viny, kterd se $ifi v krystalu. Timto pfechodem
k frekvencim zjednodusime rovnici (5.3) na

3s

> [Die (§) — w?Sppr]iino = 0, (5.4)

k'=1

Hledéani vlastnich fononovych médu v krystalu timto zptsobem vede na feseni soustavy linearnich
rovnic s nulovou pravou stranou. Vlastni ¢islo této soustavy je w. Nenulové feSeni této soustavy rovnic
je podminéno nulovosti determinantu této soustavy. Podminku pro vlastni hodnotu w tedy prepiSeme
nésledovné

det ’Dkk’ (q_) — w25kk,

= 0. (5.5)

Pripomenme si, Ze index k ¢isluje atomy v primitivni bunce. Pokud primitivni bunka krystalu obsahuje
s atomu, potom ma tato soustava pro 3D krystal 3s feSeni.

Pfi kvantovém popisu dostaneme energii kvantového vibra¢niho médu w rovnou (n + %)hw, kde
kvantové ¢islo n oznacuje obsazeni vibra¢niho médu. Analogii s feSenim harmonického oscilatoru, coz je
typicky priklad ulohy ze zékladt kvantové mechaniky, miazeme pro prechody mezi energetickymi stavy
obsazeni médu pouzit kreacni a anihilacni operdtory a zavést fonony. Kvantové ¢islo n pak oznacuje pocet
fonont s frekvenci w.

5.2 Kmity mrizky stejnych atomi

Uvazujme pruzné kmity miizky s jednim atomem v primitivni buiice. Pro popis vlnéni v krystalu po-
tfebujeme znét jeho vlnovy vektor ¢ a smér vychylek «. Jsou-li tyto vektory paralelni (resp. kolmé),
hovoiime o podélném (resp. pricném) vinéni. Nékdy se uzivaji terminy podélnd (longitudalni), resp.
pfiéné (transverzalni) polarizace vlnéni. Z obrazku 2D vInéni v Givodu této kapitoly je dobfe patrné, ze
v piipadé podélného vinéni dochézi k lokalnimu zhustovani a zfedovani atomt, kdezto u pfi¢ného vinéni
se vzajemné posouvaji atomarni roviny nad sebou, ale hustota se neméni. Pokud se vlnéni §ifi podél osy
symetrie napt. [100], [110], [111], d4 se FeSeni i pro 3D krystal hledat jako jednorozmérna tloha ve sméru
Sifeni.

M
e o o 6 e o o o o o e Obr. 5.2: 1D fetizek stejnych atom.
-a- s2 sl S stl st2

Elastické pnuti v materiadlu se popisuje pomoci Hookova zékona, ktery vyjadiuje vztah mezi piisobici
silou a deformaci pfedmétu. Protoze deformace je obecné tenzorova veli¢ina, obecné se tento zékon za-
pisuje v tenzorovém tvaru (viz dodatek A). Nejjednodussim zptsobem se d4 Hooktiv zakon zapsat jako:
(napéti)=(tuhost) x (deformace). To umoziuje zapsat silu ptsobici na atom s v obr. 5.2 pomoci zmény
vzdalenosti vicéi vSem ostatnim atomdm

/
Fy = Cplusy — us), (5.6)
p
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kde C), jsou silové konstanty vztazené na jeden atom. Zname-li silu plisobici na atom s, miizeme fesit
jeho pohybovou rovnici ve tvaru: (hmotnost) x (zrychleni)=(sila),

d?u,

M
de?

> Coltsyy — ). (5.7)

Sumu mtZzeme zjednodusit tim, Ze se¢teme symetrické ¢leny s indexem +p . ReSeni budeme piedpokladat

ve tvaru rovinné vlny ve tvaru
Ugyp = ue'(3FPII8 g1t (5.8)

kde ¢ oznacuje vlnovy vektor (v 1D by se mél spravné nazyvat vinové ¢islo).

Obecné feseni, které ziskame, se nazyva disperzni zdkon, t.j. zavislost frekvence na vlnovém vektoru:

w? = % ZC},(I — cos(pga)). (5.9)

p>0

Tento zakon se zjednodusi v pfiblizeni interakce pouze nejblizsich sousedi, (Cp, =0 prop > 1, Cy = «)

w? = 2M&(l — cos(qa)) = w= \/ﬁ ‘Sin (%)‘ . (5.10)

Pro popis vInéni zavadime tii rizné rychlosti:

Limita dlouhych vin (rychlost zvuku v latce)

w 0}
= lim — =a4/—. 5.11
Yo q—l>I(r)l+ q “ M ( )

Vsechny vySe zavedené rychlosti spolu s disperznim zakonem (5.10) jsou graficky zndzornény v
obr. 5.3. Je dilezité si uvédomit, ze rovinné vlny (5.8) popisuji vlnéni atomi, které jsou v prostoru
diskrétné rozmisténé. Proto maji smysl pouze vinové vektory fononovych médu z 1.BZ. Vyssi prostoro-
vou frekvenci nemohou diskrétni atomy prenaset.

(PO. 5.1: Podélné 1D fononové médy),
(PO. 5.2: Pfic¢né 1D fononové mdédy).

a 10F ' ' ' ] b) 10— ]
— 08 | . 08 | .
3 5
’E\ et}
06 . 06 | b
3 2
Nt —
N o4t p S 04t |
3 >
02} . 02 Vi .
Vg
0.0 ' ' . 00 .
10 -05 00 05 10 00 05 10
q[=/a] q[n/a]

Obr. 5.3: a) Disperzni zakon (5.10) pro fetizek identickych atomil, b) fazova a grupova rychlost fononovych
modu s danym vlnovym vektorem q.
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5.3 Dvouatomarni retizek

v

Nyni budeme uvazovat slozitéjsi pripad linearniho fetizku. Miuze byt napt. slozen z vice druhi atomi,
které se pravidelné stfidaji, nebo se mohou lisit silové konstanty jednotlivych vazeb. Vybereme si jako
priklad situaci, kdy se v 1D fetizku stiidaji dva atomy v usporadani podle obr. 5.4. Jako v pfedeslé sekci
bude se i zde hledat feseni v pfiblizeni interakce omezené pouze na nejblizsi sousedy. Hmotnosti atomi
ozna¢ime mnemotechnicky podle velikosti, M > m. Rovnovaznou vzdalenost atomii oznacime a.

M m on-1 on+1 Obr. 5.4: 1D fetizek ze dvou atom,
o —@ o @ o0 @ o0 @ 0@~ _ mrizkova konstanta je zde 2a.
e @-mte A 2n-2 2n 2n+2 X

V tomto pfipadé musime fesit dvé pohybové rovnice, pro kazdy druh atomi jednu. P zapocitani

pouze interakce nejblizsich sousedt se silovou konstantou C; = a dostaneme pro atomy 2n a 2n + 1 tyto
rovnice

Miig, = a(uzn—1 + tgnt1 — 2u24),

mﬁ2n+1 = Oé(UQn + U2n+2 — 2U2n+1). (512)
Tecka nad funkci znac¢i éasovou derivaci, i = d?u/dt2.

Reseni budeme hledat ve formé rovinnych vln, kde ale mohou mit rtizné atomy réizné amplitudy
vychylky, takze
Uy = Ae~wt ez2nqa, Ugn i1 = Be Wt ez(2n+1)qa. (513)

Dosazenim do (5.12) ziskdme sadu dvou algebraickych rovnic

B (2accos(qa)) + A(Mw? — 2a) = 0,
B(mw? — 2a) + A (2acos(qa)) = 0. (5.14)

Soustava homogennich linedrnich rovnic mé netrividlni (nenulové) FeSeni pouze tehdy, kdyZ jsou obé
rovnice zavislé. Coz je pravé tehdy, pokud je determinant soustavy dvou rovnic roven nule. Tato podminka
nam dé dvé feseni pro w?. Reseni se zadpornym znaménkem je ale pouze vlna s opaénym smérem §ifeni.
Méme tedy dvé disperzni zévislosti: akustickou (—) a optickou (+), které jsou dané vyrazem

) =ad ()2 (o 1) - tete | 15

Obecné muzeme fici, Ze pokud primitivni buiika krystalu obsahuje s atomu a krystal je slozen z N
elementarnich bunek, potom mé tato soustava 3NN's stupnt volnosti. Vlnovy vektor fononovych médu ¢
nabyva v 1.BZ N riiznych hodnot. Fononové spektrum obsahuje 3 akustické vétve (jedna podélnd LA a
dvé pfiéné TA) a (3s — 3) optické vétve (z toho tfetina podélnych LO a dvé tfetiny piiénych TO). Tyto
zéavislosti ukazuje obr. 5.5.

(PO. 5.3: Obrazek rtznjych fononovjych médi dvouatomdrniho Fetizku).

a) T T T b) 10 T T T T
TO
8 r LO T
N
I 6} il
ﬁ LA
=
o4 b 4
A
2 - TA 2l
0 il il i 1
-0.5 0.0 05 0.0 0.2 04 0.6 0.8 1.0
q [n/a] q/ Omax

Obr. 5.5: a) Disperzni zékony (5.15) pro Fetizek stiidajicich se atomt Ga a As, teckované je zobrazen fit
parabolou. b) Fononové disperzni zavislosti ve sméru [111] pro Ge pii teploté 80 K, pfevzato z [2].
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5.4 Experimentalni urc¢ovani silovych konstant kovua

V kovech mohou byt sily mezi ionty dalekodosahové, byly pozorovany jevy, kde se ukazalo ptisobeni az
na vzdalenost dvacet krystalovych rovin. Mame-li k dispozici méfenou disperzni zavislost, mizeme ziskat
silové konstanty z teoretické zavislosti (5.9) Fourierovou transformaci. Obé strany rovnice vynéasobime
cos(rqa), kde r je celé ¢islo, a preintegrujeme pies oblast 1.BZ

w/a w/a
2wC,
M / w(? cos(rga)dq = 22 Cp / [1 — cos(pga)] cos(rga)dg = — pt
—m/a p>0 —r/a

Integral na pravé strané je nenulovy pouze pro r = p, kdy se rovnd —m/a. Takto dostaneme pro silovou
konstantu p—té atomové roviny integralni vztah pomoci Fourierovy kosinové transformace funkce w?

T/a
Ma
Cp:—% / wg cos(pga)dq.
—m/a

Je tfeba zminit, Ze tento vztah plati pouze pro mrizky s jednim atomem v primitivni burce.

5.5 Kvantovani kmitt mrizky

Spravny popis elektromagnetického zareni absolutné ¢erného télesa byl mozny az po zavedeni kvantovani
elektromagnetického pole. Tato kvanta tepelné excitovaného zaieni zavedl M. Planck? a dnes je nazjvame
foton. Kvantovani energie elastickych tepelnych kmita miizky krystalu vede k popisu zaloZeném na tepelné
excitovanych kvazicasticich nazyvanych fonony. Nazev této kvazicastice byl odvozen od nazvu fotonu, ale
je tfeba si uvédomit podstatnou odlisnost. Fonon je pouze kvazicastice, popisuje excitace systému atomu
v krystalové mtizce, mimo krystalovou miizku se proto nemuize vyskytovat.

Energie fononového modu s frekvenci w je E = (n + %)hw, kde %ﬁw udava energii nulovych kmitd a

obsazeni modu n je p¥i dané teploté dané Boseho-Einsteinovym rozdélenim (viz dodatek B)

1
Ng = —V———F—F -
97 Ghwg/ksT _ |

V harmonické aproximaci (analogie s harmonickym oscildtorem) nese méd polovinu energie v kinetické a
polovinu v potencialn{ energii. Hustota kinetické energie je 3 pi?®. Casova stfedni hodnota vyjde 3piw?ud.
Pro cely krystal o objemu V tedy ziskdme porovnanim vztahd pro vypocet klasické a kvantové energie

nasledujici vztah

1 1 1
Zprng =3 <n + 2) hw.

Stiredni kvadratickou vychylku kmitd atomti v m¥izce mizeme tedy ziskdme jako
2 2(n + %)h
0 pVw

Je to zajimavy vztah, ktery ndm déva moznost spocitat klasickou veli¢inu (vychylku) z fyzikalnich kon-
stant a veli¢in popisujicich kvantovy objekt (kvantové ¢islo obsazeni fononového médu n).

5.6 Kvazihybnost fononi, nepruzny rozptyl neutronu

Fonony popisuji vychylky atomi z rovnovazné polohy v miizce. Celkova hybnost je nulova, t.j. krystal se
jako celek nikam nepohybuje. AvSak v rtznych rozptylovych experimentech se kvazi¢astice fonon chova
tak, jako by nesla hybnost hq.

Budeme uvazovat pfipad nepruzného rozptylu neutronu na krystalové miizce podle obr. 5.6. Pri
tomto rozptylu se pfedava c¢ast kinetické energie neutronu miizce nebo naopak. Zékony zachovani pri

2Max Planck ziskal za objev kvantovani elektromagnetického pole Nobelovu cenu za fyziku v roce 1918.
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nepruzném rozptylu neutronu na fononech v krystalu mizeme zapsat tak, ze (+) znamend zanik fononu,
(=) znamend vznik fononu.

Qy

Obr. 5.6: Schématické znédzornéni nepruzného neutronového
rozptylu ve &tvercové miizce. Zluty &tverec znadi 1.BZ.

= — Modfe jsou znazornény vlnové vektory neutronu, zelené je
/ . s zakreslen vektor reciproké mitzky G = — (2 /a, 0) a Cervensd
- fonon spliujici souc¢asné zakon zachovani energie a vlnového
vektoru.

x4

~

Zakon zachovani energie:
h2k/2 h2k2
oM,  2M,

=+ hw,

kde M,, oznac¢uje hmotnost neutronu, M, = 1.675 x 10727 kg. Neutron ma na podéatku vlnovy vektor k
a po nepruzném rozptylu je jeho vinovy vektor k'
Zakon zachovani hybnosti:

EF=k+G=+q,
kde bereme vztah pro hybnost neutronu pred rozptylem p'= hk a analogicky po rozptylu. Vektor reciproké
mrizky G se vybere pravé tak, aby vlnovy vektor ¢ fononu, ktery vstupuje do interakce, lezel v 1.BZ.

Experimentalni disperzni zdkon pro fonony v daném krystalu se ziskd méfenim zmény energie ne-
utronu jako funkce sméru Sifeni rozptyleného neutronu. Ve ¢tyficatych letech dvacatého stoleti rozvinuli
techniku neutronové difrakce E. Wollan a C. Shull®. Jako zdroj neutronfi pouzivali reaktor, viz obr. 5.7.

Obr. 5.7: Fotografie ukazuje Clifforda Shulla s neutronovym difraktometrem.
Ptevzato z webu OAK RIDGE ASSOCIATED UNIVERSITIES:
http://www.orau.org/ptp/museumdirectory.htm

3(Clifford Shull (1915 - 2001) ziskal za rozvoj techniky difrakce neutronti Nobelovu cenu za fyziku v roce 1994

. Ernest
Wollan (1902 - 1984) se této slavy nedozil.
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PO. 5.1: Ukazka podélnych méda vinéni pro vybrané vinové vektory q. Pro tento vlnovy vektor je
oznacen odpovidajici bod v zavislosti frekvence a v zavislostech rychlosti. VSechny zobrazené veli¢iny
jsou znormované: ¢ je v jednotkach [r/a] a 1.BZ odpovidd intervalu (—1,1). Rychlost v je v jednotkéch
[vo] a w je v [24/a/M].
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PO. 5.2: Ukéazka priénych méda vinéni pro vybrané vlnové vektory g. Pro tento vlnovy vektor je
oznacen odpovidajici bod v zavislosti frekvence a v zavislostech rychlosti. VSechny zobrazené veli¢iny
jsou znormované: ¢ je v jednotkéch [r/a] a 1.BZ odpovida intervalu (—1,1). Rychlost v je v jednotkéch
[vo] a w je v [24/a/M].
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PO. 5.3: Ukazka pficnych moédi vinéni dvouatomarniho fetizku pro vybrané vinové vektory gq.
Srovnanim s pfedchozim obrazkem je patrny vznik optického fononového médu, ktery je znacen modfe.
Akusticky méd je zelené. V pripadé optickych mdéda kmitaji lehké a tézké atomy proti sobé. VSechny
zobrazené veliCiny jsou opét znormované.
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5.7 Piiklady

Pr. 5.1: Podélné vinéni v tyéi: Odvodte vztah pro rychlost ifeni zvuku v kovové ty¢i. PouZijte vztah
pro rychlost zvuku vg = v/ E/p, kde E je Youngtiv modul pruznosti a p je hustota.

Néapovéda: PouZijte vztah pro definici Youngova modulu podle: E=(napéti)/(relativni prodlouzeni) a pro
hustotu: p = m/a>.

Pi. 5.2: Priéné kmity ¢étvercové mrizky:

Postupujte analogicky s feSenym 1D atoméarniho fetizku a odvodte vztahy pro pfiéné vinéni 2D ¢étvercové
miizky. Hmotnost kazdého atomu je M, silova konstanta mezi nejblizsimi atomy je C. Vychylka zvoleného
atomu v [—tém sloupci a m—tém Fadku je kolm4 na rovinu atomi a znadi se u; ,,,. Odvodte disperzni zdkon
ve sméru osy X, ve sméru diagonaly ¢tverce a dale odvodte limitu dlouhych vin. Kittel, str. 134, pr. 1

Néapovéda: Postupujte nasledovné: a) pohybovéa rovnice
Mul,m = C[(ul-i-l,m + Ul—1,m — 2ul,m) + <ul,m+1 + Ulm—1 — 2ul,m)];

b) pfedpokladané feseni

wgza 1maya —wt

Upm = U€ e e ,

b) disperzni zakon
2C
w? = 222 cos(gea) — cos(a,)).

Disperzni zakon je zobrazen v obr. 5.8.
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Obr. 5.8: Disperzni zdkon pri¢ného vlnéni pro ¢tvercovou miizku. Studovana zavislost je zobrazena v 1.BZ
a) pomoci plosného barevného topologického zobrazeni, b) pomoci 3D grafu.

Pi. 5.3: Energie atomarniho fetizku:
Uvazujte nejjednodussi atomérni fetizek feSeny v sekci 5.2 v pfiblizeni interakce pouze nejblizsich soused,
viz obr. 5.2 a disperzni zavislost (5.10). Kittel, str. 134, pr. 2 Po dosazeni harmonické vlny,

1sqa

e—w.nt7

Ug = UE

ukazte ze: a) Celkova energie viny je
1 o 1 9
FE = §M ;(US) -+ 50& ;(’U,s — Us+1) 5
kde index s probih4 pies vSechny atomy. b) Casova stiedni hodnota energie pripadajici na jeden atom je

1 1 1
(B1) = ZMwQu2 + Ea[l — cos(qa)|u® = §Mw2u2.
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Pf. 5.4: VInova rovnice ve spojitém prostredi:
Ukazte, ze v limité dlouhych vlnovych délek (A > a) je mozné pievést pohybovou rovnici
Miis = a(us41 — us) — a(us — ug—1)

na vlnovou I‘OVHiCi pro SpOjité prostfedi:

32
- 2 u
Us = Vg =%
s 0 0x?’

kde vy oznacuje rychlost zvuku. Kittel, str. 135, pt. 3

Pi. 5.5: Dvouatomarni retizek:

Pro dvouatomdrni fetizek byl odvozen disperzni zédkon ve tvaru (5.15). Namalujte tyto zavislosti wi(q)
a dopliite frekvence w v limitnich bodech BZ (¢min = 0 a ¢max = 7/2a). S vyuzitim (5.13) najdéte
pro optickou i akustickou vétev pomér amplitud vychylek A/B pro ¢ = gmin- UkaZte, Ze pro ¢ = gmax se
chovaji obé skupiny atomt jako nezavislé mtizky, t.j. jedna kmitéd a druha je v klidu. Kittel, str. 135, pt. 4

P¥. 5.6: Retizek molekuly Ho:

Uvazujte fetizek stejnych atomi, kde se ale stfidaji silové konstanty o = C' a § = 10C, viz obr. 5.9.
Klidova vzdalenost atomt a je vzdy stejna. Tato tloha simuluje krystal z dvouatoméarnich molekul.
Pro tento krystal odvodte a nacrtnéte disperzni zdkon a dopocitejte frekvence w v limitnich bodech
BZ (¢min = 0 a gmax = 7/2a). Ukazte, Ze pomér amplitud vychylek A/B pro ¢ = @min je roven +1.
Kittel, str. 135, pt. 6

M ¢ 1oc 2l 2ntl Obr. 5.9: 1D Fetizek molekul Hy.
—eofille—eolille —oiille —olllie —ollle—e~
e Qe A 2n-2 2n 2n+2 R
Resent: .
wi(g) = i {(oz +p6) £ \/(a +8)% — 408 sin2(qa)} . (5.16)

Pi. 5.7: Experimentalni fononové zavislosti:

A) Obrézek 5.5 b) fononové disperzni zévislosti pro germanium. Namalujte si v tomto grafu vodorovnou
¢aru odpovidaji frekvenci fonont s energii 10 meV.

B) Odhadnéte pocet fonont n pro jeden gram atomarniho vzorku s amplitudou vychylek uy = 0.1 A.
Pouzijte vztah odvozeny v sekci 5.5. Déle predpokladejte kmity pouze na frekvenci wgy odpovidajici
energii 10meV (Einsteintv model).

Reseni: A) v =2.418 THz, B) 7.2 x 10%L.

Pi. 5.8: Kmity atomu v kovu sodiku:*

Uvazujme nésledujici hruby model jednoduchého kovu (s jednim vodivostnim elektronem) jako je sodik
#¥Na. Bodové ionty o hmotnosti M a naboji e jsou ponofeny do homogenniho kontinua vodivostnich
elektroni. Pfedstavme si, Ze ionty jsou ve stabilni rovnovaze v miizkovych bodech. Je-li néktery atom vy-
chylen z rovnovahy o malou vzdalenost 1, je tladen zpét silou, kterd je vyvolana homogennim rozloZenim
elektrického naboje vodivostniho elektronu uvniti koule o poloméru praveé |i| a se stfedem v rovnovazné
poloze. Jinymi slovy, sila piisobici na iont je vyvoland elektronovou hustotou v kouli o poloméru rovném
vychylce iontu, viz obr. 5.10. Hustotu vodivostnich elektroni miizeme zapsat jako 3/47R3, ¢imz je defi-
novano R jako polomeér koule s pravé jednim elektronem. Kittel, str. 135, pt. 7

a) Odvodte vztah pro vlastni frekvenci oscilaci iontd,

_ 1 e?
YT\ dre, V MR

b) Kolik vychazi tato hodnota pro sodik?
¢) Pomoci vyse uvedeného odhadnéte fddové rychlost zvuku v kovu.
Typick4 hodnota pro kovy je 2-5x10% m/s.

Napovéda:

a) Prevedte vztah pro potenciil do tvaru obvyklého pro harmonicky oscilator: U = %M w22,
b) Parametry sodiku najdete diskutovany v kap. 7.
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¢) Pro vypocet fadového odhadu rychlosti zvuku pouzijte vlnovy vektor dany typickou vzdalenosti v kovu,
t.j. ¢ = m/R. Pro sodik dostaneme 1.7x10% m/s.

u N
A koule
_____ s jednim

.. elektronem .-~

Obr. 5.10: Tont vychyleny z rovnovazné polohy o u je tlacen zpét silou F , ktera vznika coulombovskou
interakci kladné nabitého iontu s homogennim rozlozenim elektrického naboje vodivostniho elektronu
v kouli o poloméru rovném vychylce (tmavé zlutd oblast). Hustota ndboje vodivostniho elektronu je dana
podminkou, ze v kouli o poloméru R je praveé jeden elektron.

Pi. 5.9: Kohnova anomalie:*
V kovech lze predpokladat ptisobeni mezi vzdalenéjsimi atomovymi rovinami, pfiblizeni interakce nej-
blizsich sousedt neni dostacujici. Pfedpokladejte, Ze silové konstanty ve vztahu (5.9) maji tvar, ktery
predpovédél W. Kohn v roce 1959%,

sin a
= A (Pgoa)

pa

Parametry A a ¢p jsou konstanty a index p nabyva vSech celych kladnych ¢isel. Naleznéte disperzni
zévislost w?(q), ukazte, ze ma tato zavislost pro ¢ = qg svislou teénu (zlom, nekone¢nou derivaci).
Kittel, str. 135, pt. 5

f(x)

T + T + T X
6m 8 107
Obr. 5.11: Tvar pilové funkce f(z) uvedené ve vztazich (5.17).
Népoveéda: Pouzijte identitu: 2sin(a) cos(8) = sin(a + §) + sin(a — ).
Dale pouzijte Fourierovu fadu pilové funkce podle obr. 5.11, kterou lze zapsat jako:
o0 . [oe] .
sin(nx) sin(nz) w— f(x)
— _ 2 é — . 5.17
)= -3 20 5 dhine) 1o 517

4W. Kohn, ,Image of the Fermi surface in the vibration spectrum of a metal“, Phys. Rev. Lett. 2, 393 (1959).
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Pristroj pro experimentalni ovéfovani tepelné kapacity vody, ktery se bézné pouziva vsude.
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Kapitola 6

Fonony II - tepelné vlastnosti mrizky

Obsah kapitoly

6.1 DPopis tepelnych kapacit . . . . . . . ¢« v v v v v v it e e e e e e e e e e 87
6.2 Hustota modill . . . . . . . v v v i ittt e e e e e e e e e e e e e e e 88
6.2.1 Fixni okrajové podminky . . . . . . .. ... L oL 88
6.2.2 Periodické okrajové podminky . . . .. .. ..o oo 89
6.2.3 3D periodické okrajové podminky . . . . .. ... Lo 89
6.2.4 Vypocet hustoty stavil . . . . . . . . ... e 90
6.3 Einsteindv model . . . . . . . . i e e e e e e e e e e e e 91
6.4 Debyeuvmodel . . . . . . . . i i it e e e e e e e e e e e e e e 91
6.5 Anharmonické efekty . . . . . . . . i i i i e e e e e e e e e e 92
6.5.1 Tepelna roztaznost . . . . . . . . ... e 92
6.5.2 Tepelnd vodivost . . . . . . . ..o 93
6.5.3 Tepelny odpor . . . . . . . . L 93
6.5.4 Nedokonalé krystaly . . . . . . . .. .. ... 94
6.6 PFIKIAAY . . o o v v e e e 96

6.1 Popis tepelnych kapacit

Zakladni vztah pro mérné teplo materidlu Cy znamy z termodynamiky udava mérné teplo pfi konstantnim

objemu
oU
Oy = (W)V, (6.1)

Naproti tomu méreni se obvykle provadi pfi konstantnim tlaku. Rozdil obou hodnot je sice maly, ale
neni nulovy. Zopakujme dtlezité konstanty, které budeme v této kapitole potfebovat. Latkové mnozstvi
1 mol je definované tak, Ze obsahuje pocet ¢astic rovny Avogadrové konstanté, jejiz velikost je Na =
6.022 141 x 1023 mol~'. Boltzmannova konstanta zase davé do poméru energii a absolutni teplotu, kg =
1.380 662 x 10723 J K~!. Tepelné kapacity jsou ¢asto uvadény znormované na jeden mol latkového
mnozstvi, coz se oznacuje pouzitim malého pismene cy .

kde U oznacuje celkovou energii.

7 experimenti jsou fenomenologicky znama nasledujici fakta:

1. P¥i pokojové teploté plati Dulongfiv-Petittiv zdkon: ¢,y = 3Nakp ~ 25 J mol~! K~ 1.
(Neékdy se jako jednotka energie pouziva kalorie, 1 cal = 4.1868 J.)

2. Za nizkych teplot plati pro izolatory: %imo cy ~ T3,
—

3. Za nizkych teplot plati pro kovy: %irr}) cy ~T.
—
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4. V magnetickych pevnych latkadch ptibude k tepelné kapacité cy prispévek v oblasti teplot, kdy
dochéazi k uspoifdadavani magnetickych momenta.

Z vyse uvedeného se da usuzovat, ze tepelna kapacita miizky ma teplotni zavislost za nizkjch teplot
amérnou T3. U kovii je tepelnd kapacita mifzky zastinénad dominantnim piispévkem od vodivostnich
elektrond, ktery mé ale jinou teplotni zavislost. V nésledujici c¢asti této kapitoly se budeme vénovat
charakterizaci tepelnych vlastnosti miizky, které souvisi s popisem vibraci pomoci fonont. Energii vSech
vibra¢nich médi v (6.1) mZeme obecné zapsat jako sumu

U= ZZUM: ZZMWWW% (6.2)

kde se scita pres vsechny vibraéni médy p a vSechny vinové vektory ¢ v 1.BZ. Obsazeni vibra¢nich méda
pfi dané teploté n,; je dané Boseho-Einsteinovym rozdélenim (viz dodatek B). Ve vztahu pro energii
nezapoCitdvame kvantovy ¢élen 1/2; ktery odpovidd vakuovym fluktuacim. Pfi derivovani podle (6.1)
tento konstantni ¢len stejné vypadne.

6.2 Hustota modu

Pfi vypoctu energie (6.2) se pro zapoc¢itani vSech normélnich médt obvykle pfechdzi od sumace pfes ¢
k integréalu pfes frekvence w. K tomu je tfeba zavést novou veli¢inu, kterd se nazyva hustota mddi/stavi,
D. Veli¢ina D(w)dw udéva pocet vibra¢nich médi v intervalu (w, w4+ dw) pro dany krystal. Energie vSech
vibraci mfizky je potom dana vyrazem

U= / dwD(W)n(w, T)hw = / de(w)%. (6.3)

Pro vypocet mérného tepla musime provést derivaci celkové energie podle teploty. Je dobré si uvédomit,
Ze jediné, co v tomto vztahu zdvisi na teploté, je obsazeni médu n(w,T’). Nasim tkolem je nyni najit
tvar spektralni zdvislosti D(w). Nejprve musime odvodit, jaké jsou dovolené hodnoty vinového vektoru §.
Potom se uréi frekvence vibra¢nich médu pro vSechny tyto dovolené vinové vektory. A nakonec spocitame
histogram, t.j. kolikrat jsme dostali hodnotu z intervalu (w,w + dw).

6.2.1 Fixni okrajové podminky

Jako obvykle ndm kvantovani néjaké veli¢iny, ktera je klasicky spojita, vyplyva pfimo z feseni okrajovych
podminek. Podivime se na jednoduchy 1D pfipad (N + 1) atomt. U atomérniho Fetizku mtizeme poZa-
dovat, aby koncové atomy fetizku byly fixni. VSechny mozné normalni vibra¢ni médy lze potom zapsat
ve formé stojatych vin pro s-ty atom

us = usin(sqa) e ",
Jak to ukazuje obr. 6.1, podminka fixniho prvniho atomu je automaticky splnéna vybérem funkce
sinus a podminka fixniho posledniho atomu omezuje dovolené hodnoty vlnového vektoru g,
sin(¢L) =0 = gL=nw, n=1,2,...,N—1.

Dovolené hodnoty ¢ jsou ekvidistantné rozmisténé v intervalu (0, 7/a), téchto hodnot je (N — 1) a vzd4-
lenost sousednich dovolenych hodnot je: Aqg = /L.

5 pohyblivych atomd 5 frekvenci
Aq= 7w/l

123

o 1
5

~_ ~—
’ka% L=6a |

Obr. 6.1: Retizek sedmi atomu s fixnimi okrajovymi podminkami.
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6.2.2 Periodické okrajové podminky

Nevyhodou fixnich okrajovych podminek je to, Ze popisuji pouze stojaté vlny. Samoziejmé volba okra-
jovych podminek nemitize ovlivnit vysledné vlastnosti objemového vzorku. Pro zjednoduseni vypocti je
¢asto vhodnéjsi volit periodické okrajové podminky. VSechny mozné normalni vibra¢ni médy lze potom
zapsat ve formé rovinnych vln pro s-ty atom

1 sqa —wwt

us = ue'’e
Zde jsou dovolené hodnoty vlnového vektoru omezeny periodickou podminkou (Bornovy-von Karmanovy
okrajové podminky')

u(sa) = u(sa + L).

Pozadujeme, aby feSeni nalezené v libovolném bodé krystalu se po vzdalenosti L pfesné zopakovalo.
Jako bychom ke krystalu délky L pfipojili dalsi krystal se stejnym feSenim a pozadovali, aby vSe plynule
navazovalo. V 1D pfipadé fetizku N atomi si to miizeme predstavit tak, ze atomy uzavieme do spojitého
krouzku. Dovolené hodnoty ¢ jsou omezeny na 1.BZ, t.j. interval (—n/a, 7/a). Dovolenych hodnot je N
a jejich vzdalenost je Aq = 27/ L, jak ukazuje obr. 6.2.

6 pohyblivych atomd

6 frekvenci
\ Aq = 2n/L
|
-1 1 2 3
A+
-mla 0 la q

Obr. 6.2: Retizek Sesti atomt s periodickymi okrajovymi podminkami.

6.2.3 3D periodické okrajové podminky

Qy Aqy

20

15 Yok v Aq
/ h g
10
q Obr. 6.3: Dvoudimenzionalni k-prostor, ve kterém
jsou stavy (gz,qy) povolené okrajovymi podmin-
5 kami znézornény jako priseciky zelenych piimek.
Cervené oznacené stavy lezi ve zvoleném intervalu
17 energii, coz odpovida vyznacenému mezikruzi.
i1
0 5 10 15 20 Ox

vvvvvv

vektorem ¢ ve 3D. Z vySe uvedeného je zfejmé, Ze pro periodické okrajové podminky dostaneme velikost

1Max Born ziskal za statistickou interpretaci vinové funkce Nobelovu cenu za fyziku v roce 1954.
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tohoto elementu ve tvaru

(Aq)* = (2m/L)* = (21)° Vi, (6.4)

kde V¢ je objem celého krystalu. Tuto hodnotu budeme vzdy pouzivat pfi prechodu od sumace k integralu
v k-prostoru. K tomuto tématu se vztahuje pr. 6.1 na konci této kapitoly a obr. 6.3.

6.2.4 Vypocet hustoty stava

Vratme se zpét k vypoctu hustoty médi. Budeme uvaZovat nejjednodussi 1D fetizek atomt podle obr. 6.2.
Disperzni zavislost w,(g) budeme pfedpoklddat v priblizeni interakce nejblizsich sousedt (5.10). Obra-
zek 6.4 ukazuje v levém panelu a) tuto disperzni zavislost a v pravém panelu b) histogram poctu existu-
jicich stavt v intervalu frekvenci Aw. Pro zobrazeny piipad tisice atomt musi byt i soucet vSech dvaceti
sloupecku histogramu roven N = 1000. Symbolem N oznaCujeme pocet elementarnich bunék, ale v pii-
padé jednoatomarniho fetizku je N rovno i po¢tu atomi. Teoretickd zavislost hustoty stavi zobrazena

¢ervenou carou se pocita v pf. 6.3 na konci této kapitoly a vychazi

D(w)

2N 1
= 37 (65)

2
d Wy — W

kde maximélni frekvence wy, = 24/a/M, M znadi hmotnost atomil a « je silova konstanta.

a) 104 T T T ) T |I ]
0.8 - . .
c L i i
\3 0.6
3 04 - . .
N = 1000
02 f 7 A =20 ]
00 b v v ) P T T |
-1.0 -05 0.0 0.5 1.0 0 50 100 150 200
g (n/a) D(w)

Obr. 6.4: Vypocet hustoty stavi pro jednoatomdrni fetizek N atomi: a) disperzni zavislost; b) odpovi-
dajici histogram. Energeticky interval je rozdélen na A = 20 dilku.

Pro 3D krystal s s atomy v primitivni burice existuje 3s fononovych zavislosti wy(q), fononovych
vétvi. Obecnd hustota méda ve 3D pro p-tou vétev fonond w,(g) se pocita jako pocet stavii ve slupce
k-prostoru s frekvenci v intervalu (w,w + dw). Pro vypocet je tedy potifeba znét tvar ekvienergetickych
ploch v k-prostoru

_ Va 3
Dp(w)dw = Gn) / dq (6.6)
slupka
Vek Vek ds,, Vek ds,,
- dS,dg, = % dw = D 4o,
@r)? | asuan (2r)? / Vol T @ / o
plocha plocha plocha

kde slozky grupové rychlosti (; = V,w) se ve 3D spoéitaji jako derivace w podle slozek vinového vektoru
¢. Hustota méda pro p-tou vétev fononu s frekvenci w se tedy spocita jako plosny integral v k-prostoru

podle
Ve dS,
D,(w) = —= /T (6.7)
g

plocha
Pii tomto vypoctu maji zvlastni vyznam body s nulovou grupovou rychlosti vy = 0. Tyto body

zpusobuji singularity pfi vypoc¢tu hustoty stavt a jejich prispévek je tedy dominantni. Tyto tzv. sedlové
body disperzni zavislosti se oznac¢uji jako van Hoveovy singularity.
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6.3 Einsteinuv model

Tento model uvazuje pouze jednu frekvenci fonont wy. Obsazeni fonont pfi dané teploté je dané Boseho-
Einsteinovym rozdélenim (viz dodatek B). 3s urc¢uje pocet stupiit volnosti pro s atomt v primitivni buiice
mfiizky. Pocet stavii vlnového vektoru je IV, potom

3s N 1 1
U= ;%:mo(nrﬁ 5) = 3Ns hun(n + 3).
Derivaci energie podle teploty dostaneme tepelnou kapacitu. Je dobré si opét povSimnout, ze jediné, co ve
vztahu pro energii zavisi na teploté, je rozdélovaci funkce ng. Pro vysoké teploty dostaneme pro Einsteintiv
model spravny klasicky vysledek Cy = 3N skg. Pro nizké teploty T — 0 jde Cy k nule ale exponencialné.
To je zpusobené tim, ze Einsteiniv model zanedbava disperzi fonont. Prestoze jde o priblizeni, da se
tento model pouzit pro popis dlouhovlnnych optickych fononi.

6.4 Debyetiv model

Tento model predpoklada pouze akustickou vétev se zéavislosti w = wvgq, kde vy je konstantni rychlost
zvuku. Predpokladame, ze vSechny povolené stavy vektoru ¢ vyplni kouli v k-prostoru. Pocet mdéda
S ¢ < gmax Je

4 3 3
_ 3T0max chkwmax
N="G0 = Gl - (6.8)
Vex

Hustota mdédt pro jednu akustickou vétev je pak dana

- dN o Vcka

D = — = .
() dw 27203

Pocet stavil v kouli v k-prostoru ma byt roven NV, t.j. poctu elementarnich bunék ve vzorku. Tato pod-
minka definuje mezni frekvenci (mezni vlnovy vektor), kterd se oznacuje jako Debyeova frekvence:
67r2v8’ 62 Vex

C C

V tomto modelu musi platit linedrni disperzni zavislost pro akustickou vétev i pro Debyeovu frekvenci,
Wp = Vo ¢D-

Pocet modi s ¢ < gmax vyCerpa pocet stupnti volnosti v miizce s jednim atomem v primitivni buiice.
Efektivné jsme takto nahradili 1.BZ kouli o poloméru gp.

0Od ted budeme uvazovat 3 akustické vétve. Odvodime hustotu médi ze znalosti Debyeovy frekvence.
V kouli o poloméru ¢p je 3N stavii, a proto

3N 2d 2d

D(w)dw = 1 - 4mqPdg = ON T — gN 222
374 4D wp
374D

Celkova energie fonona vyjde

9Nk 73 w3dw

wd ohw/ksT _ 1

U= /dw D(w) n(w,T) hw =

Derivaci podle teploty dostaneme mérné teplo miizky ve tvaru
/T

T\? et huw hwp
— ONkg [ = dr— - _ wn
Cv =9 B(@) / Ter -1 "7 kel %=1

Pii tomto odvozovani bylo vyhodné zavést tzv. Debyeovu teplotu ©. Je tieba si zapamatovat, ze
Debyeova teplota je mez, kterd urcuje, zda mizeme pii dané teploté mtizky T pouzit aproximaci nizké,
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¢i vysoké teploty. V téchto limitdch mizeme vyraz pro tepelnou kapacitu vyrazné zjednodusit.
Vysoké teploty: T>0,z<1 = e*=1+uz,

Cy =~ 3Nkg. (6.9)
Nizké teploty: ©/T w00 = [;°[...]dz =4x"/15,

Cy ~ (T/©)3. (6.10)

(PO. 6.1: Debyeovy teploty pro krystaly soli).

6.5 Anharmonické efekty

V ramci harmonické aproximace dostavame nékteré nespravné vysledky jako:

Fonony vzajemné neinteraguji, nemohou se s ¢asem vyvijet nebo se samy rozpadat.

Neexistuje tepelna roztaznost.

Elastické konstanty nezavisi na teploté ani na tlaku.

B Tepelnd kapacita je konstantni pii vysokych teplotach (T > ©).

Tyto tzv. anharmonické efekty lze feSit pouze v ramci presnéjsiho popisu krystalu.

6.5.1 Tepelna roztaznost

6
—— druhy fad aprox.
4r ¢tvrty rad aprox.
9 L — potencidl
SR AR S R e Obr. 6.5: Pokud pouzijeme Tayloruv
2, : 1 rozvoj potencidlu pro sl KCI podle
= 2r obr 4.4, ziskdme pro rozvoj do &tvr-
g 4L tého fadu lepsi shodu, nez pro har-
€3 monickou aproximaci. Rozvoj po-
6 : tencidlu m4 tvar [—7.215+3.34822 —
< ARRARRRRRRRRRRR """""""""""""" KCl """""""" ] 4.28123 + 3.637x%] eV, kde vjchylka
I : . | z rovnovahy x se dosazuje v angstro-
210 F RO:3155A i mech.
2 4 6 8 10

Anharmonické efekty je nutné zapocitat zvlasté pfi vyssich teplotach. Pii vétsich vychylkach kmita
atomu je potieba uvazovat vyssi fad rozvoje potencidlni energie typicky az do ¢tvrtého fadu, viz obr. 6.5.

U(Ry +x) = Ug(Ry) + U(x) = Up(Ry) + cx® — g — fa?,
je rozvoj 1D potencialu do ¢tvrté mocniny soufadnice x, kterd popisuje délku vazby. Konstanty ¢, g a f

jsou koeficienty rozvoje do druhého, tietiho, resp. ¢tvrtého radu.

Tepelnou roztaznost ziskame z teplotni zavislosti stfedni hodnoty vychylky x. Pro vypocet pouzijeme
Boltzmanovo rozdéleni nasledovné

5 dea exp[-U()/ksT] 34
O = T el U @) keT] AT (6.11)

Dostali jsme, Ze tepelné roztaznost je dand pomérem g/c? konstant rozvoje potencidlu do vyssich ¥adi.
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6.5.2 Tepelna vodivost

Budeme sledovat tok energie podél dlouhé tyce, jak to ukazuje obr 6.6. Pokud se na tepelné vodivosti
podili pouze mfizka, muZzeme pfenos energie popsat energii prenasenou fonony. Proti klasické kinetické
teorii idedlniho plynu fonony nepfenéseji hmotu, ale pouze energii. Nicméné na tok tepla (tepelné energie)
se muzeme divat z klasického pohledu termodynamiky pohybu ¢astic v teplotnim gradientu podle

dT
v = —A—. 6.12
Ju dr ( )
ju oznacuje tok tepelné energie jednotkovou plochou za jednotku casu. Konecna tepelna vodivost A
vyzaduje, aby fonony vzajemné interagovaly. K prenosu energie tedy nedochézi balisticky z jednoho
konce na druhy, ale difuzi provazenou mnoha srazkami, které se ¥idi statistikou. Jinak by byla teplotni
vodivost nekone¢nda a konce uvazované tyce by musely mit vzdy stejnou teplotu.

V klasické kinetické teorii se odvozuje nasledujici vztah pro tepelnou vodivost
1
A= ngl. (6.13)

Nyni musime spravné interpretovat jednotlivé ¢leny pro fonony, jak to poprvé provedl Debye: C' znaci
tepelnou kapacitu vztaZenou na jednotku objemu, v oznacuje stfedni rychlost fonond a [ stfedni volnou
drahu mezi nésledujicimi srazkami.

T+AT T Obr. 6.6: Tok energie v tyci, jejiz konce
maji teplotni rozdil AT. Pro ustéleni
lokalni tepelné rovnovahy s teplotnim

4 gradientem podél osy X jsou zapotiebi
pro rozptyl fonond U-procesy.

Odvozeni vztahu (6.13) z klasické kinetické teorie je ilustrativni a jak platilo pro molekuly, tak bude
platit za stejnych predpokladi i pro fonony. Méjme ¢astici s tepelnou kapacitou ¢, ktera se pohybuje
v prostiedi s gradientem teploty ve sméru osy X, pfitom pienese energii cAT. Tok ¢astic v kladném
sméru osy % je $n(|v,|). Céstice se pii srazkéch termalizuje, takZe tepelnou energii pienasi mezi srazkami.
Energii prenasi stejnym dilem c¢astice, které se pohybuji v obou smérech osy x. Rozdil teploty v mistech
nasledujicich srazek je

dT dT

AT = al = avxT,

kde 7 znadi ¢as mezi nasledujicimi srazkami. Tok energie pfi zapocteni pohybu ¢astic obéma sméry nam
vyjde
ar , , 1 dT

1T = — = — _ = —— 2 B —
Jju = —nv.cAT neg (v 3nc<v >de. (6.14)

Pro fonony, které maji konstantni rychlost v, miZzeme tuto rovnici pfevést na (6.12) a odvodit (6.13)
s vyuzitim znalosti [ = vr a C = nc.

x

6.5.3 Tepelny odpor

Teorie anharmonickych efekti predvida zavislost stfedni volné drahy [ nepfimo timérnou teploté T, coz je
v souladu s fadou experimentti. Toto tvrzeni je intuitivni, nebot celkovy pocet fonont, na kterych mutze
dojit k rozptylu, je amérny teploté T'. MuzZeme Fici, ze pokud se teplota zvysi dvojnisobné, pocet fonont
vzroste na dvojnasobek, pravdépodobnost srazky fononu za jednotku c¢asu bude dvojnésobnd a stfedni
volna draha fononu bude tedy polovic¢ni.

Pro koneény tepelny odpor musi ale jesté existovat mechanismus, ktery vede k ustaleni lokalni tepelné
rovnovahy. Jak ukazuje obr. 6.7a), pfi norméalnich procesech rozptylu fonont (N-procesy) se zachovava
celkové hybnost souboru fonont

T =" nghq.
q

Pokud je na jednom konci ty¢e nenulovy tok rozdéleni horkych fononi s J # 0, pak se toto rozdéleni

vvvvvv

93



b) b
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A1 4

3

Obr. 6.7: Schématické znazornéni fononovych rozptylovych procest ve étvercové miizce: a) normalni N-
proces, ¢1 +¢> = @3, b) pfekldpéci U-proces, ¢1 + ¢ —G= 7. Zluty &tverec zna¢i 1.BZ. Pii srazce zanikaji
dva modré fonony a vznika cerveny fonon spliujici soucasné zakon zachovani vinového vektoru a zakon
zachovani energie wy + wy = ws. V piipadé b) vznikl fonon mimo 1.BZ, a proto je ho t¥eba vratit zpét

—

do 1.BZ odeétenim vektoru reciproké miizky G = (27/a,0).

1929 R. Peierls. Jak ukazal, diky tomu, ze fonony v mfizce mohou mit vinovy vektor pouze v 1.BZ, jsou
mozné tzv. pieklapéci U-procesy?. U téchto procesii se preklapi smér vinového vektoru diky zapoditani
vektoru reciproké miizky G. To umoznuje vytvoreni lokdlni rovnovahy s rtiznou teplotou kazdého mista
podél tyce. Takto muze vzniknout gradient teploty podél celé délky tyce.

Aby mohl probéhnout U-proces, musi mit oba fonony vinovy vektor vétsi nez %é Tuto podminku
spliiuji fonony s energii vétsi nez %kBG). P1i nizkych teplotach 1ze ocekavat, ze pocet fononil s dostatecné
velkym vlnovym vektorem se bude ménit podle Boltzmannova rozdéleni tmérné exp(—0/2T). Tato ex-
ponencialni zavislost je ve shodé s experimentalnim pozorovanim.

7 predchozich Gtvah mtzeme dedukovat, ze fononova stfedni volnad draha, ktera vystupuje ve vztahu
pro tepelnou vodivost (6.13), je uréend pravé a pouze U-procesy, které vedou k ustédleni lokalni rovnovahy
s lokalni teplotou kazdého mista.

6.5.4 Nedokonalé krystaly

Doposud jsme uvaZovali pouze dokonaly nekonec¢ny krystal. K omezeni stfedni volné drahy fononu ale
prispivaji i geometrické efekty. Samoziejmé, pokud by stfedni volnd draha vychézela vétsi nez sitka
krystalu, bude rozhodujici rozptyl na hranicich krystalu. Tepelna vodivost se proto za nizkych teplot
muze stat funkci rozméra vzorku. Dalsi omezeni tepelné vodivosti je dané nedokonalostmi krystalu, které
porusuji pfesnou translacni symetrii. Jsou to bud pfimési jinych prvkid (neéistoty), nebo vSechny mozné
poruchy v krystalickém usporadani.

2Sir Rudolf Ernst Peierls se vénoval popisu tepelné a elektrické vodivosti polovodiéti s vyuzitim konceptu kladnych
kvazicastic, dér. Zény v k-prostoru pouzival jesté pred L. Brillouinem a s vyuzitim téchto zén formuloval Umklapp procesy
dulezité pro popis srazek fonont.
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PO. 6.1: Periodicka tabulka ukazuje pod nazvem prvku Debyeovu teplotu mfizky ©. Pokud je hodnota

O nizsi nez pokojova teplota je prvek podbarven modie. Pokud je vyssi, tak je podbarven Cervené, viz
vykreslena $kala. Pro zelené podbarvené prvky neni Debyeova teplota zndma. Data pfevzata z [2].
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6.6 Priklady

Pi. 6.1: Pocet stava v Brillouinové zéné:

Bornovy-von Karmanovy periodické okrajové podminky urcuji pocet povolenych stavii vinového vektoru
q v 1.BZ. Ukaite Ze:

a) Pokud plati periodické okrajové podminky pro jakoukoliv obecnou vlnovou funkci ve tvaru

V() = U+ N,

pak je pocet povolenych stavi vektoru ¢ v 1.BZ velikosti (3—’;, i—;‘, i—:), roven N = N1N3N3.
b) Vzdalenost sousednich vlnovych vektort je Ag; = 1\?’; = QL—’T

¢) Velikost objemu k-prostoru odpovidajici jednomu stavu vektoru ¢ je %, kde V¢ je objem celého

krystalu.

Pi. 6.2: Odhad radu silové konstanty pro kfemik:
V kiemiku se zvuk §f¥ rychlosti 2.2x10% m/s. Odhadnéte faddové velikost silové konstanty o v piiblizeni
interakce nejblizgich sousedil. M¥izkova konstanta kiemiku a = 5.43 A.

Népovéda: Vyuzijte vztah (5.11), kde atomova hmotnost kiemiku je 28 a délka vazby z geometrie dia-
mantového krystalu kiemiku je (v/3/4)a.

Resent: [~ 4 N/m]

Pr. 6.3: Vypoéet hustoty médu:
a) Uvazujte 1D linedrni fetizek N stejnych atomu s interakei nejblizsich sousedt. Pro tento model odvodte
vztah (6.5) pro hustotu stavi.
b) Ptedpokladejte, ze optickou fononovou vétev mizete aproximovat parabolou podle w(q) = wy, — Ag>.
Ukazte, ze ve 3D je
Vek 27

D(W) = WW\/wm — W,
pro w < wpy,. Pro w > wy, je D(w) = 0. Hustota optickych médi je pro vybrany kubicky krystal zobrazena
v obr. 6.8. Zlomy zavislosti odpovidaji symetrickym bodtm Brillouinovy zdny. Kittel, str. 161, pr. 1

Napovéda: viz obr. 6.8.

2y S 2 @ e o o

A 4 T & LI 4 T

D (w)

0.0

w

Obr. 6.8: Vypocet hustoty stavi pro optickou vétev fononii.

Pi. 6.4: Hustota mdédu pro ¢étvercovou miizku:
V predchozi kapitole se v pf. 5.2 ziskala disperzni zavislost pro 2D ¢tvercovou miizku ve tvaru

2C
wz = M(2 - COS(Qxa) - COS(qya))'

Spocitejte pro tuto étvercovou miizku hustotu stavit D(w). Ulohu feste numericky tak, ze 1.BZ rozdélite
na rovnomeérnou sit (napf. 1000x1000) a hodnoty w vynesete v histogramu. Kittel, str. 162, pt. 6
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Napovéda: viz obr. 6.9.

a) b)

14

4, (x/2)
D (w)

0.0 0.2 0.4 0.6 0.8 1.0 12 14

Obr. 6.9: a) Disperzni zavislost pro 2D ¢tvercovou miizku. b) Hustoty stavii pro akustickou vétev fonont
ve 2D.

Pi. 6.5: Tepelna vodivost:

a) Ukazte, ze pii vysokych teplotéch je celkovy pocet vybuzenych fononi timérny teploté.

b) Odvodte tepelnou zavislost tepelné vodivosti pro pfipad nizkych a vysokych teplot. Tuto zévislost
zhruba nacrtnéte.

Néapovéda: Vyuzijte vztah (6.13) a zavislosti na teploté jednotlivych ¢lent: tepelné kapacity a stfedni
volné dréhy. Pouzijte také zavislost odvozenou v bodu a). Vysledek se musi shodovat s experimentem
podle obr. 6.10.

1 I T |
200 |- —
7 100 |~ —
3
15 50 LA o
3
s
_;i 20 =1
E
< w0 B
g
1 :
é Obr. 6.10: Tepelna vodivost velmi cistého krys-
il 1 talu NaF. Pfevzato z [2], pivodné z ¢lanku H.E.
Jackson, C.T. Walker, T.F. McNelly, Phys. Rev.
1 ] | | | i Lett. 25, 26 (1970).
1 2 5 10 20 50 100

Temperature, K
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Kovy jako velmi vyhodny konstrukéni material: 49°35'16.525” N, 17°15’50.967" E.
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Kapitola 7

Kovy - Fermiho plyn volnych
elektronu
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7.1 Uvod

Vétsina prvki periodické tabulky (prvky od alkalickych kovii az po diagonélu, viz obr. 4.1) vytvari kovové
krystaly. Kovy tvoii specifické krystaly s typickymi vlastnostmi. Kovy jsou sice tvrdé, ale lze je tavit a
zpracovavat do pozadovanych tvart. Proto se kovy zacaly vyuzivat ¢lovékem jiz pted tisici let a umoznily
rozvoj civilizace az k dnesnimu stavu, coz ukazuje tivodni obrazek této kapitoly.

Prvni teorii, ktera byla schopna objasnit typické vlastnosti kov, vypracoval P. Drude. V roce 1900,
tedy t¥i roky po objeveni elektronu J.J. Thomsonem, pouzil Drude kinetickou teorii plynii na popis pohybu
vodivostnich elektrond v celém objemu kovu. V této kapitole postupné odvodime nékolik jednoduchych
vztahli pro parametry kovii.

Vysoka vodivost kovi je zptsobend tim, ze vodivostni elektrony se mohou v celém objemu krystalu
kovu volné pohybovat. Celkovou energii vodivostnich elektroni mtzeme tedy brat pouze jako kinetickou
energii. Potencidlni energii, ktera je pro vodivostni elektrony prakticky konstantni, mtizeme polozit rovnou
nule. ProtoZe vodivostni elektrony nejsou lokalizované, t.j. jejich vlnova funkce je teoreticky nenulova
v celém objemu krystalu, musi Fermiho plyn' vodivostnich elektront spliiovat Pauliho vyludovaci princip.

Nejjednodussimi kovy jsou alkalické kovy. Jako typicky piiklad vezméme napiiklad sodik. Krystal
sodiku je slozen z iontt Na® s 10 elektrony v uzavienych slupkach 1522s22p°, které zabiraji pouze 15 %

1Enrico Fermi je nositelem Nobelovy ceny za fyziku z roku 1938.
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objemu krystalu. Kazdy atom sodiku pfispiva do vodivostniho pésu jednim elektronem, ktery by byl u
volného atomu ve stavu 3s'.

Hustotu elektroni miZzeme odvodit z parametri krystalové miizky. Sodik ma v kubické struktufe
BCC dva atomy na elementarni buitku s mifzkovou konstantou a = 4.225 A. Kazdy atom piispiva
jednim vodivostnim elektronem, valence Z* = 1. Hustotu vodivostnich elektroni spoc¢itame jako: ngcc =
27*/a®. Pro sodik takto dostaneme n = 2.65 x 10*2 cm~2. Spravnou hodnotu hustoty mtizeme ziskat
i druhou metodou, a to bez znalosti struktury kovu. Staci podélit hustotu kovu atomérni hmotnosti a
vynasobit Z*. Pro hustotu elektronti se zavadi jesté jedna mira. Wigneriv polomér rs je polomér koule,

ktera obsahuje pravé jeden elektron, tedy
1 4
— = —nry. 7.1
L= S (71)
Wignertiv polomér se ¢asto udava v jednotkéch Bohrova poloméru (ag = 0.529 A). Pro sodik dostaneme

re = 2.08 A =3.93q,.

Analogicky s vypoétem pro sodik mtZzeme nyni odvodit hustotu elektrontt nap¥. pro méd. Ta mé ve
struktuie FCC miizkovou konstantu a = 3.61 A a valenci jedna. Pozorny ¢tenaf si nyni jisté snadno
dopo¢its Wigneriv polomér médi: r, = 1.41 A = 2.67 ay.

7.2 Drudeho model

Pouziti kinetické teorie plynt na popis vodivostnich elektront vyzaduje provést nékteré aproximace. Ty
potom limituji pfesnost a pouzitelnost ziskanych vysledki.

1. Kinetickéa teorie predpoklada neinteragujici ¢astice. To znamend, Ze elektrony se mezi srazkami
pohybuji piimocate. Pouze pokud je kov ve vnéjsim elektrickém nebo magnetickém poli, ptisobi na
elektrony Lorentzova sila, coz vede ke zméné piimocarého pohybu podle Newtonova zakona. Zavedli
jsme tedy aproximaci nezavislych elektronti (mezi srazkami nepisobi Zadna elektron-elektronova

interakce) a aproximaci volnych elektront (mezi srazkami se elektron-iontové interakce neprojevuje).

2. Srazky jsou okamzité, méni okamzité rychlost elektronu. Oproti kinetické teorii plynt, kde se srazi
volné Castice mezi sebou, zde jsou nejvyznamnéjsi srazky elektront s vazanymi ionty.

3. Pravdépodobnost, ze dojde béhem infinitezimalniho ¢asového intervalu dt ke srazce, je dana vyrazem
dt/7. Casova konstanta 7 se oznacuje jako relazacni doba nebo také volna doba Zivota a hraje
fundamentalni roli v teorii vodivosti kovi. Z teorie pravdépodobnosti vyplyva, ze pokud zvolime
nahodné néjaky elektron, pak nejpravdépodobnéji poputuje volné pravé cas 7 pred tim, nez dojde
k dalsi srazce. Predpokldadame, Ze 7 nezavisi na poloze ani na rychlosti elektronu, coz ve vétsiné
pripadu plati.

4. Predpokladame, ze elektrony dosdhnou terméalni rovnovahy se svym okolim vyhradné a pouze pro-
stfednictvim srézek. Rychlost elektronu po srazce nesouvisi s ptivodni rychlosti, ale elektron méa
nahodny smér a velikost rychlosti pravé tak, aby to odpovidalo distribuci pro teplotni rovnovahu
v daném misté.

7.3 Nekonecéna potencialova jama

Nyni musime pouzit kvantovou teorii, abychom mohli spoc¢itat energii elektronovych stavii a mohli na
nerozliSitelné elektrony pouzit Pauliho vylucovaci princip. Méjme krystal slozeny z N atomu, kde kazdy
atom prispiva jednim vodivostnim elektronem. Musime tedy nalézt N elektronovych hladin tvoricich
vodivostni pas, které budou v zadkladnim stavu obsazeny elektrony. Hamiltonidn ve Schrédingerové rovnici
je dan pouze kinetickou energii elektronu s hmotnosti m

e,
2m dx?

H'L/)n = = Enq;bn; (72)

kde E, oznacuje energii elektronu v jednoelektronovém stavu popsaném vlnovou funkci v,,.
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Nekoneénd potencidlova jama sifky L je standardni tloha z kvantové mechaniky [11], viz obr. 7.1.
Resenim je vlnova funkce ve tvaru 1), = Asin(kz), kterd dosazenim do Schrédingerovy rovnice dava
vlastni energii E,, = h?k?/2m. Kvantovani, t.j. diskretizace energetického spektra, je dané okrajovymi
podminkami: ,,(0) = 0, ¥, (L) = 0. Prvni podminka je splnéna automaticky volbou funkce sinus. Druh4
udava to, ze funkce 1, ma na délce L pravé n pulvln,

22
hems

kL =nm = k‘:%n =

Nyni pouzijeme Pauliho princip, ktery fika, ze na kazdé hladiné F,, smi byt pouze dva elektrony, které
se lisi opac¢nou orientaci spinu, spinové kvantové ¢islo elektronu je mg = +1/2. Kazdy elektron ma tedy
unikétni kombinaci kvantovych ¢isel (n,ms).

V tomto 1D pripadé je nejvyssi energetickd hladina, kterd je v zdkladnim stavu obsazend, dana

vyrazem
R2r2 (N2
Fp=——= =] . 7.4

T omL? (2) (74)

Tato energie se oznacuje jako Fermiho energie. Jingmi slovy feceno, jde o posledni obsazenou hladinu pfi
teploté absolutni nuly (7' = 0 K).

7.4 Fermiho-Diracovo rozdéleni

Odpovéd na otazku, co se d&je s obsazenim energetickych hladin elektrony pfi zvySovani teploty, nam
déava Fermiho-Diracovo rozdéleni? (viz dodatek B). To nam udava pro idealni plyn volnych elektront
v tepelné rovnovaze na teploté T pravdépodobnost, s jakou bude obsazen stav s energii F,

1

frp(E) = TERT T

(7.5)

V tomto vztahu je nové zavedend veli¢ina p, kterd se oznacuje jako chemicky potencidl. Hodnota této
veli¢iny je funkci teploty a je dand normovaci podminkou: ,,Pfi zméné teploty se neméni celkovy pocet
elektroni ve vzorku.“ Pro T = 0 K je z definice 4 = Eg. Déle plati, Ze pii jakékoliv nenulové teploté musi
byt fep(p) = 1/2. Tvar Fermiho-Diracovy distribuéni funkce pro zvysujici se teploty ukazuje obr. 7.2.

2Paul Dirac je nositelem Nobelovy ceny za fyziku z roku 1933.
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Obr. 7.2: Fermiho-Diracova distribuc¢ni
funkce (7.5) pro rtizné teploty s typickou
Fermiho teplotou pro kovy Ty = Ew/kp =
5 x 10* K.

0 1 2 3 4 5 6 7 8 9 10
E/kg (10° K)

Nékdy je vyhodné pro energie dostateéné vysoko nad chemickym potencidlem (E — p > kpT') provést
limitu a zanedbat jednicku ve jmenovateli (7.5). Fermiho-Diracovo rozdéleni nam tak pfejde na klasické
statistické Maxwellovo-Boltzmannovo rozdéleni, fg(E) = e~ (E—#)/ksT,

7.5 3D elektronovy plyn

Uvazujme nyni krystal jako 3D potencidlovou jamu. Schridingerova rovnice bude mit tvar

h2 32 52 82
- (8332 Tt 822> V() = Egbg(7). (7.6)

2m
V tomto piipadé je vhodnéjsi zavést periodické (Bornovy-von Karmanovy) okrajové podminky na hledané
vlnové funkce, které muzeme zapsat ve sméru osy X jako: ¢x(x + L,y,2) = Yi(z,y, 2). Vinové funkce,
které fesi Schrédingerovu rovnici a vyhovuji témto okrajovym podminkam, jsou rovinné vlny, které mohou
popisovat pohybujici se elektrony. Nulové okrajové podminky by naproti tomu umoznovaly popsat pouze
stojaté viny. Reseni Schrodingerovy rovnice lze potom zapsat jako:

h2k?
~ om -

Yp(F) = T B (7.7)
Komponenty vlnového vektoru k predstavuji nova kvantova ¢isla feseného problému. Z okrajovych podmi-
nek plyne, ze kazda slozka vlnového vektoru musi byt celoéiselnym ndsobkem 27 /L, nap¥. k, = n,(27/L).
Okrajové podminky nam zase zpusobuji kvantovani, konkrétné v tomto pfipadé kvantovani vlnového
vektoru. Ten jiz nemtize nabyvat vsech hodnot, ale pouze diskrétnich hodnot. Kazdému vlastnimu stavu
vektoru k pak v k-prostoru odpovid4 objem (27)3/Ve, kde Vg je objem celého krystalu. Tento vysledek
jsme jiz dostali pfi feSeni pf. 6.1.

Hybnost elektronu v daném stavu k mézeme spocitat pouzitim operatoru hybnosti na odpovidajici
vlnovou funkei ¢

pY(7) = —ihVp(F) = hky (7). (7.8)
Vektorovy operator gradient znamena derivace V = (d/dx,d/dy,d/dz). Jak je vidét, vinova funkce 15 ()

je tedy vlastni funkci operatoru hybnosti s vlastni hodnotou hk. Vlastni hodnota rychlosti je potom
jednoduse ¢ = hk/m. ProtoZe miizeme interpretovat vektor k jako vlnovy vektor rovinné viny, dostaneme
také vinovou délku elektronu

A= — (7.9)
ktera odpovida de Broglieové vlnové délce elektronu jakozto hmotné Céstice.

V zékladnim stavu systému N volnych elektroni bude obsazeno N elektronovych stavii s nejnizsi
energii. Diky kvadratické zavislosti energie podle (7.7), budou tyto stavy vypliiovat kouli v k-prostoru,
jak je to zndzornéno na obr. 7.3.
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Obr. 7.3: Rez Fermiho kouli obsazenych stavii
volnych elektront v zdkladnim stavu. Stavy

Fermiho s .. . . ..
plocha s nejvyssi energii (Fermiho energii Er) 1?21 na
povrchu této koule a odpovida jim vlnovy vek-
tor o velikosti kg.
0.0 0.2 0.4 0.6 0.8 1.0

Energie v jednotkach Eg

Velikost vlnového vektoru kp uréime z normovaci podminky, kdy pozadujeme, aby Fermiho koule
obsahovala pro elektrony pravé N stavi. Pfi odvozovani musime opét uvazovat, ze kazdy stav popsany
vektorem k muze byt obsazen dvéma elektrony s opac¢nou orientaci spinu

4 3
77Tk;F ‘/Ck 3 N
N = 2(32%)3 = 37r2kF, = kp= ¢ 37r2VCk, (7.10)
h2k2
Er = E 7.11
F 2m ( )

7 téchto vztahu je zfejmé, zZe Fermiho energie ani Fermiho vlnovy vektor nejsou funkci velikosti vzorku,
ale zévisi pouze na koncentraci vodivostnich elektronii: n = N/V . K vyse uvedenym veli¢indm se obvykle
zavadi navic jesté Fermiho rychlost ¢ (rychlost elektrontt na Fermiho plose) a Fermiho teplota Ty podle

- hk h N E
T || kp, vp=— = —{/3n2 Tp= .
m kB

7.12
m ‘/;:k) < )

Zde je treba zduraznit, ze Fermiho teplota je konstanta nezévisla na teploté. Tato teplota oznacuje mez,
podle niz lze rozhodnout, zda mizeme p¥i konkrétni teploté T pouzit nizkoteplotni, nebo vysokoteplotni
pribliZeni.

Nyni vyuzijme Wigneriv polomér r4 definovany vztahem (7.1) a jako jednoduché cviceni si pomoci
ného vyjadiime vsechny vysSe zminované Fermiho veliciny. Vysledek je zapsan v tab. 7.1. Parametry dvou
typickych kovi se pocitaji v pf. 7.2 na konci této kapitoly.

Tab. 7.1: Fermiho parametry kovi, které lze spocitat z Wignerova poloméru.

Popis n kp vR Ep [eV] Tr

v SI 0.239/r3 1.92/r, 2.22 x 1074 /r 1.40 x 10719/r2  1.63 x 10712 /r2
v CGS 23.9/r3 1.92/r; 2.22/rs 14.0/r? 16.3/r2
[re v A] x10%? cm 3 x10% cm~! x10% cm/s x eV x10* K

7.5.1 Hustota stavu

Nyni nalezneme vyraz pro pocet stavli v daném intervalu energii. Tuto veli¢inu, analogicky jako v kapitole
o fononech, budeme oznacovat jako hustotu stavi. D(E)dE udévé pocet elektronovych stavii v intervalu
energie (F,E + dFE). Dosazenim za kg do (7.10) z (7.11) ziskdme vyraz, ktery udava pocet stavii pro
elektrony s energii < F. Tyto stavy tvoii kouli v k-prostoru podobné té na obr. 7.3. Hustotu stavt pak
ziskdme jako derivaci této zavislosti:

/2
pE) = W _ Ve <%”>3 VE. (7.13)

T dE  2r2 \ 2
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Protoze pocet stavil v kouli s maximalni energii F zavisi na energii s umérnosti N o« E3/2, mizeme

zapsat hustotu stavt také jako
3N

D(E) = Nk (7.14)

7.6 Meérné teplo elektronového plynu

Drudeho model volnych elektront s klasickym Maxwellovym-Boltzmannovym rozdélenim kinetické ener-
gie by nam dal rozlozeni energii, které by odpovidalo fononiim. To by zptisobilo zavislost mérného tepla na
teploté odpovidajici fonontm. My ale vime, Ze pro kovy je nizkoteplotni zavislost mérného tepla na teploté
linearni. Navic je znamo, ze pokud by k mérnému teplu pfispivaly vSechny vodivostni elektrony, bylo by
za pokojové teploty Cy rovno 3/2Nkg. Pozorované hodnoty pro kovy jsou ale asi 100-krat mensi. Pro od-
vozeni spravné zavislosti je potfeba pouzit kvantovou teorii, ktera respektuje Pauliho vylucovaci princip,
a vede na Fermiho-Diracovo rozdéleni (7.5). P¥i zah¥ivéni vzorku kovu mohou ziskdvat vyssi energii pouze
stavy blizké Fermiho energii (viz obr. 7.2). Pfi excitaci mohou pfejit do vyssich energetickych stavi, které
nejsou obsazené. Doplnéni Drudeho modelu o Fermiho-Diracovu statistiku provedl némecky fyzik Arnold
Sommerfeld, proto se tento model elektronti v kovech nékdy oznacuje jako Drudeho-Sommerfeldiv model.

Odvozeni mérného tepla provedeme pro nizké teploty, T < Tg. To je i pfipad pokojové teploty, nebot
Fermiho teplota typickych kovi je fadové 10* K. Nejdiive spoéitdme zménu energie vzorku kovu pii
zahtati z nuly na teplotu T'

/dE ED(E) frp(F /dE ED(E (7.15)

Zde jsme vyuzili toho, Ze pfi nulové teploté je frp(FE) schodové funkce. P¥i dalsim vypoctu pouzijeme
normovaci podminku

N = / dE D(E) frp(E). (7.16)
0

Tepelnou kapacitu elektrontt dostaneme derivaci®. Navic pouzijeme faktu, #e derivace konstanty FrN je
nulovd a mtizeme ji tedy libovolné odecist

/dE ED(E af (7.17)
ON of
0= By = dEEFD( ) 57

0

Odectenim obou fadki dostaneme mérné teplo elektront ve tvaru

of

o (7.18)

Co = /dE (E — Ep) D(E)

Z obr. 7.4 je patrné, ze derivace 0f /T je nenulova pouze pro energie blizko Fermiho meze. Vztah
pro mérné teplo pak pfepiSeme tak, ze vytkneme pomalu se ménici funkci D(F) pfed integral

Ce = D(Er) /dE (E — Er) g%. (7.19)

Pokud dosadime derivaci Fermiho-Diracovy rozdélovaci funkce, ktera jedind zavisi na teploté, ziskame
finélni vztah

1
Co = §7T2D(EF) KAT. (7.20)

3Porovnejte s (6.1) pro fonony.
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Na tomto misté je vyhodné dosadit za hustotu stavii vztah (7.14). Tak miZzeme ziskat pro mérné teplo
alternativni vyraz dany vynasobenim nékolika konstant

1 LNKZT 1., T
0= = — 27 Nkp—. 21
Cal 57 e 57 BTF (7.21)

: - Obr. 7.4: Cerna ¢ara predstavuje hustotu
e stavit 3D plynu volnych elektronti jako
. : funkci energie. Zluté oblast piedstavuje za-
........ ......... p]néné stavy pf‘l absolutni nule s typickou
: : : : Fermiho teplotou pro kovy Ty = 5 x 10* K.
Cervend a modra ¢ara ukazuji obsazeni
stavll pro dvé zvolené teploty T < Tf.
Siika oblasti +kgT je zobrazena barevnou
sipkou. Pii zvySovani teploty se elektrony
excituji z oblasti 1 do oblasti 2.

Rel. hustota stav(

"0 1 2 3 4 5 6 7 8 9 10
E/kg (10° K)

7.6.1 Experimentalni mérné teplo kovi

Je jasné, ze i u kovi se bude v méfeném teple projevovat vliv mfizky. Pokud bude teplota pod Debye-
ovou teplotou, bude ur¢ité i pod Fermiho teplotou, kterd byva o fad vyssi (viz (PO. 6.1: Debyeova
teplota)). V této oblasti mizeme seéist ptispévky od elektront (7.21) a od miizky (6.10). Experimen-
talni mérné teplo pro tii alkalické kovy publikovali W.H. Lien a N.E. Phillips* v roce 1963, viz obr. 7.5.
Uk4zali, Ze je zde vhodné graficky vykreslit funkci C/T v zavislosti na T2

c 2

Tato linedrni funkce mé smérnici A a na ose hodnot vytina tsek rovny ~.

05 1.0 15
8 ——— T 8
7L  Polossium 347
6+ 6
w 5+ 5
g
v 4r 2 e
-é o C/T=2084+ 2577 20
S ]
E 2
._ -
g
S 25 125
1 ! 20
29, o.l 0.2 0.3

T2 eK)?

Obr. 7.5: Experimentalni mérné teplo drasliku za teplot blizko absolutni nuly.

4W.H. Lien a N.E. Phillips, , Low-temperature heat capacities of potassium, rubidium, and cesium®, Phys. Rew. 133,
A1370 (1963).
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Dosazenim Fermiho teploty do (7.21) miZeme odvodit teoreticky vztah pro koeficient v. Pro kov
s valenci Z* tak dostaneme
1 ,Z*R

T Ty

=252 x107* Z*r? Jmol 'K~ [pro rs v AJ,

kde univerzalni plynova konstanta R = kg N = 8.314 Jmol~* K~!. Napiiklad pro draslik s r, = 2.57 A
dostaneme v = 1.66 mJ mol 1 K—2.

Experimentalné ziskand data funkce (7.22) jsou skuteéné body na piimce. Pfesnost kvantitativni
shody je dana tim, do jaké miry plati aproximace volnych elektront. Korekce k této aproximaci vedou
k zavedeni efektivni hmotnosti elektrontt myy,. Podle vztahu (7.11) je v o< myy. Pomoci této efektivni
hmotnosti 1ze korigovat tii nejvyznamnéjsi efekty, které jsme zatim zanedbavali:

1. Interakce vodivostnich elektroni se statickou periodickou mfizkou. Elektrony se pohybuji ve vodi-
vostnim energetickém pasu kovu a ne v potencidlové krabici s nulovym potencidlem.

2. Interakce vodivostnich elektronti s fonony. Elektron svou pfitomnosti polarizuje/deformuje perio-
dickou m¥izku a takto interaguje s kmity miizky.

3. Vzijemna interakce mezi vodivostnimi elektrony.

7.7 Tepelna vodivost kovi

V kapitole 6 jsme z klasické teorie odvodili vztah pro tepelnou vodivost ¢astic s rychlosti v, mérnym

teplem na jednotkovy objem C a se stiedni volnou drahou [ ve tvaru K = %Cvl . Pro elektrony vyuzijeme
mérné teplo podle (7.21) a Fermiho energii podle Er = %mv%. Za rychlost dosadime vy a pro stfedni
volnou drdhu pouzijeme [ = vpT, kde Casova konstanta 7 je relaxa¢ni doba. Takto dostaneme tepelnou
vodivost

101 E2T m2nkiTr
B == |= 2 B = 7]3. '2
173 {ZW n%mv%] Ur ORT 3m (7.23)

Pri pokojové teploté maji kovy o jeden az o dva Ffady vyssi tepelnou vodivost nez dielektrika, takze
za téchto podminek prenaseji elektrony témér cely tepelny proud.

Stredni volna draha muze pro ¢isty krystal za nizkych teplot dosahovat fadové centimetrt. Pro Cisty
krystal médi byly zjistény hodnoty
1(300 K) ~ 3 pm, [(4 K) ~ 3 mm.

Pokud vezmeme na zietel, ze pri srazkdch mohou interagovat pouze elektrony blizko Fermiho meze,
miizeme odhadnout nizkoteplotni relaxa¢ni dobu tohoto vzorku médi: 7 = [/vp = 2 ns.

7.8 Elektricka vodivost a Ohmuv zakon

Pokud je na vzorek kovu prilozeno elektrické pole v ¢ase t = 0, bude na jednotlivé elektrony pisobit silou
F'. Tato sila vyvola podle Newtonova pohybového zékona ¢asovou zménu hybnosti, kterou mizeme pro
elektron zapsat jako p'= mv = hk
F=—¢E=h—. 7.24
i (7.24)
Predstavuje-li systém obsazenych elektronovych hladin v ¢ase t = 0 Fermiho kouli se stfedem v centru
k-prostoru, bude se tato koule s ¢asem posouvat podle vztahu, ktery dostaneme integraci (7.24)

eﬁt

- (7.25)

V souladu s Drudeho modelem predpokladame, ze posun Fermiho koule je ve staciondrnim stavu omezen
relaxacni dobou 7 (stfedni doba mezi srdzkami). Celkové tedy miiZzeme Fici, Ze vlivem vnéjsiho elektrického
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pole se Fermiho koule posune o § E, coz odpovidéa tomu, ze vodivostni elektrony budou mit stfedni rychlost
(driftovou rychlost) ¥ danou vztahem

Sk=-210 o0 =T (7.26)

Znéme-li stfedni rychlost elektront, mizeme snadno dopocitat elektricky proud. Pokud je hustota
elektronii n, bude mit hustota proudu tvar

7162T =

E. (7.27)

i =n(—e)7=
Jj=n(—e) -

Pokud si vezmeme standardni tvar Ohmova zdkona, j = o F, hned ziskdme vztah pro mérnou elektrickou
vodivost

(7.28)

Meérny elektricky odpor je pfevrdcenou hodnotou vodivosti, p = 1/0.
(PO. 7.1: Periodicka tabulka s hodnotami mé&rné vodivosti a odporu prvkd.)

7.8.1 Experimentalni mérny odpor kovi

Experimentalni zkusenost ukazuje, ze v kovech mizeme odlisit dva relaxacni procesy. Pfi pokojové teploté
prevazuji srazky vodivostnich elektronti s fonony, coz charakterizuje relaxa¢ni doba (7r,). Kmity m¥izky
zpusobuji neperiodi¢nost krystalové mriizky. Pri teplotach kapalného helia je ale obsazeni fonont zaned-
batelné a dominantni relaxa¢ni proces je rozptyl na necistotdch a poruchidch mfizky (7;). ProtoZe oba
zmitiované procesy jsou ve vétsiné piipadt nezéavislé (Matthiessenovo pravidlo), s¢itaji se pravdépodob-
nosti obou procest. Vysledna relaxacni doba je potom dana

1 1 1

T TL T

Meérny elektricky odpor muzeme ziskat jako obdobny soucet dvou prispévka p = pr + p;. Méfeni
mérného odporu v zavislosti na teploté ndm napomaha k zjisténi ¢istoty vzorku kovu. Protoze teplotné
zéavisla ¢ast je dand rozptylem na fononech, je charakteristicka teplota této zavislosti ¢asto blizka Debyeové
teploté.

7.9 Pohyb v magnetickém poli

posuv Fermiho koule Sk

d. 1 = — — = —

N

Jako vngjsi silu jsme pouzili Lorentzovu silu®. Vztah pro hybnost (m = hélg) nam umozni prejit od
vlnového vektoru k rychlosti v redlném prostoru

d 1)\, .
m (dt + T) U= —e(F+7x B). (7.30)

Tuto vektorovou rovnici je vhodné zapsat pro jednotlivé slozky za podminky, Ze si zvolime soutadni-
covy systém s orientaci magnetického pole v ose z, B = (0,0, B). Pohybovou rovnici zapiseme pro vsechny
t1i slozky

d 1
m (dt + T> vy = —e(Ey +vyB),

d 1
m (dt + T) vy = —e(Ey — vy B), (7.31)

d 1
— 4+ - =—ckF,.
m(dt—i-T)vz er,

5Hendrik Antoon Lorentz je nositelem Nobelovy ceny za fyziku z roku 1902.
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V obecném piipadé nemizeme jednoduSe zanedbat ¢asové derivace, nebot vlivem vnéjsich poli se
bude ménit velikost a smér rychlosti elektronu. Formalni zanedbani ¢asovych derivaci, které pouziva ve
své knize C. Kittel [1, 2] sice vede ke spravnému vysledku, ale je tézko obhajitelné. Spravné odvozeni
je zalozené na podmince rovnovahy sil. Budeme uvazovat pfipad, kdy pisobi pouze magnetické pole. V
tomto pripadé je Lorentzova sila vidy kolma na rychlost pohybu elektronu, elektron se neurychluje, pouze
se méni smér jeho pohybu. Vlivem statického magnetického pole se bude elektron pohybovat po kruznici,
jejiz polomér je dan podminkou, Ze Lorentzova sila ma stejnou velikost jako odstrediva sila

2

v
m— = evB.
T

Z této podminky muzeme urcit thlovou frekvenci kruhového pohybu, kterd se oznacuje cyklotronova
frekvence

We=—=—.
r

7.9.1 Hallav jev

Obr. 7.6: Schéma standardniho uspofadani méreni Hallova jevu.

Pokud nechame prochézet proud vzorkem pod vlivem magnetického pole, budou elektrony vedouci
proud vychylovany z ptivodniho sméru. Protoze ale vzorkem nemuze téct proud v pficném sméru, na
bocich se vytvori napéti, které bude kompenzovat vliv magnetického pole. Tento jev pozoroval jako prvni
americky fyzik Edwin Hall v roce 1879 na vzorku zlata. UvaZujme geometrii usporadani experimentu
podle obr. 7.6, kdy dojde k ustéaleni stacionarniho rezimu. V tomto pfipadé jsou skutecéné vSechny casové
derivace v (7.31) nulové. Reseni tfetiho fddku je trividlni v, = 0. S vyuzitim stacionarni podminky v, = 0
ziskdme z prvniho fadku (7.31)

er
v, = ——F,.
m

To dosadime do druhého fadku (7.31) a dostaneme vyraz

er
Nyni si definujme Halluv koeficient
E, E
Ry=—%L = v 7.33
W=, B~ oE,B (7.33)

Do citatele dosadime vztah (7.32) a do jmenovatele (7.28). VétSina parametri se pokrati a ziskdme tak
velmi dilezity vztah

Ry—_ L (7.34)

ne

Diky jednoduchosti tohoto vysledku je méfeni Hallova koeficientu velmi efektivni experimentalni metodou
urceni koncentrace nosi¢i proudu. Navic Halliv koeficient pro obecné castice s nabojem ¢ by vysel
Ry = 1/¢n. V nésledujicich kapitolach budeme probirat polovodice, u nichz jsou majoritni nosice diry
s ndbojem ¢ = +e. Pro tyto materidly, ale i pro nékteré kovy (hlinik, indium), je Halltiv koeficient kladny.
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7.10 Wiedemannuv-Franzuv zakon

Na zavér této kapitoly zminime jesté vztah mezi tepelnou a elektrickou vodivosti kovi. Protoze prenos
energie i elektrického naboje obstaravaji v kovech elektrony, mély by byt tyto veli¢iny v korelaci. To plati
pro teploty, pro néz jsou relaxac¢ni doby pro oba zminéné procesy shodné. To byva splnéno obvykle pii
teplotach dostatecné vzdélenych od absolutni nuly.

Pouzijeme vztahy (7.23) a (7.28) odvozené v piedeslych odstavcich a vyjadiime si podil obou vodivosti

K w2nkiTr/3 2 (ks \?
_ mnkTr/3m _ (B) T =T (7.35)
o ne2r/m 3 \ e
Konstanta £ se oznacuje jako Lorentzovo cislo podle holandského fyzika H.A. Lorentze. Tato konstanta je
dana pouze fundamentalnimi konstantami a nezavisi na materidlu daného kovu. Jeji teoretickd hodnota
je

L£L=244x10"8 WQK™2.

Experimentélné ziskané hodnoty £ pii teploté 0°C jsou velmi blizké této teoretické hodnoté, jak ukazuje
tab. 7.2. Tuto shodu experimentu s teoretickou pfedpovédi povazoval Lorentz za potvrzeni pouzitelnosti
teorie volnych elektront pro popis zakladnich vlastnosti kovi.

Tab. 7.2: Experimentalné méfené Lorentzovo ¢islo nékterych kovii
pii teploté 0°C. Data byla pfevzata z [2].

Prvek L1078 WQK™?

Ag 2.31
Au 2.35
Cd 2.42
Cu 2.23
Pb 2.47
Pt 2.51
W 3.04
Zn 2.31
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tabulka ukazuje pod nazvem prvku mérnou elektrickou vodivost a m

Periodicka

.
.

PO. 7.1

v

My

7

elektricky odpor v uvedenych jednotkach. Vétsi vodivost je zndzornéna podbarvenim syt

barvou podle zakreslené stupnice. Data pievzata z [2].
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7.11 P¥iklady

Pi. 7.1: Vliv dimenze na hustotu stavu:

V této kapitole byl odvozen vztah (7.13) pro hustotu elektronovych stavit v 3D vzorku. Odvodte analo-
gicky z geometrie dané dimenze hustotu stavii pro 2D pfipad (kvantovd jama), ktery odpovida vzorku,
kde se mohou elektrony pohybovat pouze v tenké vrstvé. Dale odvodte hustotu stavii i pro 1D piipad
(kvantovy drat). Vysledky porovnejte.

Napovéda: viz obr. 7.7.

9(E) / Ng

o 1 1 1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13
E/E

Obr. 7.7: Vypocet hustoty stava elektront pro rizné dimenze.

Reseni:

D 1 [/2m\*?
3D : gsp = 8D — (m) \/E;

Vae 2w \ h2
D m
2D: gap = ;D = Th2 = N,;
DlD 2m 1
1D : = —= =Y/ =
91D 7 212 JB

Pr. 7.2: Fermiho parametry kovu:
S vyuzitim tabulky 7.1 a vztahu (7.1) vypoditejte parametry krystalt kovu sodiku a médi (n, kg, vr, Er, TF).

Pr. 7.3: Prevody Hallova koeficientu:

Halltv koeficient se v soustavé SI vypocita podle vztahu REII = —1/ne. V nékterych pracich se pouzivaji
jednotky CGS, v nichz se ale Halltiv koeficient spo¢itd podle vztahu RG%S = —1/nec. Ukazte, ze pomér

obou hodnot pro dany material musi splinovat rovnost: R%I / REGS =9.0 x 1013,
Néapovéda: Pozor, v jednotkiach CGS je naboj elektronu roven e = 4.803 x 10719 esu.
Pi. 7.4: Kineticka energie elektronového plynu:

Ukazte, ze kinetické energie 3D elektronového plynu N volnych elektroni pfi teploté 0 K je Uy = %N Ep,
neboli stfedni kineticka energie jednoho elektronu je rovna %EF Kittel, str. 186, pt. 1

Napovéda:
kp
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Pr. 7.5: Tlak elektronového plynu:
Ukazte ze zavislost tlaku na objemu elektronového plynu z predeslé tlohy lze zapsat jako p = %Uo /Vek.
Kittel, str. 186, pr. 2

Napovéda: Pracujte s objemem obsahujicim jeden elektron V; = 23 = Vi /N. Tato podminka definuje
hranu krychle z pravé s jednim elektronem. Spocitejte tlak na sténu této krychle jako

(zmna hybnosti)
(as)(plocha)

Pi. 7.6: Chemicky potencial v 2D pripadé:
Odvodte vztah pro tepelnou zévislost chemického potencialu pro 2D Fermiho plyn volnych elektront

w(T) = kgTIn(ePr/*eT _ 1),

Vyuzijte konstantni hustotu stav pro 2D pripad z ptikladu 7.1. Kittel, str. 186, pt. 3

Pi. 7.7: Frekvenéni zavislost elektrické vodivosti:
Vyuzijte vztah pro driftovou rychlost m(dv/dt+v/7) = —eE a ukazte, ze vodivost pfi frekvenci budiciho

elektrického pole w je
1 —iwt
=70 ()

Staticka vodivost je dand vyrazem o(0) = ne?r/m. Kittel, str. 186, pt. 6

Pr. 7.8: Kohezni energie Fermiho plynu volnych elektronu:*

Spocitejte kohezni energii kovu s jednim vodivostnim elektronem na atom. Pouzijte bezrozmérné jednotky:
Wignertiv polomér r, v jednotkdch Bohrova poloméru ap a energii v jednotkadch Rydberg [Ry]

K2 1 me?

ap = 4dmeg—s, Ry=+—5—.
B O me? Y (4dmeg)? 2R
Postupujte podle schématu na obr. 7.8 nasledovné, ukazte, ze:
(a) Priimérnd kineticka energie jednoho elektronu je Fx ~ 2.21Ry/r2.
(b) Coulombovské energie jadra reprezentovaného bodovym nébojem +e ve stfedu koule s polomérem r
s homogennim rozlozenim néboje elektronu v této kouli je £y = —3Ry/rs.

g T —

|‘ "’ ,, |‘ . K
(x,y,Z) " koule . (X’ ,y’ ,Z’) ¥
-------- " sjednim .
el --=" elektronem ...
Ex~ 221 Ry /15 E;=-3Ry /s Eq=12Ry/rs
d) \
2 4 6 8 10 12
rs/ &
. -0.1 +
fa'ed
~
w -0.2 +
-0.3 +

Obr. 7.8: Vypocet kohezni energie: a) kinetickd energie elektronu z parametrti Fermiho koule, b) coulom-
bovské interakce elektron-jadro, ¢) coulombovské interakce elektronu se sebou samym, d) celkové energie
jako funkce Wignerova poloméru.
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(c) Vlastni coulombovsks energie interakce elektronu s homogennim rozlozenim naboje v kouli o poloméru
rs (interakce elektronu se sebou samym) je Eo = (6/5)Ry/7s.

(d) Celkova energie E = Ex + E; + E.. Ukazte, Ze tato zavislost energie umoziuje vznik stabilnimu
krystalu kovu s minimalni energii pro rs = 2.45ap.

Kittel, str. 187, pt. 8

Reseni: E(rs = 2.45) ~ 4.98 eV

Pi. 7.9: Maximalni povrchovy odpor:

Uvazujme ¢tverec kovu o strané L a tloustce (d < L) s elektrickym mérnym odporem p. Odpor méfeny
mezi protilehlymi stranami ¢tverce se oznacuje jako povrchovy odpor: Rg = pL/Ld = p/d. Tento odpor
nezdvisi na velikosti strany ¢tverce L. Pouzijte vztah pro vodivost (7.28), pfedpokladejte, Ze relaxaéni doba
je dana srazkami na tloustce vzorku 7 =~ d/vp. UvaZzujeme co nejuzsi (jednoatomdrni) vrstvu s tloustkou
odpovidajici d = r,. Spocitejte maximélni povrchovy odpor Rp.

Reseni: Po dosazeni vyjde Ro ~ h/e? = 4.1 k).
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Pésova struktura zeber na pozici: 50°25’52.798” N, 15°47°51.410”E.
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V predchozi kapitole jsme probrali model volnych elektronti, ktery dokéaze vysvétlit mnoho vlastnosti
kovii. Tento naivni model ovSsem neumoznuje objasnit nékteré slozitéjsi jevy jako:
1. rozdil mezi kovy, polovodici a izolatory;
2. puvod kladné hodnoty Hallova koeficientu pro nékteré latky;
3. vztah mezi vodivostnimi elektrony v kovu a valencnimi elektrony ve volnych atomech.

Stoji za povSimnuti, Ze mérny odpor je veli¢ina, kterd mé u pevnych latek nejvétsi rozptyl (az 32
fadi). Pfi nizkych teplotdch dosahuje pro ¢isté kovy 107!% Qcm a pro dobré izolatory 1022 Qcm. Pro

energie

izolator kov polokov polovodi¢

Obr. 8.1: Schéma typické pasové struktury latek.
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Obr. 8.2: Typicky piiklad krystalického potencidlu podél 1D fetizku deseti atomovych jader zobrazenych
modrymi kolecky podél osy X. Svétle modré ¢ary ukazuji coulombovské potencidly prvnich dvou atomu
U o —1/|z|. Cervena ¢4ra je souctem potencialil viech deseti atomti. Zelend ¢ara je aproximace potencidlu
funkci cosinus.

vysvétleni tohoto fenoménu je t¥eba popsat pasovou strukturu energetickych stavi elektrond v pevné
latce, kterou schematicky zobrazuje obr. 8.1. Smyslem této kapitoly je popsat a pochopit tento obrazek.

8.1 Periodicky potencial

V této kapitole se budeme zabyvat modelem idealniho krystalu, ktery ma perfektni periodickou mfizku bez
poruch a bez primési. Tyto odchylky se pak k feSeni pro idealni krystal dopocitavaji pomoci poruchového
poctu.

V jednoelektronové aproximaci je energetické spektrum pevné latky jednozna¢né urcené tvarem poten-
cialu, ktery tuto latku nejlépe vystihuje. Tento potencial zahrnuje jednak vliv atomérnich jader v mfizce,
ale také potencial popisujici vzajemnou elektron-elektronovou interakci. Ziskani spravného potencialu je
znacné slozité a Casto se Feseni hleda sofistikovanymi iteracnimi metodami. Spravnost feseni se hodnoti
podle souladu vypocitanych energetickych hladin s méfenymi hodnotami pro danou latku. Pfi feSeni
Schrodingerovy rovnice se vyuzije dvou vlastnosti potencidlu: a) je redlny, b) je periodicky. Potenciél je
invariantni viici operaci translace Tz o libovolny vektor Bravaisovy miizky T , ktera odpovida symetrii
daného krystalu .

TzU((M) =U((+T)=U(7).

Protoze hamiltonian je vici translaci invariantni, mtizeme ¥ici, Ze operace translace komutuje s jedno-
elektronovym hamiltonidnem. Z pouhé periodicity potencialu, bez znalosti jeho presného tvaru, se da
vysvétlit nékolik dulezitych vlastnosti krystalti. Budeme tedy studovat feSeni Schrédingerovy rovnice pro
jeden elektron,

Hy = (—;;W + U(F)) Y = Ev. (8.1)

Vlastni stavy energie miuzeme zapsat jako vlastni stavy operatoru translace.

8.2 Blochuv teorém

Svycarsky fyzik F. Bloch! odvodil jako prvni vyraz pro vinovou funkci elektronu v periodickém potencialu.

Teorém: V dokonalém periodickém potencidlu krystalu lze napsat feseni Schridingerovy rovnice ve tvaru
rovinné viny vyndsobené periodickou funkci, ktera md periodu shodnou s periodou krystalu.

Gp(F) = FTug(7),  up(F+T) = ug(?). (82)
Tyto vinové funkce popisuji stavy vlastni celému krystalu. Nékdy se oznacuji jako Blochovy elektrony
v protikladu k volnym elektrontim. Matematicky se d& zapsat Blochtiv teorém nékolika zptisoby, které

1Felix Bloch je nositelem Nobelovy ceny za fyziku z roku 1952.
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jsou ale vyznamem vzdjemné ekvivalentni. Ze vztahu (8.2) pfimo plyne druhy zapis Blochovy vlnové
funkce

Yp (74 T) = eF T (7). (8.3)

K tomuto vztahu lze dojit také tak, ze si uvédomime, ze vinova funkce elektronu se musi transformovat
shodné pfi pouziti dvou obecnych operaci translace po sobé v libovolném poradi, nebo pokud provedeme
pouze jednu translaci o souctovy vektor. Pro tyto translace musi platit

TiTs =Tp Ty =Tr 5,

kde T oznacuje operator translace o vektor mfizkové translace T'.

Jako obvykle je vhodné zavést Bornovy-von Karmanovy periodické okrajové podminky. Po jejich
zavedeni dostaneme, ze vlnové vektory k jsou redlné a mohou nabyvat pouze diskrétnich hodnot. Téchto
dovolenych hodnot je v prvni Brillouinové zéné N, t.j. praveé tolik, kolik je elementarnich bunék v daném
vzorku krystalu (viz pf. 6.1).

8.3 Ustredni rovnice

Protoze pracujeme s periodickym potencialem, je nasnadé, Ze bude vyhodné prejit pomoci Fourierovy
transformace z pfimého prostoru do reciprokého prostoru (k-prostor). Pro jednoduchost se nékdy uvadi
nasledujici odvozeni pouze v jedné dimenzi s tim, Ze rozsifeni na 3D je trividlni. V nékterych mistech
odvozovani by to vsak mohlo byt zavadéjici, a proto se budeme v nasledujici ¢asti této sekce drzet ve 3D.
Uvazujme periodicky potencial s periodou danou tfemi transla¢nimi vektory dy, ds, ds. Tento potenciil
mizeme zapsat pomoci Fourierovy fady

U =3 Ug €T, (8.4)
G

N

kde G oznacuje vSechny miizkové vektory reciprokého prostoru.

Koeficienty rozvoje Ug rychle klesaji s rostoucim G. Pro ¢isté coulombovsky potencial je zavislost
téchto koeficientts Uy o< 1/ G?. Z vlastnosti Fourierovy transformace Ize dopoéitat koeficienty U & integraci

pres jednu elementarni buniku
1 G
U =1 / v e CTU (7). (8.5)
c
buka
Konstantni ¢len Uy mizeme zvolit roven nule, protoze urcuje pouze hladinu od¢itani energie. Diky re-
alnosti potencidlu musi pro koeficienty rozvoje obecné platit U_5 = Ué.. Pokud ma krystal navic jesté

symetrii inverze, ziskame navic dalsi podminku

Dale budeme potifebovat Fouriertiv rozvoj vlnové funkce jednoho typického elektronu. Protoze vime,
ze hledand funkce v musi spliiovat Bornovy-von Karmanovy okrajové podminky, je moZné zapsat tuto
funkci jako rozvoj do rovinnych vln spliujicich tyto okrajové podminky

W) =3 C(K) ek (8.6)
K

Suma se provadi pres vlnové vektory K, které zahrnuji vlnovy vektor k a vsechny jeho repliky ziskané
posunutim do dalsich BZ, K = k + G, jak to ukazuje obr. 8.3.

Nyni dosadime rozvoje (8.4) a (8.6) do Schrodingerovy rovnice (8.1). Takto ziskdme vyraz

2 Lo . S A _, o
> h—KQC(K) BTN N UG C(K) ! KFTDT=EY C(K) e (8.7)
d R

2m

K

Protoze rovinné viny rozvoje vinové funkce tvori ortogonalni systém, musi se shodovat koeficienty u
jednotlivych Fourierovych slozek na obou stranich rovnice. Jednoduse feceno pokratime u vsech ¢lenti
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v jednotkacter/L, L= 20a

Obr. 8.3: Na ose jsou zelenymi body oznaceny vinové vektory K povolené periodickymi okrajovymi
podminkami pro 1D fetizek 20 atomfl. Cervené jsou oznaceny vektory reciproké miizky G. Zluté je
vyznacena 1.BZ. Modfe je znazornén jeden vlnovy vektor k z 1.BZ a jeho repliky posunuté pomoci vSech
vektord G.

sumu pres K a exponencielu se soucinem (K’ - 7). Takto dostaneme vyslednou rovnici, kterd musi platit
pro libovolny vybrany vinovy vektor k z 1.BZ, ktery vyhovuje okrajovym podminkam

h2k?

om

(e —E)C(R)+> UsClk—G)=0,  X=
G

(8.8)

Tato rovnice se oznacuje jako ustiedni rovnice (v origindle central equation). Je tfeba si uvédomit, Ze tato
rovnice vznikla pouze pfepisem Schrédingerovy rovnice do momentového prostoru (k-prostoru).

Pro dany vinovy vektor k z 1.BZ obsahuje ustiedni rovnice pouze koeficienty C(k — G). Problém
hledani energetického spektra v 1.BZ se takto rozpada na feSeni ustredni rovnice pro kazdou povolenou
hodnotu vektoru k. Resenim kazdé této rovnice je superpozice rovinnych vln obsahujicich pouze vlnovy
vektor k a vektory posunuté o vektory reciproké miizky G. Timto postupem jsme diferencidlni Schrodin-
gerovu rovnici nahradili soustavou algebraickych rovnic. Nekoneéné sumy se mohou zdat komplikované,
v praxi je ale ¢asto potfeba zkombinovat jen nékolik malo koeficientti, dva nebo ¢tyfi.

Jakmile jsou zndmy koeficienty C z feSeni tistfedni rovnice, mizeme zapsat Blochovu vlnovou funkci
v poradi jiz ve tfetim tvaru

() = Z C(k - G) erF=6) (8.9)
Z tohoto zapisu je zfejmé, ze periodickou ¢ast Blochovy funkce lze ziskat podle

up(® =" C(k — G) e4T, (8.10)
G

Dtikaz toho, Ze tato funkce je skutecné periodicka s periodou krystalové mfizky, je trividlni, a proto ho
pfenechme ¢tenafi jako cviceni.

8.4 Kvazihybnost

Nyni bychom se méli zamyslet nad vyznamem vlnového vektoru I_s:, ktery vystupuje v definici Blochovych
vlnovych funkci.

1. Z vyrazu (8.3) plyne, ze Blochovy vlnové funkce jsou vlastnimi stavy operdtoru miizkové translace
T s vlastni hodnotou danou fazovym faktorem etk T,

2. V limité nulového potenciélu se tstfedni rovnice (8.8) redukuje na vyraz (A, — E)C(k) = 0. ReSenim
jsou standardni rovinné viny s odpovidajicim tvarem 1z () = e'®7 které popisuji volny elektron.

3. Vlnovy vektor k vystupuje v zdkonech zachovani pii srazkéach elektronu v krystalu. Proto veli¢inu hk
nazyvame kvazihybnost. Jako ptiklad uvedme nejjednodussi zakon zachovéni pro rozptyl elektronu
na fononu

—.»

k+q +G.
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4. Blochtiv stav uz neni vlastnim stavem operatoru hybnosti, p = —thV. Mulzeme ale urcit stfedni
hodnotu operatoru hybnosti

(p) = T VE(R).

5. Pri pusobeni vnéjsi sily se Blochuv stav elektronu vyviji podle jednoduché kinetické rovnice

.
F = —(hk).
dt( )

8.5 Vlastnosti Blochovych funkci

Pokud dosadime Blochovu vlnovou funkci ve tvaru (8.2) do Schrédingerovy rovnice (8.1), miizeme zjistit
obecné vlastnosti feseni, které tyto funkce splnuji. Schrédingerova rovnice po zkraceni exponenciely ziska
tvar 2 ) )

{_Qm (A + 2k -V — k2> + U(F)} u () = E(k) ug(7), (8.11)

kde A = (d?/dz?+d?/dy*+d? /dz?) oznacuje Laplaceiiv operdtor. Diky symetrii pii komplexnim sdruZeni
zjistime, Ze musi platit
W) =u (7). BF) =B(-R),  EF) =B+ 0.
Energetické spektrum je tedy periodické. Zavislosti ziskané v néjaké vyssi Brillouinové zéné Ize jedno-
duse posunou do 1.BZ. Tomuto zobrazeni energetickych péast se ¥ika redukované pdsové schéma. Casto se

také daji energetické zavislosti znazornovat tak, ze spojité prechazeji, kopiruji se, do vSech Brillouinovych
zoén. Takto vzniké tzv. periodickeé pasove schéma.

8.6 ReSeni ustredni rovnice v 1D

V této sekci budeme hledat feSeni 1D ustfedni rovnice

v~ BYCG) + Y U Clh— ) =0, A= oF (8.12)
G

2m

Jde o soustavu homogennich linedrnich rovnic svazanych koeficienty C'(k—G). Soustava homogennich rov-
nic mé nenulové feSeni pouze tehdy, pokud je jeji determinant roven nule. Hledani vlastnich stavii energie
pro dany vektor k odpovida feseni podminky nulovosti determinantu. Budeme uvazovat nejjednodussi
potencidl, ktery lze popsat pouze jednou harmonickou slozkou (zelend ¢ara v obr. 8.2)

2w

Ulz) =Ug €9 + Uy 797, 9=

ZapiSeme si ¢ast determinantu, ktery budeme dale Tesit za rtznych podminek

(Ak—2g — E) U, 0 0 0
U, My — E) U, 0 0
det |0 U, (A, — E)U, 0 . (8.13)
0 0 Uy ()\k-&-g - E) Uy
0 0 0 U, (Ahrog — E)

8.6.1 ReSeni na hrané Brillouinovy zény

Uvazujme 1D feSeni na hranici zény, kde £ = 7/a. V tomto bodé budeme skladat feSeni z rovinnych
vln s koeficienty C(w/a) a C(—n/a). Dosazenim do vztahu pro A ziskdme energii pro volny elektron na
hrané pasu, E; = h?r?/2ma?. Z tstiedni rovnice (8.12) nam vyjde determinant matice 2 x 2, ktery se
ma rovnat nule

h2m2

Ei-E
1 Ug ’:0 = Be=EytU,= 352U, (8.14)

det) U, Ei-FE
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Tento vysledek interpretujeme tak, Ze na hranici BZ dochézi ke Stépeni energetické zavislosti, vznika
zakazany pés o Sifce 2U,. Pro slaby periodicky potencial se feSeni uvniti BZ blizi volnému elektronu
s uzkym zakdzanym pasem na hranici BZ. Pro silny periodicky potencial s velkou modulaci vznikaji
jakoby oddélené potencidlové jamy s vlastnimi energetickymi hladinami pro kazdé minimum potencialu.
Zakazané pasy jsou pak velmi Siroké.

Vlastnim stavim energie odpovidaji vlastni vlnové funkce stavii na hranici Brillouinovy zény. Dosa-
zenim vlastniho feSeni E do tstiedni rovnice dostaneme podil koeficientis C(—n/a)/C(n/a) = £1. Z toho
pak dale dostaneme vlnové funkce

1/1:|:(£ZJ) _ emrx/a + efmrx/a'

8.6.2 Reseni v blizkosti hrany Brillouinovy zény
Nyni budeme hledat feSeni v tésné blizkosti hranice Brillouinovy zény. Hledana vinovéa funkce méa tvar
Y(x) = C(k) e + Ok — g) e'k=9)7, (8.15)

Pro tento pripad zapiSeme dva radky ustfedni rovnice a z nich pak sestavime determinant

A — F U,
Uy /\k—g —-F

(e — E)C (k) +U,C(k —g) =0

UyC(k) +(Ap—g — E)C(k — g) =0 = 0. (8.16)

}:> det’

Reseni determinantu nadm dé kvadratickou rovnici, kterd mé dvé feseni

2
E; = L*g; AL \/<A’”’2_ A’“) +U2.

Coz piepiseme v jednotkach vzdalenosti od hrany BZ, k = = + ¢,

h2§2 h2§2 h2f2 E1 5252
E =F —— £\ /4F U2~ F — =+ U, |1+2— 8.17
+(8) 1Jr2m 12m+ g 1Jr2m g<+ Ug22m)’ (8.17)

kde By = h?7?/2ma?.

Tento vysledek je graficky znadzornén na obr. 8.4. Vlnové funkce, které pro oba pasy dostaneme, jsou
tvofeny majoritné jednou slozkou rozvoje do rovinnych vln. Pouze v oblasti hrany se podil obou slozek
vyrovnd. Obrazek 8.4 a) ukazuje, jak se na hrané 1.BZ vytvoii zakdzany pas sitky 2U,. Prvni i druhy pas
maji na tomto misté extrém. Obréazek 8.4 b) ukazuje ptelévani podilu koeficienttt C' v blizkosti hranice
zony.

(=}
-

a) J :
2t Q| i

[
T

2. pas

C(k-g)/C(K)

hranice

Energie E1]

zakazany péas

1. pas

C(K)/C(k-g)

|
i
i
i
1
0.0 0.5 1.0 1.5 0.0 0.5 .0 15

x [#/d] x [/a]

Obr. 8.4: a) Vznik zakdzaného pasu na hranici 1.BZ pro parametry: U, = 0.4 F;. Modie je znizornén
tvar pasti na hranici zény a vznik zakdzaného pasu podle (8.17). Pasy povolenych energii jsou podbarveny
7luté. b) Podil koeficientis C' pro oba pésy.
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8.7 Priblizeni 3D prazdné mrizky

V pripadé prazdné 3D mrizky je potencial zcela nulovy. Oproti pfipadu zcela volnych elektrontt mu-
sime pouze pfenést energetickou zavislost na vlnovém vektoru pomoci translaci G do 1.BZ. Je vyhodné
vytknout konstanty a pracovat v relativnich veli¢inach: &, = k. /(n/a), e = E/E;

e= (& — 202+ (& —2j)* + (& —2k)%,  4,j,k...celsla

Vysledky tohoto modelu pro SC mfizku jsou zobrazeny v nasledujicich obréazcich:
(PO. 8.1: Schéma smért a bodd v reciproké m¥iZce ke krystalu SC).
(PO. 8.2: Redukované energetické schéma SC m¥izky) a (PO. 8.3: FCC m¥izky).

8.8 Reseni modelovych tiloh

8.8.1 Kronigiv-Penneyuv model ze Schrédingerovy rovnice

D O O

Obr. 8.5: Kronigtiv-Penneytiv potencial pevné latky jako periodické uspoirddani obdélnikovych jam.

R. de L. Kronig a W.G. Penney? jako prvni formulovali v roce 1930 tento model pevné latky, ktery
budeme dale oznacovat jako KP.

V tomto prikladu budeme fesit primo Schrédingerovu rovnici pro periodicky pravouhly potencial
podle obr. 8.5. Nalezneme feSeni nejprve v jdmé a potom v bariéie. Protoze jde o oblasti s konstantnim
potencialem, predpokladame feseni v nasledujicim tvaru:

Schrodingerova rovnice vlnova funkce energie
2
v jamé 0 <z < a B4y — By =A™ f Beor  p=la
. B2 A2y 3 _3 h2 g2
v bariéfe —b <z <0 —gamz T Usth = B P =Ce’"+ De FP* U, - E =55

Kvantovani dostaneme z okrajovych podminek. Prvni dvé podminky vychazeji ze spojitosti ¢ a di/dx
v bodé x = 0. Zde Navazeme FeSeni zleva a zprava,

A+B=C+D,
A — 1B = C — 3D.
Déle vyuzijeme blochovskou podminku ¢(—b) = v (a)e *(@+?) pro navizani feSeni v bodé 2 = —b

s feSenim v bodé x = a,
A e'ee efzk(aqu) + Be'@a efzk(aer) — Cefﬁb + l)eﬁb7
100 A ¥ efzk(a+b) — s Be @ eflk(aer) _ ﬁcefﬁb o 6-D eﬂb

Tyto ¢tyfi podminky muzeme zapsat jako soustavu Ctyt linedrnich rovnic pro parametry A, B,C,D s
nulovou pravou stranou. Pokud ma existovat nenulové feSeni této soustavy, musi byt nulovy determinant
této soustavy rovnic:

1 1 -1 -1

100 e - B
det =0. 8.18
€ eraa e—zk(a+b) e—a e—zk(a+b) _ e—Bb _ eﬁb ( )

100 €100 e—zk(a+b) i etea e—zk(a-{—b) _ﬁ e—Bb 6 eBb

2R. de L. Kronig, W.G. Penney, Proc. Roy. Soc. (London) A130, 499 (1930).
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Pro zjednoduseni zéapisu je vhodné zavést nasledujici substituci
x = aa, y = Bb, z=k(a+Db).

Pozor: x,y, z pouZité odsud aZ po (8.20) nejsou soufadnice! Determinant (8.18) se ndm zjednodusi na

1 1 -1 -1
e - -8 B
det =0. 1
€ el g2 eI gz —e Y —g¥ 0 (8 9)

we® e e e —fe Y Be¥

Determinant budeme pocitat jako determinant (2 x 2) z prvnich dvou fadki krat determinant (2 x 2)
z dalsich dvou fadkt. Permutaci vSech kombinaci sloupct dostaneme Sest ¢lenti, které si mizeme zapsat
pro piehlednost do tabulky

+(1,2) (—20)(—2P) = dwaf3

—(1,3) —B2e (e — ) (—e¥ + e7Y) = —41B2 e " sin(x) sinh(y)
+(1,4) —frae (e + ) (eV + V) = —dwafe " cos(z) cosh(y)
+(2,3) Brae (e 4 ) (—e¥ — e7Y) = —daf e " cos(x) cosh(y)
—(2,4) —(1)2 e (—e T + ) (e¥ — e7Y) = da? e % sin(z) sinh(y)
+(3,4) e 2% (—2)(—23) = haf e 2

V levém sloupci jsou zapsani ¢isla sloupcii, ze kterych se pocita determinant na prvnich dvou fadcich a je
uvedeno znaménko odpovidajici permutace. Pravy sloupec obsahuje vypocet ndsobku subdeterminantu z
prvnich dvou fadkt a subdeterminantu ze zbylych dvou fadkt. Podtrzeno a secteno, podminka nulovosti
determinantu nam d& rovnici pro vlastni hodnoty

draB(1 + e"HE) — 4o [(62 — o) sin(z) sinh(y) + 203 cos(x) cosh(y)] =0.
Rovnici upravime na

af(e® + e %) = (4% — o?) sin(z) sinh(y) 4 2a0 cos(z) cosh(y)

2 _ 2
= cos(z) = 527;{ sin(z) sinh(y) + cos(z) cosh(y). (8.20)
a
6
5
4 .
8 :
= P=157 :
33 :
o :
¥ :
g :
g ;
o :
\© :
% 1 = P :
a
0
1 L/ L
-2
6 5 -4 3 2 1 0 1 2 3 4 5 6

aa ()

Obr. 8.6: Prava strana rovnice (8.22).
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Obr. 8.7: Dovolené energetické pasy jsou naznaceny zluté. Vlevo rozsifené pasové schéma, vpravo redu-
kované pasové schéma.

Nyni dosadime zpét za zkratky z,y, z odpovidajici hodnoty
62 _ a2
2c
Toto je tedy presné feseni Kronigova-Penneyova modelu bez jakjchkoliv aproximaci. Pro nézornost pro-

vedeme nyni limitu pro tenkou nekoneéné vysokou bariéru (b — 0,8 — oo). Limita se provede tak, aby
zustal koneény soucin P = %abﬁQ:

cos(k(a + b)) = sin(aa) sinh(8b) + cos(aa) cosh(3b). (8.21)

cosh(8b) — 1,
BQ
203

ﬂ2_a2

g —a _ph_ P
2

(Bh) =" "=

inh(Bb
sinh(8b) — %0 o

V uvedené limité dostaneme tedy finalni vztah pro KP model

cos(ka) = % sin(aa) + cos(aa). (8.22)

Pro P = %7‘( dostaneme pravou stranu jako funkci aa, jak ukazuje obr. 8.6. Protoze funkce kosinus
na levé strané muze nabyvat hodnot pouze v intervalu (—1,1), $tépi se energetické spektrum do pasa
povolenych energii oddélenych zakazanymi pasy. Tento vysledek je graficky zndzornén na obr. 8.7.

Je nutné si ziskany vysledek dikladné promyslet a odvodit z ného nékteré skutec¢nosti:

B  Energetické spektrum elektronu je rozdéleno na dovolené a zakazané pasy.
S rostouci energii elektront se $itka dovolenych past zvétsuje a Sitka zakdzanych past zmensuje.
Pro P — oo dostaneme izolované jamy = ¢arové spektrum.

Pro P — 0 zmizi vidzané stavy v jamé = volny elektron.

vz

Nespojitosti energie, zakazané pasy vznikaji v bodech vyssi symetrie
k= +n(r/a), n=12,....
B Derivace energetické zavislosti pasu na hrané BZ je nulova,

dE
dk lo,+=

B Pocet stavii v kazdém pasu uvnitt 1.BZ (-7, T) je roven N.

B Se zapoctenim spinu je tedy mozné na jeden pas umistit 2N elektroni.
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8.8.2 Kroniguv-Penneyuv model pomoci ustfedni rovnice

Nabizi se samoziejmé otdzka: MuZeme ziskat vztah (8.22) feSenim ustfedni rovnice? A bylo by skuteéné
tristni, pokud by to v tomto obzvlasté jednoduchém pripadé neslo. Pro porovnéani obtiznosti obou variant
feSeni provedeme v této sekci vypocet jesté jednou pomoci tstfedni rovnice. Tento vypocet publikoval
v roce 1983 indicky fyzik Surjit Singh?.

Vlnovou funkei hleddme ve tvaru (8.6). Potenciél (8.4) budeme rovnou uvazovat s izkymi bariérami

ve tvaru d-funkci,
N

U(z) = AaZé(x — sa).
s=0
Potenciél dosadime do tstfedni rovnice (8.12). Pro koeficienty rozvoje potencidlu dostaneme piimou
integraci Ug = A, a to pro vSechny vektory reciproké miizky G = 27n/a,

(\k = E)C(k) + A>  C(k — 2wn/a) = 0. (8.23)

Sumu v tomto vyrazu si oznac¢ime jako funkci f(k). Tato funkce je diky své definici periodicka: f(k) =

f(k —2mn/a). Rovnici (8.23) upravime na tvar

f(k)2mA/h? 5  2mFE
2 _ a2 * =g

C(k) = — (8.24)

Tuto rovnici miZeme pfepsat pro posunuty vlnovy vektor k — k — 27n/a. Vyuzivime periodi¢nosti
funkce f(k) a provedeme sumu pfes index n

f(k) =Y _C(k—2mn/a) = —f(k)2mA/h* k- 27rn1/a)2 —a?

Nyni funkci f(k) na obou strandch rovnice pokratime a dostaneme vztah, ve kterém se budeme snazit
vypocitat sumu

h? 1 1 1 1
2mA 7; (k—2mn/a)? — a? - 7@; [(k‘ —2mnja)—a (k—2mn/a) + «

Tento vztah déale upravime na

_2h204_z 1 _ 1
mAa —~ [ 3(k—a)—mn G(k+a)—mn

Na tento tvar jsme upravili sumu proto, abychom mohli pouZit rozvoj funkce cotangens
> 1

cot(x) = Z prp—

n=—oo

S jeho pomoci se nam podari zbavit se sum a ziskat

—:Z:Z = cot (g(k - a)) — cot (%(k + a)) .

Pro finlni ipravu tohoto vyrazu budeme potiebovat jesté tii znamé trigonometrické identity

sin(x £ y) = sin(z) cos(y) =+ cos(z) sin(y),
sin?(z/2) = (1 — cos(z))/2,
cos?(x/2) = (1 + cos(x))/2.

S jejich pomoci upravime odvozovany vztah na tvar

2h%a 2sin(aa)

" mAa  cos(wa) — cos(ka)’

Tento vyraz se shoduje s rovnici (8.22). Musime pouze sjednotit konstanty zavedené v obou metodach
vypoétu nésledovné: P = mAa?/h?.

3Surjit Singh, ,,Kronig-Penney model in reciprocal lattice space“, Am. J. Phys. 51, 179 (1983).
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8.9 Poznamky k pasové strukture

7 periodickych okrajovych podminek plyne, Ze pocet stavi vektoru kv jednom energetickém pasu je
pravé N. Kazd4 primitivni buiika krystalu ptispiva jednim bodem (povolenou hodnotou) k& do kazdého
energetického pasu. Pro dvé mozné orientace spinu je tedy v kazdém pasu 2N dovolenych stavil.

Krystal miize byt izolator pouze tehdy, pokud mé sudy pocet valencénich elektront. Kovy maji bud li-
chy pocet valené¢nich elektront (alkalické kovy), nebo mohou vznikat z prvki se sudym poctem valenénich
elektronti za pfedpokladu vzajemného piekryvu energetickych pési (kovy alkalickych zemin). Na konci
této kapitoly se tedy vracime zpét k obr. 8.1, ktery by mél byt nyni zcela jasny. Popis tohoto obrazku je
dobrym cvicenim a ¢tenafi ho viele doporucuji.

8.9.1 Metoda tésné vazby

Pokud predpokladédme slabé interakce mezi atomy krystalu, miizeme vyuzit k vytvoreni periodické ¢asti
Blochovy funkce atomarni orbitaly

37 RN p (7). (8.25)

Tento postup je pouzitelny pro nizsi energetické pésy, jako je valenéni pas. Vektory m oznac¢uji mista, kde
lezi atomy v krystalové m¥izce. Funkce f(7— m) zde pfedstavuje atomérni orbital, nap¥. 1s funkci, na
atomu s polohovym vektorem . Proto se metoda tésné vazby nékdy oznacuje jako linearni kombinace
atoméarnich orbitalt s anglickou zkratkou LCAO. Jako cviceni je vhodné ovérit, ze takto vytvorena funkce
je skuteéné periodicka, uj (7" + T) = ug (7).

8.9.2 Bloch mezi volnymi elektrony a atomarnimi orbitaly

0 d)

b)
-2x ‘ E E c s P p
. 1 Obr. 8.8: Energetické pasové schéma: a)
ﬂ c¢arkované parabola pro volné elektrony
/ V7 /’ z 7’ . .
/ bude po zapocitani slabého periodic-
! kého potencidlu nespojitd (plné ¢ary),
/ b) pteklopeni do 1.BZ pro Blochovy
- ‘—— elektrony, ¢, d) energie atoméarnich or-
bitalii, které se vlivem interakce tésné
7 vazby rozsifi na energetické pasy. Pre-
/ vzato z [8] str. 163.

Vypocet pasové struktury daného materialu lze provést rtiznymi zptisoby. Pro valené¢ni pas je mozné
pouzit metodu tésné vazby, pro vodivostni pas je zase vhodnéjsi pouzit metodu téméf volnych elektron.
Pasova struktura, kterda vychazi pro Blochovy elektrony, je nékde uprostied, jak to ukazuje obr. 8.8.
To je dané vhodnou volbou Blochovy vlnové funkce, ktera se sklada z exponenciely a periodické casti.
Exponenciela je fesenim pro volny elektron a periodickou ¢ast mizeme napocitat z atomarnich orbitalt
(8.25). Porovnani téchto t¥i metod ukazuje (PO. 8.4: Pasova struktura Ge).

Projdéme si nyni jednotlivé modely vypoctu energetickych stavi v pevné latce logicky sefazené. Jak je
ziejmé vypocet energetické pasové struktury a disperze F (E) propojuje cely vyklad fyziky pevnych latek
a vyzaduje provazani né€kolika probranych i jesté neprobranych casti. Uvedeme tedy relevantni odkazy
jak do predchozi, tak i do navazujicich ¢asti skripta. Vypocty a experimentélni testovani energetickych
péstu pomoci tomografie Fermiho plochy bude dale zminéno v sekci 10.3.

1. Chovani kovu popisuje dobie Fermiho plyn volnych vodivostnich elektront. Potencial uvnit¥ kovu
je nulovy a cely krystal 1ze chépat jako potencidlovou krabici (viz sekce 7.3). Vysledkem je to, Ze
vSechny kovy se podle tomto modelu maji chovat stejné. Material kovu ma byt izotropni, nejsou
zédné preferované sméry. Systém vodivostnich elektronii vyplni Fermiho kouli, ktera ma na povrchu
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vinovy vektor kr a energii Er. Zopakujme zde vztahy (7.7) pro vlnovou funkci a energii elektronu

jako funkci vlnového vektoru,
_ofr p IE 8.26
= e =5 (8.26)

Jednotlivé elektrony se lisi kvantovym ¢islem, kterym je praveé vlonvy vektor k.

Model prazdné mrizky odpovida modelu téméf volnych elektront, ktery byl diskutovan v sekci 8.7.
Periodi¢nost potencidlu vede na podminku periodi¢nosti energetické disperzni zavislosti,

E(k) = E(k+G).

Diky tomuto vztahu lze Gasti parabolické disperzni zévislosti (8.26), které jsou jiz mimo 1.BZ,
do této prvni zény preklopit. Lze Tici, Ze periodi¢nost krystalu zptisobuje periodi¢nost disperzni

zavislosti E(k), kterou je mozné celou namapovat do 1.BZ.
Dalsim logickym krokem je zapocteni slabého periodického potencialu.
U(F+T)=U(7.

Tam, kde se puvodné paraboly energetickych zavislosti k¥izily, dojde ke vzniku zakazanych pési.
Pasy se nechtéji vzajemné kiizit a dochazi k efektu zvanému anti-crossing. Tyto body jsou typicky
v bodech vyssi symetrie reciprokého prostoru. Obvykle se jednd bud o stfed I', nebo kraje 1.BZ.
Tento efekt je nddherné vidét v obr. 8.4. Celé energetické spektrum se diky slabému periodickému
potencialu rozd€li na pasy povolenych a pasy zakazanych energii.

Zde se v nagich tvahach dostavame do centralniho bodu, kde pfichazi ke slovu Blochuv elektron.
Ten jsme podrobné probirali jiz od zacatku této kapitoly. Zopakujme vztah pro vlnovou funkci
Blochova elektronu (8.2),

Up(F) = e Tup(P),  up(F+T) = ug(P),
Je zFejmé, prvni ¢ast odpovida vlnové funkce volnému elektronu (8.26). Kdezto periodicka ¢ast Blo-
chovy vInové funkce uj(7) se vaze k atomarnim orbitaliim volného atomu. Z vybraného atomarniho
orbitalu (napf. f(¥) = fs3s) mZeme sestrojit tuto funkci podle pfedpisu (8.25), ktery odpovida
normovani na jednotkovy objem. V pfipadé, ze zvolime normovani na jeden atom, vypadal by zapis
pro krystal slozeny z N atomu néasledovné,

L
VN

Toto normovani bude vyhodné pro vypocet kolem vztahu (10.6).

RO £ (7 7).

up(F) =

M=

Nyni se od stfedového bodu za¢neme posouvat na druhy okraj rozsahu uvazovanych modeld. Néasle-
duje model tésné vazby, nebo-1i LCAO — linearni kombinace atomarnich orbitalt. Pokud ma atom 6
nejblizsich sousedl, rozstépi se atomarni energeticka hladina na péas o Sesti stavech. Zapoctenim pe-

riodického usporadani atomit dostaneme disperzni zavislost E(k) a energetické pasy. Metodu tésné
vazby budeme diskutovat v sekci 10.3.1, kde pro nejjednodussi 1D pripad vyjde,

E(k) = Eay — f — 2ycos(ka).

Parametr § urcuje posun atoméarni energetické hladiny a v udava prekryv vlnovych funkci soused-
nich atomi.

Diky symetrii dochazi u polovodict typicky k hybridizaci tetraedrickych vazeb. Rozebereme-li krys-
tal a nechdme pouze nejblizsi sousedy, dostaneme molekulové orbitaly. Origindlni atomarni s a
p orbitaly se zkombinuji na sp? orbitaly, které ndm umoziiuji popsat symetrii vzajemnych vazeb
v krystalech, ktera pak odpovida hustoté elektront.

Na aplném konci naseho zkoumaného rozsahu jsou volné atomy bez jakékoliv interakce s okolim.
Volny atom lze fesit klasicky pomoci Bohrova modelu, viz sekce 1.1.1. Kvantova teorie elektronu
v coulombovském potencidlu dava kupodivu stejné energie (1.3) jako Bohritv model,
Ry
En=——.
n

Kvantova teorie ale navic umoznuje spocitat vinové funkce, které zapisujeme jako orbitaly 1s, 2s,
2p, atd. Z nich je pak mozné napocitat rozlozeni elektronové hustoty.
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PO. 8.1: Sméry a body v periodickém schématu reciproké mitizky ke kubickému krystalu s miizkou SC

1.BZ je zvyraznéna zluté.
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PO. 8.2: Redukované energetické schéma pro SC krystal v aproximaci prazdné mfizky. Energetické

zévislosti ve 2D jsou zobrazeny plnou c¢arou, pro 3D jsou zobrazeny teckované.
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PO. 8.3: Redukované energetické schéma pro FCC krystal v aproximaci prazdné miizky.
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PO. 8.4: Porovnéani pasové struktury germania spocitané: a) metodou tésné vazby, b) metodou
empirického pseudopotencidlu, ¢) metodou téméf volnych elektront. Pievzato z [14] str. 93.
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8.10 Piiklady

Pf. 8.1: Energie témér volnych elektronu ve étvercové/kubické miizce:

(a) Pro jednoduchou ¢tvercovou 2D miizku v modelu téméf volnych elektronti ukazte, ze kineticka energie
elektronu v rohu 1.BZ, k = 7/a(1, 1), je dvojnasobna nez ve stiedu strany, k = 7/a(1,0). (b) Uréete tento
pomér pro pripad 3D SC mifizky. Kittel, str. 209, pt. 1

Néapovéda: Vyuzijte obrazky:
(PO. 8.1: Schéma reciproké m¥izky ke krystalu SC).
(PO. 8.2: Redukované energetické schéma).

Pr. 8.2: Energie témér volnych elektront v mrizce FCC:

Analogicky s predeslym pfikladem uvazujte energetické pasy ve struktufe FCC. Pro pfipomenuti si zo-
pakujte tvar 1.BZ a (PO. 3.3: Zaplnéni reciprokého prostoru).

Vysledek je zobrazen na (PO. 8.3: Energetické pasové schéma FCC).

Komentujte energetické pasy napt. ve sméru [111]. Pravé tady je vidét, Ze minimum energie nemusi nutné
lezet v bodé T' nebo na hranici zény. Kittel, str. 209, pt. 2

Pi. 8.3: Kroniguv-Penneyuv model:

Vyuzijte vztah pro energii elektroni v KP modelu pevné latky (8.22) odvozeny v této kapitole. (a)
Naleznéte energii nejnizsiho energetického péasu pro & = 0 v limité slabého potencidlu, P <« 1. (b) Pro
stejny pripad najdéte velikost prvniho zakdzaného pasu pro k = 7/a. Kittel, str. 209, pr. 3

Napovéda: Energii budeme normovat na hodnotu na hrané pasu E; = h%r?/2ma?.
(a) V uvedené limité se ndm vztah pro energii (8.22) zméni na: 1 — P = cos(aa) = 1 — (aa)?/2.
(b) Zde budeme Fesit rovnici: 1 = Psin(m + &) /(7w + &) + cos(m + &).

Resent: (a) E/Ey ~2P/7?%, (b) E;/E1 = (E — E1)/E; ~ 4P/72.

Pt. 8.4: Ctvercova miizka:
Uvazujte 2D ¢tvercovou miizku s krystalovym potencidlem tvaru

U(z,y) = —4U cos(2mz/a) cos(2my/a).

Pouzijte Gstfedni rovnici a naleznéte velikost zakadzaného pasu v bodé k = (7/a,7w/a). Postadi Fesit
determinant fadu 2 x 2. Kittel, str. 209, pr. 6

Napovéda: Potencial 1ze prepsat nasledovné
4 -
Ulz,y)=-UY e,
n=1

kde G, = 2r/a(+1,£1). Protoze v rohu 1.BZ se budou kombinovat dva ¢leny C(k) a C(—k), bude feseni

ustfedni rovnice
K22

2ma?

Ey=)\+U= +U.

Sitka zakazaného pasu bude tedy 2U.

Pi. 8.5: Metoda tésné vazby v 1D:

Pii této metodé povazujme potencialy jednotlivych atomu za delta funkce. Pevna latka vznikne jako
1D fetizek téchto delta funkci. Interakce mezi sousednimi atomy je zprostfedkovana pouze tunelovanim
s koeficientem t. Poruchovy hamiltonidn mtzeme zapsat v Diracové symbolice jako

Ho=—tY |+ 1)+ [ +1,
l

kde ! indexuje atomy na pozici R; = la a vlnové funkce |I) ozna¢uji atomérni orbital na pozici I-tého
atomu.

Reseni: V Diracové symbolice je Schrédingerova rovnice zapsana jako

H|k) = By k).
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Blochovy vlnové funkce jsou

k) =" e*|1).

l

Pfimym dosazenim hamiltonidnu a vinové funkce do Schrédingerovy rovnice ziskdme vztah pro energii v
energetickém pasu, ktery vznikne z atomarnich energetickych hladin

E, = —2tcos(k), kde ke (—mm). (8.27)

Nulova hladina energie odpovida energii atomérni hladiny. Tato hladina se diky tunelovani podél 1D
atomarniho Fetizku rozsiti na pas sitky 4t, viz obr. 8.9.

U(x) E 1BZ
0 + .
,,,,,,,,,,,,,,,,,,,,,,,,, gEO__
—0—0—0—0—0—0—0—0—0—0— X S B S S R S k
1 2 3 45 6 7 8 9 10 - 0 m

Obr. 8.9: Potenciél deseti d-funkci (vlevo) a energeticky pas (8.27) vznikly tunelovanim (vpravo).

Pr. 8.6: Atom jako J-potencial:

Vyfeste Schrodingerovu rovnici pro jednoduchy d-potencidl v dimenzi 1D, U(z) = —Ad(x). Naleznéte
energii a vlnovou funkci zékladniho stavu. V tomto pfikladu pouzivame delta funkci, kterd ma rozmeér
1/ A. Integraci d(z) podle soufadnice x dostaneme jednicku. Proto je rozmér A roven eVA.

Reseni: Vime, Ze hleddme vazany stav. Mimo J-funkci se bude vlnova funkce v bariéfe piirozené expo-
nencialné tlumit. Normovana vinova funkce a ji odpovidajici energie vazaného stavu ma tedy tvar

h2k2

2m

Y(x) = re "l B = (8.28)

Zintegrujeme Schrodingerovu rovnici
& &
B2 [dy]®
| == — = E .
ua { dx]g / da A6 (2)v() / dz Bu(z)
—£ —£

Provedeme limitu £ — 0 a dostaneme

2 o(dy| A
— — _ — — )\ = U.
2m (dx n dz _) ¥(0)=0
Dosadime vlnovou funkci (8.28) a jeji derivace
h? h?k mA
2m( \/EH) /\\/E = A m K 72

Tento vysledek mizeme dosadit do vyrazu pro energii zadkladniho stavu

m o

Ey=———
0 2h2

Tak napf. pro A = 12.4 eVA dostaneme energii zékladniho stavu Ey = —10 eV a parametr x = 1.6 AL,
Pro typickou vzdalenost atomt, a = 2 A, pak dostaneme parametr $tépeni z predchoziho piikladu:
t =Ake " = 0.8 eV a sitku energetického pasu 4t = 3.2 eV.
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ot T st Tansistor.

gelsctronics group & “T:':.‘-;imtd Al Bell Labs,

December 23, 1941

50 Years and Counting..-

mmlw“‘“mwl“

Replika pruniho tranzistoru: Tranzistorovy efekt byl objeven v Bellovych laboratofich tymem
pracovniki ve slozeni William Shockley, John Bardeen a Walter Brattain. Jako den objevu se udava
16. prosinec 1947. Za tento objev ziskal tficlenny tym v roce 1956 Nobelovu cenu za fyziku.

John Bardeen je doposud jediné osoba, ktera ziskala Nobelovu cenu za fyziku dvakrat. Podruhé to bylo
v roce 1972 za BCS teorii supravodivosti. Tu s nim ziskali jesté Leon Cooper a John Robert Schrieffer.

Prevzato z webu WIKIPEDIA: http://en.wikipedia.org/wiki/Transistor

134


http://en.wikipedia.org/wiki/Transistor

Kapitola 9

Polovodice
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9.6.1 Teplotni ionizace donorti a akceptortti . . . . . . . . . .. ... 146
9.7 Termoelektrické jevy v polovodiéich . . ... ... ... .. ... ...... 147
9.8 Priklady . . . ¢ ¢ v v i e e e e e e e e e e e e e e e e e e e e e e e e e e e e 150

9.1 Charakteristické vlastnosti polovodici

Na tivod je dobré si vyjasnit, co je polovodi¢ a jak se lisi od kovl a izolatort. Predpokladem pro polo-
vodicové chovani materialt je kovalentni vazba. Tato vazba ma kvantovy charakter a vznika prekryvem
vlnovych funkci valenénich elektront sousednich atomu. Tato vazba je tvorena dvojici elektroni s opacné
orientovanym spinem.

P1i nizkych teplotach se dokonaly krystal polovodic¢e bude chovat jako izolator. Vlastnosti typické
pro polovodi¢ vznikaji hlavné v dtsledku tepelné excitace a vlivem ptrimési. Typické polovodice jsou
prvky ze 4. skupiny periodické tabulky prvka (Si, Ge). Ty maji ¢tyfi valenéni elektrony, které vytvareji
vazby v tetraedrické hybridiza¢ni konfiguraci sp3. Pfestoze existuji dvé mozné prostorové konfigurace
tetraedrickych vazeb, v krystalech téchto polovodici se vyskytuje pouze usporadani typu diamantu. Obé
mozné konfigurace soucasné se objevuji pouze u amorfnich materialu.

Tetraedrické vazby vytvareji i binarni polovodice, které mtzeme délit podle ¢isla sloupcti v perio-
dické tabulce nésledovné. Polovodice III-V (tii-pét) jsou slouceniny: GaAs, AlAs, GaN; polovodice II-VI
(dva-Sest) jsou slouceniny: CdTe, HgTe, ZnS. Vétsina téchto polovodi¢h vytvaii krystaly typu sfalerit.
Kovalentni vazba u téchto polovodi¢t se ¢asteéné kombinuje s vazbou iontovou, coz vede k polarizaci
vazby.
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Obr. 9.1: Typické vodivosti, resp. rezistivity izolatort, polovodic¢tu a kovi pfi pokojové teploté. U polovo-
di¢t je uveden rozsah, jehoz leva krajni hodnota je zdiraznéna teckou. Ta odpovida ¢istému polovodici
bez primési.

9.2 Pasova struktura polovodici

Pro typické polovodice se udava mérny odpor pii pokojové teploté v rozmezi 1073 az 10® Qcm. Typické
odpory /vodivosti nékterych materialii jsou uvedeny v obr 9.1. Pasova struktura v pfimém prostoru pfi
teploté 0 K odpovida tomu, ze posledni zcela obsazeny pas je valenéni pas. Nad nim je pas zakazanych
energii, oddélujici vodivostni péas, ktery je zcela prazdny (obr. 9.2). Plny ani prazdny pés nemize vést
elektricky proud. Pfi nizkych teplotach jsou proto Cisté polovodice izolatory, nemaji volné elektrony a
nevedou elektricky proud. S rostouci teplotou mize dojit k vytrzeni elektronu z nékteré vazby a tento
volny elektron pfispiva k vodivosti. V pasové struktuie to odpovida pfechodu elektronu z valen¢niho
do vodivostniho pasu. Energie potfebnd k tomuto piechodu odpovidd préveé sifce zakdzaného pasu E,.
Hodnoty pro riizné materialy jsou zapsany v tab. 9.1. Pomoci pasové struktury je pak navic mozné popsat
i to, Ze k vodivosti prispiva i prazdny stav, ktery zustal po vytrzeném elektronu ve valencénim pasu a
ktery se nazyva dira.

E

1 HAS
vod'wos)“m P

hrana pasu E, -

AS 1.BZ
p&

%a\@%aﬂy

hrana pasu

20 x perioda a -mla 0 mla

Obr. 9.2: Standardni pasova struktura polovodice zobrazend v pfimém prostoru (vlevo) a disperzni relace
v reciprokém prostoru s vyznaéenou 1. Brillouinovou zénou (vpravo).
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Tab. 9.1: Zakézany pas typickych krystala pii 300 K.

Krystal C (diamant) Si Ge GaAs
B, (eV) 5.4 114 067 143

Energie zakdzaného pasu F, polovodict je typicky kolem 1 eV. Polovodice délime na prime a neprimé
podle toho, zda minimum vodivostniho pasu lezi v k-prostoru nad maximem valen¢niho pasu. Typické
priklady nepfimych polovodic¢t jsou Si a Ge, typicky pfimy polovodi¢ je napt. GaAs.

(PO. 9.1: Pasova schémata polovodicd Si, Ge, GaAs),
(PO. 9.2: Minima pasové struktury ve vodivostnim pasu).

a) E E by E E
L Eg L
1E W
— [ 0 T I 0
1] 1]
a &
| k | k

Obr. 9.3: Schéma absorpce fotonu v pasové struktufe a) pfimého a b) nepfimého polovodiée. Pfechod
elektronu mezi pasy je znazornén Gervenou Sipkou, fonon zelenou ipkou. Zluté je zakresleno odpovida-
jici spektrum absorpce. V pripadé nepfimého polovodice neni minimum vodivostniho pasu v centru BZ
globalnim minimem.

K prechodu elektronu z valen¢niho do vodivostniho pasu polovodice muze dojit napf. pfi absorpci
fotonu. Ve valenc¢nim pasu pak ziistane dira. Protoze foton s energii fadové 1 eV ma zanedbatelny vinovy
vektor, je uvedeny prechod vertikalni v k-prostoru. Pokud se méa uskutecnit prechod elektronu, ktery
neni vertikalni v k-prostoru, musi se pro splnéni zakona zachovani hybnosti na prechodu podilet dalsi
kvazicastice. NejCastéji se setkdme s tim, Ze se vyuzije fonon, ktery méa k tomu vhodné vlastnosti. Fonony
maji vlnové vektory pokryvajici celou Brillouinovu zénu, naproti tomu jejich typické energie jsou pouze
10 az 30 meV. Typické energetické schéma prechodu elektronu v pasové struktuie pfimého a neprimého
polovodice je zobrazeno v obr. 9.3.

Zakony zachovani pfi absorpci fotonu s vlnovym vektorem k a s frekvenci Wopt 1ze zapsat ve tvaru:
k(elektron ve vod. p.) = q(fonon) = k(foton) = 0; Ey £ hw(q) = hwop .- (9.1)

Pfechodu se ti¢astni fonon s vlnovym vektorem ¢ a s frekvenci w(g). Znaménko (+) plati, pokud v procesu
fonon vznikne, znaménko (—) plati, pokud pfi procesu jeden fonon zanikne.

Obrovsky vyznam polovodi¢ti v dnesni elektronice tkvi predevsim v tom, ze vlastnosti polovodic¢a
miizeme vyznamné ménit pomoci pridani pfimeési jinych prvkid, neboli dotovanim polovodiéi. Jako vlastni
oznacujeme ty polovodice, které jsou nominédlné bez primési. Polovodice, které jsou dotované tak, aby
v nich ptrevladaly elektrony, resp. diry, oznacujeme jako nevlastni polovodice n-typu, resp. p-typu.

9.3 Pohybové rovnice elektronu v energetickém pasu

Odvodime pohybovou rovnici elektronu v energetickém pasu. Protoze Blochovy vlnové funkce jsou roz-
prostfené v celém krystalu, chceme-li popsat elektron, ktery je lokalizovan, musime ho popsat jako vlnové
klubko se stfednim vlnovym vektorem k. Ve vlnovém klubku mé hodnota k urcity rozptyl, neni ostra.
Grupové rychlost tohoto klubka, kterd odpovida Sifeni elektronu v krystalu, je dané derivaci vy = dw/ dk.
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Kmitocet w souvisi s energii podle vztahu E = hw, a tedy plati

. 1dE

9.3.1 Elektrické pole
V ptipadé pisobeni vnégjsiho elektrického pole bude energie pfedand elektronu za ¢as dt rovna elektrické
sile nasobené drahou elektronu podle

SE =F-0% = —¢E - U, dt.

Pokud prepiSeme diferencial energie uzitim derivace podle k a dosadime za grupovou rychlost z (9.2),
dostaneme

9B k= —eB 1 5
dk h dk
Snadnou tpravou dostaneme finalni tvar pohybové rovnice elektronu
- . dk =
h 0k = —eF 6t = ha =F. (9.3)

Podle druhého Newtonova zidkona pro volny elektron plati, ze pusobici sila se rovna ¢asové zméné hyb-
nosti. Tento vztah se d& zapsat pro volny elektron ve tvaru shodném s (9.3). Ale pro elektron vazany
v energetickém pasu polovodice to ma trochu odlisny vyznam. Zde je disperzni vztah mezi energii a vlno-
vym vektorem dan vlastnostmi krystalu. Pisobenim vnéjsi sily na elektron dochézi k pfedavani energie
jak elektronu, tak i krystalové miizce. To je popsané pravé pohybem elektronu v daném energetickém
pasu.

Pouzijeme-li tvar Blochovy vlnové funkce (8.9) s vilnovym vektorem k

Gp(F) = Y ClE+ ) e+, (9.4)
é
milzeme spocitat stfedni hodnotu operatoru hybnosti elektronu v tomto stavu jako
(pet) = (Vg —hV|yp) = > hk+G)|C(k+G)? =hk+hY_ G|C(k+G). (9.5)
€ G

Prvni ¢len odpovida hybnosti volného elektronu a druhy ¢len je zodpovédny za interakci s mfizkou,
které se predava impuls po kvantech hG. Podrobnéjsi rozbor interakce s mrizkou je téma pro pokrocilejsi
ucebnice.

Stfedni hodnotu operatoru hybnosti lze pocitat i s pouzitim zapisu Blochovy vlnové funkce jako
soucinu rovinné viny a periodické ¢asti uy () ve tvaru (8.2). Toto odvozeni se provadi nasledovné,

VUE
Uug

Pe U (F) = —1hV (a’*%,;(f)) = (hE— Wh ) Yz(7).

Pfi vypoctu stfedni hodnoty tohoto operatoru je potieba spocitat integral z (:hVug/uz). Tak ziskdme
vyraz pro vypocet hybnosti elektronu z parametri pasu, ve kterém se tento elektron pohybuje. Tento
vztah je dulezity napf. pro vypocet proudu

m -
pa = 1 VE(E). 06)

Formélné musi byt tento vyraz ekvivalentni s vysledkem pfedeslého vypoctu (9.5), coz se dd ovéfit.

9.3.2 Magnetické pole
Pohybova rovnice (9.3) bude platit stejné i pfi ptisobeni magnetické Lorentzovy sily

dk = dk e

hi = —€ /(7 X B = _ = ——

dt dt h?

Za povsimnuti stoji to, Ze pohybova rovnice vpravo je zapsana v souradnicich k-prostoru. Z tvaru této
pohybové rovnice mizeme odvozovat nasledujici vlastnosti feseni:

V:E x B. (9.7)
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B Pii pisobeni magnetického pole se elektron v k-prostoru pohybuje po plose konstantni energie
(kolmo na smér gradientu energetické disperzni zavislosti).

B Primét vlnového vektoru k do sméru magnetického pole je béhem celého pohybu konstantni. V re-
ciprokém k-prostoru to predstavuje pohyb v roviné kolmé na vektor B po plose konstantni energie.
V redlném x-prostoru tomu odpovidd pohyb po Sroubovici s osou ve sméru B.

9.4 Kvazicastice elektron a dira

9.4.1 Efektivni hmotnost elektronu

Zderivujeme vyraz pro grupovou rychlost (9.2) podle ¢asu. Tim ziskdme vztah pro zrychleni, ktery budeme
déle upravovat, abychom dostali forméalni podobnost s druhym Newtonovym zakonem
di, 1dV;E 1 dk .

1 " 1
= = (VyVzE) — = —(V;V;E)-F = - F
dt  h dt h(v’fv’f ) dt h2(vkvk ) (m*)

¢
Pfi odvozovani jsme za derivaci podle ¢asu dosadili pohybovou rovnici (9.3). Nové zavedeny tenzor (ni)
ma vyznam pfevracené hmotnosti a predstavuje velmi dilezitou veli¢inu: tenzor reciproke efektivni hmot-

nosti s maticovymi elementy
1 1 d2E
< * > = A A (9.8)
m*/ . h? dk,dk,

Podle tohoto vztahu provedeme vypocet efektivni hmotnosti v celé Brillouinové zéné pro nejjednodussi
energeticky pés zobrazeny v obr. 9.4a). Z obr. 9.4b) je zfejmé, Ze efektivni hmotnost je nespojitd a mize
byt i zaporna. Pokud je sledovany energeticky pas vodivostni a je pouze slabé obsazen, elektrony obsadi
nejniz$i hladiny blizko stfedu zdny. Pro tyto obsazené stavy lze pokladat efektivni hmotnost za konstantni
veli¢inu.

a) E(K) b) Me

-mla 0 mla

Obr. 9.4: Vypodet efektivni hmotnosti v jednoduchém energetickém pasu. a) Typicky energeticky pés, b)
efektivni hmotnost elektronii v tomto pasu spoc¢itand podle (9.8).

Tato efektivni hmotnost umoznuje popsat dynamiku pohybu elektronu v pasu tak, jako by se jednalo
o Castici s touto hmotnosti. Efektivni hmotnost je danéd tvarem energetického pasu a je jina nez klidova
hmotnost volného elektronu. Proto je i Blochtiv elektron v energetickém pasu kvazicastice. Nyni miizeme
provést rozvoj energetické disperzni zavislosti kolem minima, jehoZ polohu si ozna¢ime EO

- - 1 d’E
B = Blf) + 5 3

Eo(k —ko)u(k — ko). (9.9)

Efektivni hmotnost elektronu v pasu je tedy tenzorova veli¢ina, pti ptisobeni vnéjsi sily v riznych smérech
se bude elektron urychlovat rtizné. Jakykoliv obecny tenzor ve 3D lze zapsat v diagonalnim tvaru, kdy
jsou nenulové pouze t¥i koeficienty.
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Tab. 9.2: Sitka zakdzaného pasu E4 v elek- material B me man man
tronvoltech a efektivni hmotnosti v jednot- GaAs - - ’

e o 152 0.067 0082 045
ach AMOLLOSH VOINEHO SISRIIont PIO W™ mas 042  0.023 0025 041
pické III-V polovodice.

InSh 0.24 0014 0016  0.40

Tabulka 9.2 ukazuje efektivni hmotnosti typickych III-V polovodi¢i. Pro né jsou typické tii vlast-
nosti: a) efektivni hmotnost elektront je podobna hmotnosti lehkych dér, b) tyto hmotnosti jsou tmérné
§ifce zakdzaného pasu, c) efektivni hmotnost tézkych dér p#ili§ nezévisi na materidlu. Jednoduchou em-
pirickou zavislost efektivni hmotnosti elektroni na Sifce zakdzaného pasu uvadi Thomas Thn ve své knize

Semiconductor Nanostruckures.
1 1 ( 17 eV)
— =1+ .
me My E,

Tato zavislost je na obr. 9.5 zakreslena Cervenou carou. Je vidét, ze tato empiricka kiivka dobfe kopiruje
fadu experimentalnich bod.

02 r v IV B-ZnSa
o LV
4 T-VI GaN,
0.15
ZnTe, ZnSe
S N £
Obr. 9.5: Typickd zavislost efektivni hmot- .= InN,
. o wry . ‘ , £ 01f CdTe o
nosti elektronti na Sifce zakdzaného pasu Fj, o .
o 7 v 7 . e a;
pro rtizné polovodice. Pro zobrazeni jsou pou- N
Zity t¥i rizné symboly odpovidajici stoupajici 0051 Gash
. . o - G
iontovosti polovodict IV, III-V a II-VI. Pie- e ©
. nAs
vzato z knihy Thomase Thna[19]. fasb
00 ‘ ‘ ‘ . ‘ ‘

0.0 0.5 10 15 25 3.0 35 4.0

20
Ey[ev]

Rozborem vlastnosti pasové struktury polovodiée zjistime, ze nésleduji vyroky musi bud vSechny pla-
tit, nebo plati vSechny vyroky negované:
B Elektron se miize v pasu snadno urychlovat.
Elektron ma malou efektivni hmotnost.
Energeticky pas méa velkou kfivost.

Tento pas ma velkou §itku.

Pés vzniknul diky silné interakci stavli na sousednich atomech.

Takto formulované vyroky obvykle plati pro vodivostni pas.

9.4.2 Dira jako kvazicastice v obsazeném pasu

Nyni se budeme zabyvat pfipadem, kdy je valen¢ni pas prakticky zcela zaplnén. V takovém pfipadé je
rychlejsi popsat obsazeni stavll vyc¢tem prazdnych mist (dér), nez fikat, které stavy jsou v tomto pasu
zaplnéné. Déle je vhodné pFfipomenout, Ze zcela obsazeny pas nemuze vést elektricky proud, nebot ke
kazdému stavu s rychlosti v, je obsazen i stav s opa¢nou rychlosti —t,. Suma rychlosti, vlnovych vektora
nebo spind § pres stavy v celé Brillouinové zéné musi byt diky této symetrii nulova,

Y wk)y=0, > k=0, > §=o. (9.10)
1.BZ 1.BZ

1.BZ

Obréazek 9.6 ukazuje pro porovnani energetické schéma polovodice s jednim elektronem ve vodivostnim
pasu a druhé energetické schéma s jednou dirou ve valen¢nim pésu. Dira se ve vnéjsich polich chova tak,
jako by meéla kladny naboj. Pokud napft. prilozime na polovodi¢ elektrické pole v kladném sméru osy X,
elektrony se budou ve valenénim pasu premistovat doleva. Dira v pasu se proto bude posouvat opacné,
doprava, ve sméru pole. Vlastnosti diry se daji odvodit z vlastnosti elektrond v daném péasu s vyuzitim
sumacnich pravidel (9.10).
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3 E(K) b) E(K)

Obr. 9.6: Energeticky pas a) s jednim elektronem, b) s jednou dirou.
Tab. 9.3: Parametry diry na zakladé vlastnosti elektronu chybéjiciho ve valenénim pasu.

kvazicastice naboj hmotnost energie k-vektor rychlost spin
elektron —e me <0 E, Ee Ve S,
dira +e mp = —me >0 E, =—FE, Eh = —Ee Up = Ve §p, = —8,

V tab. 9.3 jsou sepsany vSechny parametry diry na zdkladé vlastnosti elektronu chybéjiciho ve vale-
nénim pasu. VSechny tyto vztahy spolu souvisi a budeme je pouze kratce komentovat. Uvazujme nejdrive
energii diry, ¢im nize je dira ve valenénim pasu, tim vyse jsou stavy obsazené elektrony a celkova energie
je vyssi. Energie diry tedy roste smérem dol v obr. 9.6b). ProtoZe diry maji stejné jako elektrony po-
lo¢iselny spin, musi se ¥idit Fermiho-Diracovou statistikou (7.5). Distribu¢ni funkce pro diry je dané jako
pravdépodobnost, Zze stav neni obsazen elektronem, takze

1 1
e(B—/keT {1 ew—E)/ksT 11’

E)=1—f.=1- (9.11)
Pokud u této distribu¢ni funkce oto¢ime znaménko energie F; = —F,., dostaneme obvykly vyraz pro
Fermiho-Diracovo rozdéleni. Vztah pro vlnovy vektor a spin diry vychézi pfimo z (9.10), vztah pro
rychlost odvodime z celkového proudu

Zcela zaplnény pas s jednou dirou s vlnovym vektorem Ee a s rychlosti elektronu v, zpusobuje proud, ktery
je ekvivalentni jedné dife s kladnym nabojem +e a rychlosti v;, = v.. Nakonec pfipomenme jesté efektivni
hmotnosti. Oznacime si efektivni hmotnost elektront m, a efektivni hmotnost dér my,. V disledku otocéeni
znaménka energie pro diry bude i opacné znaménko u efektivni hmotnosti m, = —m.. Jak je patrné
z obr. 9.4b), diry u vrcholu valen¢niho pasu budou mit kladnou efektivni hmotnost. Diky tomuto zavedeni
jsou efektivni hmotnosti elektrond i dér kladné velic¢iny. Jak ukazuji éervené Sipky v obr. 9.7, elektricky
proud generovany elektrony i dirami je vzdy ve sméru elektrického pole E.

E
elektron Obr. 9.7: Pohyb elektronu ve vodivostnim pasu a diry ve
~—O— valenénim pasu pod vlivem elektrického pole E. Pfestoze
Ve le rychlosti obou kvazi¢astic sméruji v opacnych smérech,
v elektricky proud zptsobeny obéma kvazicasticemi sméruje
dira @__.> ve sméru elektrického pole.
I
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Zavedeni diry zptsobem predstavenym v této sekci musi byt konzistentni. Smér vinového vektoru a
rychlosti musi byt kolinearni. Jako cviceni je vhodné si provést rozbor prikladu optické excitace elektronu
z valen¢niho do vodivostniho pasu pro k = 0, pfi kterém musi platit zédkon zachovani energie, k-vektoru
i spinu.

V nasledujicim ramecku shrneme vsechny dilezité rovnice popisujici dynamiku kvazi¢astice v ener-
getickém péasu:

1 1 1 d°E dk = v 1Y =
7= -V.E, = ——, h— =F, — = - F. 9.12
U RVE <m) 12 dk,dk, at at <m) (9:12)
Qv
9.4.3 Disperzni relace v okoli stiedu 1.BZ
E
elektrony
By
1 tézké diry Obr. 9.8: Zjednodusené pasové schéma polovodice s jednim
A % elektronovym vodivostnim pasem a tFfemi dérovymi pasy ve
1 lehké dfry valen¢nim pasu. Péasy jsou uvazovany v parabolické apro-
\' o ximaci podle (9.9), E, — sitka zakdzaného pasu, A — spin-
spin-orbitalné orbitalni Stépeni.
odstépeny pés
k

Péasova schémata tfi typickych polovodi¢t jsou zobrazena na konci kapitoly, (PO. 9.1: Pasova
schémata Si, Ge, GaAs). Vybereme si GaAs, ktery je pfimy polovodié, a popiSeme zakladni rysy jeho
energetickych past. Pri obvyklych vypoctech vlastnosti polovodi¢ii neni nutné znat globalni disperzni
relace v celé BZ, ale stac¢i charakterizovat energetické pasy v okoli extrémi pasu. Zjednodusené pasové
schéma typického prfimého polovodice obsahuje Ctyfi energetické pasy, jak je to zobrazeno na obr. 9.8.
Zakéazany pas Sitky I/, oddéluje obsazené stavy ve valenénim péasu a prazdné stavy ve vodivostnim pésu.
Vodivostni pas vznikd z atomarnich s hladin, a proto je pouze jeden. Valen¢ni pas vznika z atoméarnich
p hladin (ps, py, p-), a proto jsou ve valenénim péasu tii dérové pasy. Pas lehkych dér a pas tézkych dér
maji spolecné maximum na vrcholu valenéniho pasu. Diky interakci spinu s orbitadlnim momentem dér
je treti dérovy pas posunuty k niz$im energiim. Tento posun se oznacuje jako spin-orbitalni Stépeni A.
Typické pasové schéma polovodice tedy obsahuje ¢tyfi energetické pasy, které maji rozlisné krivosti a tedy
i efektivni hmotnosti odpovidajicich kvazic¢éstic (elektrony, lehké diry, tézké diry a diry ve spin-orbitalné
odstépeném pésu).

9.4.4 Meéreni efektivni hmotnosti v polovodicich

Jesté jednou zopakujme, Ze elektron i dira v polovodici jsou kvazicastice. Mohou existovat pouze v krys-
talu, ale ne mimo néj. Nesmime si je plést s elementarnimi ¢asticemi, jako je volny elektron nebo pozitron.
Efektivni hmotnost elektront je napt. v GaAs pouze 0.067 my.
B
Obr. 9.9: Geometrie usporfadani experimentu pro méfeni
cyklotronové rezonance. Vysokofrekvencni elektrické pole

Es osciluje ve sméru kolmém na smeér statického magnetic-
kého pole B.

Efektivni hmotnost se zavadi pro popis stavii blizko hrany pasu, kdy ma smysl pouzit parabolickou
aproximaci energetického pasu. Tenzor efektivni hmotnosti lze méfit pomoci magnetického pole B. No-
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sitelé proudu se pohybuji po spirdlach s osou podél sméru magnetického pole. Budeme uvazovat napft.
méfeni efektivni hmotnosti elektronu. Podobné, jako jsme to odvozovali pro elektrony v kovu, vyuzijeme
podminky rovnovahy sil pusobicich na elektron pfi kruhovém pohybu. Stejné jako v kapitole o kovech
(v sekci 7.9) dojdeme k vyrazu pro cyklotronovou frekvenci

eB
. = . 9.13
o= 8 (9.13)

V experimentalnim uspofadani podle obr. 9.9 mame studovany vzorek umistény v magnetickém poli
B. Elektrony budou v tomto vzorku vykonavat pohyb po kruznici. Pokud na vzorek bude piisobit vy-
sokofrekvenéni elektrické pole polarizované ve sméru kolmém na magnetické pole s rezonané¢ni frekvenci
we, bude se smér elektrického pole ménit ve fazi stejné jako slozka rychlosti elektronu. Dojde tedy k re-
zonan¢ni absorpci energie. Uvedme jednoduchy priklad elektrického pole s frekvenci v = 24 GHz. Tomu
odpovid4 thlové frekvence w = 1.5 x 10!! s7! a energie £ = Aw, ~ 0.1 meV. Vlnova délka odpovidaji-
ctho fotonu je pfiblizné 10 mm. Pro typickou efektivni hmotnost 0.1 mg pak podle (9.13) dostaneme, ze
budeme pro tento experiment potfebovat magnetické pole o intenzité 0.085 Tesla (850 Gauss).

9.5 Koncentrace vlastnich nositeli

Odvodime si koncentraci elektront a dér v polovodic¢i s danou sitkou zakdzaného pasu a pii dané teploté.

Pozor: U polovodici se ndzev chemicky potencidl p nepouZivda. Misto néj se pouzZivda termin Fermiho
mez, prestoZe byla pivodné tato mez definovdna pouze pro teplotu absolutni nuly.

Tato Fermiho mez necht lezi v zakdzaném pésu, jak to ukazuje obr. 9.10. Pro elektrony excitované
pres zakazany pas do vodivostniho pasu dostaneme jejich koncentraci integraci pfes cely vodivostni pas:

(oo} (oo}
1 1 (2m\*?
n=y [PuBrsEaE = o (Fa) et [ B E, e BT i
Ey Eq

meksT\*? gy kar (u—Eg)/knT
=2 512 e =nge . (9.14)

Pro hustotu stavii jsme pouzili vztah (7.13), Fermiho-Diracovo rozdéleni pro obsazeni hladin elektrony
jsme za podminky (E — p > kpT) nahradili pouze Boltzmannovym faktorem e~ (P~#/ksT (yiz dodatek
B). Parametr ng predstavuje efektivni pocet stavli ve vodivostnim pasu pfi dané teploté, n(u = Eg) = ng.

E E
- etnd PA°
qodivo® u (E)

B

ol Fermiho hladina
Obr. 9.10: Vlevo: zjednodusené pasové schéma
polovodice s Fermiho hladinou ve stfedu zaka-

0 zaného pasu. Vpravo: Fermiho-Diracovo roz-

. 4S déleni, zluté je znédzornéno rozdéleni pro elek-
Va\eﬂé‘mp fe (B) trony a Sedivé pro diry.

Zcela analogicky bychom mohli postupovat pii vypoc¢tu koncentrace dér ve valenénim pasu,

1 0 mpkpT\ >/
p=1 / Dy(E) fu(E)dE =2 ( ; ;;2 ) e #/keT — g e=n/kBT (9.15)
e
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Toto je velmi zajimavy vysledek. Pokud vynasobime koncentraci elektroni a dér, ziskdme hodnotu, ktera
neni zavisla na poloze Fermiho meze, ale zavisi pouze na Sifce zakdzaného pasu

3
np =4 kel (memy,)3/? e~ Ba/keT (9.16)
27h?

Hodnota nasobku np tedy nezavisi na dopovani polovodice. Tato relace se nazyva zakon pisobeni aktivnich
hmotnosti. Pro kompenzovany (intrinsicky) polovodié je n; = p; = \/np. Pokud vlivem dopovani na n-typ
zvysime koncentraci elektronti o tfi fady, pak je to na tkor dér, jejichz koncentrace bude zase o tfi fady
nizsi proti pfipadu nedopovaného polovodice.

Podminka n/p = 1 musi platit pro intrinsicky polovodi¢ nezévisle na teploté. P¥imym dosazenim pak

dostaneme vztah pro teplotni zavislost polohy Fermiho meze pro nedopovany polovodic,

1 3 mp
w(T) = §Eg + ik’BTln . (9.17)

e

Pri zvySovani teploty od absolutni nuly se zacne Fermiho mez posouvat od poloviny zakazaného pasu
k pasu s leh¢imi nositeli proudu (obvykle stoupd, posouva se za elektrony ve vodivostnim pésu).

Koncentraci elektrond n a dér p v polovodi¢i urcuje zédkon pusobeni aktivnich hmotnosti. Nasobek
np nezavisi na konkrétnim dopovani, méni se pouze pomér obou druht nosic¢t. Tézké diry maji z definice
vétsi efektivni hmotnost nez lehké diry. Péas tézkych dér je tedy plos$i a maji u hrany valen¢niho pasu
mnohem vyssi hustotu stavii. Pokud lehké diry pfi vypoctu mezipasovych prechodt tiplné ignorujeme,
neudélame velkou chybu, ale podstatné zjednodusime vypocet.

Budeme-li chtit vyjadfit teplotni zavislost koncentrace nosi¢ proudu, vyjdeme ze vztaht (9.14) a
(9.15). Nasobek np je tmérny efektivnimu poétu stavi ve vodivostnim pasu ng, po¢tu stavi ve valenénim
pasu pg a exponenciele. VSechny tyto tii ¢asti jsou zavislé na teploté. Efektivni pocty stavi jsou amérné
teploté v mocniné 3/2. Proto vychézi celkova teplotni zévislost néasledovné,

np o nopg e~ La/ kel o 73 ¢~ Fa/knT (9.18)

Teoreticky napocitand teplotni zavislost intrinsické koncentrace elektroni t¥i druhi ¢istych polovodicu je
v obr. 9.11.

273 yed AT
300 124 TH ITH
I - 3~
400 e LS | GaAstirT] i
= H ’// B - E:-/
S 500 o AT L L i PR
600 LT L T LT g
Obr. 9.11: Teplotni zavislost koncentrace 800 gLt 1T LT .
elektronil pro tfi razné polovodice [21]. oo T

10" 10% 10t 10* 10" 10°
Intrinsic carrier concentration, n; (cm"‘)

9.5.1 Elektricka vodivost

Budeme postupovat analogicky jako v sekci 7.8. Pfi vypoctu elektrické vodivosti musime na rozdil od

kovii zapocitat dva nosi¢e proudu (elektrony a diry). ProtoZe vlastnosti obou nosi¢u se ligi, je tfeba si
definovat novou charakterizujici veli¢inu pohyblivost. Tato kladna veli¢ina se definuje vztahem

[v]

= —. 9.19

=5 (9.19)

Pohyblivost je stfedni driftova rychlost nositelt pod vlivem jednotkového pole (E =1 V/cm). VyuZijeme

vztah (7.26) a mizeme rovnou zapsat pohyblivosti elektront a dér za pomoci jejich efektivnich hmotnosti

a relaxacnich dob
€Te €eTh

fe=—, Hp=—". (9:20)
me mp
Celkovou elektrickou vodivost polovodice pak miZzeme zapsat jako soucet dvou prispévk,
o = e(npe + pup). (9.21)
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9.6 Primésova vodivost nevlastnich polovodic¢u
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Obr. 9.12: Tonizace pfimési v k¥emiku: a) fosfor jako donor, b) bér jako akceptor. Vlevo je zakreslen
zékladni energeticky stav, vpravo je excitovany stav, t.j. ionizovana pfimés a volné castice v energetickém
pasu. Fialova Sipka naznacuje volny pohyb kvazicastice v pasu.

Jak jsme ukazovali na zacatku této kapitoly na obr. 9.1, lze elektrické vlastnosti polovodice fadove
ménit dopovanim!®. To se provadi tak, Ze se do teoreticky idedlni miizky polovodice umisti atomy pFimési.
Primési se déli na dvé zakladni skupiny: donory a akceptory. Jako typicky ptriklad miizeme uvést kfemikovy
polovodié¢. Pfimeés tfimocného prvku, jako je bér nebo hlinik, se v kifemiku chové jako akceptor, kdezto
primés pétimocného prvku, jako je fosfor, se chova jako donor. U III-V polovodic¢i zavisi charakter pfimési
na pozici v mfizce. Donorem v GaAs muze byt Si na misté Ga, nebo Te na pozici As. Jako akceptor by
v GaAs pusobilo Be na misté Ga, nebo Si na pozici As.

Nejlépe je mozné si toto chovani vysvétlit pomoci ionizace primeési zakreslené na obr. 9.12. Nejprve
budeme uvazovat pfipad donorového atomu fosforu. Jeho ¢tyfi valenéni elektrony tvoii tetraedrické koor-
dinac¢ni vazby se sousednimi atomy kfemiku. Posledni paty elektron je slabé vazan, a pokud dojde napt.
k tepelné excitaci, uvolni se do volného stavu, kterym je stav ve vodivostnim pasu. V krystalové miizce
zlstane ionizovany iont PT. Zcela zaplnény valen¢ni pas nemusime uvaZovat a na systém kladného iontu a
volného elektronu se miazeme divat jako na modifikovany atom vodiku, jehoz feSeni je tématem zakladnich
ucebnic kvantové mechaniky [11]. Vliv okolniho prostiedi se zapocita relativni permitivitou . Analogie
s atomem vodiku nam umoznuje ihned napsat vazebnou energii zakladniho stavu tohoto systému, kdy je
elektron na 1s vazané hladiné v potencidlu iontu atomu fosforu

4
e Me 13.6 me
E; = = — eV. 9.22
d 2(4meegh)? 2 my ( )
Protoze elektron se pfi excitaci uvoliiuje z atomu fosforu do vodivostniho pasu, nachéazi se jemu odpovida-
jici pfimésova hladina v zakdzaném pasu, a to pfesné na energii o hodnotu F; pod hranou vodivostniho

1V nékterych textech se pouzivaji alternativni terminy jako dotovani nebo legovani.
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pasu, viz obr. 9.13a). Vazany stav elektronu mtzeme co do rozméra charakterizovat pomoci modifikova-
ného Bohrova poloméru,

dmecoh?
ag = =00 — 0532 04, (9.23)
e2m, Me

Tento polomér udava stfedni vzdalenost elektronu od donoru na stabilni hladiné. Kupodivu tento polomeér
byva veétsi nez meziatomarni vzdalenosti. Vazebné energie a Bohrovy polomeéry pro donory u typickych
polovodici jsou uvedeny v tab. 9.4.

Tab. 9.4: Parametry donort u typickych Krystal Si Ge GaAs
polovodici. Je ziejmé, ze takto napoci- - 0.2 01 0.067
tané parametry donoril zavisi pouze na e/ 170 ' ’ )

< oy . 3 11.7 15.8 12.85

materiadlu polovodi¢e a nezavisi na kon-
krétn{ primési. Eq(meV) 20 5.5 5.5
agq(nm) 3 8 10

Nyni se vénujme akceptortim, u nichz je situace obdobna. Bér v zadkladnim stavu mé pouze tii valencéni
elektrony. Pfi doplnéni ¢tvrtého elektronu vznikne zaporny iont, ktery ma propojené koordina¢ni vazby
na vSechny sousedni kiemiky. Tento doplnény elektron pak ale musi chybét nékde jinde ve valené¢nim
pasu. Protoze k pfechodu elektronu na atom béru je potieba dodat energii, bude mit vazany akceptorovy
stav hladinu v zakdzaném pésu, a to o excitaéni energii nad vrcholem valenéniho pésu, viz obr. 9.13b).
Na proces excitace se lze divat také tak, ze elektron prejde na akceptor a vznika dira ve valenénim pésu.

? S C) o O )
P i E. Ec

/ / / /
O e oove -E

- Ea
E, E,

®.
®.
®.
a0

Obr. 9.13: Tonizace piimési v polovodici: a) n-typ s donory, b) p-typ s akceptory. Energie E, a E. oznacuji
hranu valen¢niho, resp. vodivostniho pasu.

Je dobré si uvédomit rozdil mezi vodivymi stavy (elektrony ve vodivostnim pésu, diry ve valenénim
pasu) a vdzanymi stavy. Stavy donori a akceptort jsou v krystalu lokalizované a nemohou tedy pfimo
prispivat k vodivosti. K vodivosti pfispivaji tim, ze poskytuji slabé vazané nosice, které je mozné snadno
excitovat do pasi. Donory a akceptory tedy vytvareji povolené hladiny v zakdzaném pasu polovodice.
Fermiho mez se v dopovaném polovodi¢i nachéazi v blizkosti této primésové hladiny. Pasové schéma ty-
pického dopovaného polovodice je zobrazeno na obr. 9.13. Zakladni polovodic¢ova soucastka — dioda —
vznikne, pokud mame polovodi¢ dopovany v jedné poloviné krystalu na n-typ a ve druhé poloviné na
p-typ. Teoreticky si to mizeme predstavit tak, ze dva kusy polovodic¢e v obr. 9.13 pritiskneme k sobé.
Takto se ale redlné polovodic¢ové soucastky nevyrabéji. Diodé a p-n prechodu se bude podrobnéji vénovat
kapitola 12.

Pokud je koncentrace dopovani vysoka, Ny > 1/a3, dochéazi k preskokiim elektroni pfimo mezi
primésemi bez vyuziti past polovodice. Tento degenerovany polovodic¢ je potom vodivy i za velmi nizkjch
teplot. Poloha Fermiho meze se s teplotou moc neméni a degenerovany polovodi¢ se chova elektricky
podobné jako Spinavy kov. S timto tématem souvisi i pf. 9.3.

9.6.1 Teplotni ionizace donort a akceptoru

Jak jsme jiz upozornovali, dopovani polovodi¢t se pouziva pro zménu koncentrace volnych nosi¢t proudu
v polovodici. Proto si nyni uvedeme vztah pro nizkoteplotni koncentraci elektronii ve vodivostnim pasu
pro n-dopovany polovodic. Teplotni zavislost této koncentrace je fesena v pf. 9.4 na konci této kapitoly.

mMe k?BT 3/2
2mh? ’

n = (ngNg)t/?e Fa/2ksT ) — 9 ( (9.24)

kde Ny je koncentrace donoru v polovodi¢i a ng je efektivni koncentrace stavi ve vodivostnim pésu.
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Na prvni pohled by se mohlo zdat, Ze ¢im vétsi bude koncentrace donorti v polovodici, tim vétsi bude
koncentrace vodivostnich elektroni ve vodivostnim pasu a tim véts$i bude elektricka vodivost polovodic¢o-
vého materidlu. Pfitomnost ionizovanych primési v mfizce ale zpusobuje snizeni pohyblivosti elektroni,
které se na nabitych iontech rozptyluji, coz vede ke zkraceni relaxacni doby. U vSech polovodic¢t je jednim
rozptylovym mechanismem rozptyl na fononech. Ten je ale dominantni u ¢istych polovodic¢u a za vySSich
teplot. Rozptyl na fononech se da potlacit ochlazenim vzorku. Naproti tomu rozptyl na piimésich neza-
visi na teploté. Za nizkych teplot je mozny rozptyl i na neutralnich pfimeésich, u vyssich teplot prevlada
Rutherfordav rozptyl na nabité primési.

Vliv ionizovanych atomt primeési na vodivost se u nékterych polovodicovych soucastek da kompenzo-
vat vhodnym névrhem heterostruktury. Lze navrhnout strukturu diody nebo tranzistoru, kde jsou ionty

primési prostorové oddéleny od vodivého kanalu, kde se mohou elektrony s velkou koncentraci pohybovat
s velkou pohyblivosti podobné jako v ¢istém polovodidi.

9.7 Termoelektrické jevy v polovodicich

a) TE chlazeni b) ohifvany konec

NG (o NG| |0

| | | |
tepelny rezervoar ‘ | tepelny rezervoar
-+
I °o o
+ - TE napéti

Obr. 9.14: Termoelektrické jevy: a) Peltiertiv ¢lanek méni elektricky proud na TE chlazeni spoje dvou
typi polovodice. b) Seebecktiv jev popisuje to, Ze se ohf{vanim spoje dvou polovodi¢t generuje TE napéti
na konektorech.

Studium termoelektrickych vlastnosti je dualezité hlavné u dopovanych polovodici, kde je jeden typ
majoritnich nosi¢i (elektrony nebo diry). Protoze elektrony piendseji elektricky proud v opaéném sméru,
nez ve kterém se pohybuji, tepelna energie, kterou si s sebou nesou, se pohybuje proti sméru elektrického
proudu. Zakladni dva termoelektrické jevy lze vysvétlit pomoci obr. 9.14. Levy obrazek predstavuje
termoelektrické (TE) chlazeni vlivem prochdazejiciho proudu ( Peltieriv jev). Pokud by se obratila polarita
zdroje a proud protékal v opacném sméru, TE ¢lanek by fungoval jako ohfiva¢. Pravy obrazek ukazuje
TE napéti, které se generuje ohfevem p-n prechodu (Seebeckiv jev).

Pro popis termoelektrickych jevl se zavadi nékolik parametru. Peltieriv koeficient — I se definuje
jako podil toku energie viici elektrickému proudu, které jsou prenasené volnymi nosic¢i. Tento Peltieriv
koeficient je tedy kladny pro diry a zaporny pro elektrony:

=<0 1m=2%2>o. (9.25)
Je Jh
Jak je zfejmé z definice, jednotkou Peltierova koeficientu je podil W/A, coz davé jednotku volt.

Absolutni termoelektricka sila — Qr udava velikost intenzity elektrického pole E generovaného v po-
lovodidi gradientem teploty V7' nebo jako podil termoelektrického napéti AV generovaného na koncich
tyCky s teplotnim rozdilem AT. Tato veli¢ina se nékdy oznacuje jako Seebeckuv koeficient

AV E

Qr=—37 =~ V7

(9.26)
Z definice je jednotkou Seebeckova koeficientu V /K. Generace napéti na materidlu, jehoz konce jsou na

rizné teploté znazornuje obr. 9.15. Uvazujme pfipad kdy nosic¢e proudu jsou elektrony a sledujme jejich
rychlosti uprostted tyce. Zleva doprava miri elektrony z chladnéjsi oblasti a tedy s nizsi kinetickou energii
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a rychlosti. Zprava mifi elektrony s vyssi rychlosti. Plochou kolmého fezu tyce tedy prevlada proud castic
zprava doleva a na chladném konci se bude hromadit zdporny nédboj podle vztahu (9.26).

T T2

Obr. 9.15: Seebeckuv jev, generované
L napéti je umérné teplotnimu rozdilu.
Délka sipek naznacuje jak s teplotou
nartusté stiedni rychlost elektroni.

O O
AV = —-Qr(Ty —T1)

Podle Kelvinova vztahu? je Peltiertiv koeficient imérny absolutni teploté s imérnosti danou termo-
elektrickou silou. Plati tedy vztah IT = Q7T V jednotkich to vychézi ndsledovné: volt se rovna V/K - K.
Diky zméné znaménka Peltierova koeficientu muZzeme uréit typ dopovani podle polarity elektrického na-
péti na povrchu vzorku s gradientem teploty. Pro p-typ je konec s vyssi teplotou zdporné nabity, u n-typu
je teplejsi konec kladné nabity.

Rozdilné chovéni rizné dopovanych polovodi¢t umoznuje konstrukcei Peltierovych ¢lankt, které umoz-
nuji pouzit elektricky proud pfimo ke stimulaci pfenosu tepelné energie. Toho se dnes pouziva v tzv.
elektronickych chladnic¢kach. Fotografie typickych Peltierovych ¢lanka je na obr. 9.16.

Obr. 9.16: Termoelektrické chladici prvky, prevzato
z webu PELTIERY: http://www.peltiery.cz/

2Vyznamny skotsko-irsky fyzik William Thomson (1824 — 1907) je znamy spise pod svym Slechtickym jménem lord
Kelvin of Largs.
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E-E,(eV)
t T

L (111) r (100) X L (111) T (100) X L (111) T (100) X

k (wave vector)

PO. 9.1: Redukované pasové schéma pro t¥i typické polovodice (Ge, Si, GaAs) v 1.BZ. Zakresleny jsou
disperzni zavislosti ve dvou vyznamnyjch smérech. Pfevzato z [3].

[001]

Iz

Ge Si GaAs

PO. 9.2: 3D zobrazeni oblast{ minima vodivostniho pasu tii typickych polovodi¢t (Ge, Si, GaAs).
Pfevzato z [3].
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9.8 Piiklady

Pi. 9.1: Teplotni zavislost Fermiho meze:
Vysvétlete, ¢im je zptisoben posun Fermiho meze v intrinsickém (¢istém) polovodiéi se vzristajici teplotou
smérem k vodivostnimu péasu.

Néapovéda: Pouzijte vztah (9.17) a doprovodny text v této kapitole, dulezitd je podminka rovnovéhy.

Pi. 9.2: Absorpéni hrana polovodice:

Odvodte vztah mezi energii zakdzaného pasu pfimého polovodice a vlnovou délkou odpovidajici absorpéni
hrané. Material polovodi¢e bude absorbovat fotony s touto a kratsi vinovou délkou.

Reseni:

h2 -
)\wc .

kde E oznatuje energii v elektronvoltech. Dosadime konstanty a budeme uvazovat vinovou délku A\ v mi-
krometrech, takze pro prevod do SI budeme nasobit faktorem 10~6

E:h&):

~ he 6.626 x 10734 .2.9979 x 108
E=—= [eV],
el 1.602 x 10-19 . X\ x 10—6

E [eV] = 1.24/X [pm)].

Pi. 9.3: Primésové stavy v InSb:

Parametry tohoto polovodice jsou: B, = 0.23 €V, € = 18, m, = 0.15 mg. Podle vztahd odvozenych v této
kapitole dopoditejte nasledujici: a) ioniza¢ni energii donort, b) Bohriv polomér donort, ¢) minimélni
koncentraci donorti, kdy se zacne projevovat prekryvani drah elektronti na sousednich primeésich.

Nad touto koncentraci dochéazi k vytvareni primésového pasu. Preskakovanim po p¥imésich mize jiz dojit
k vedeni elektrického proudu pfimo na této hladiné. Kittel, str. 250, pr. 1

Resent: a) 6.3 meV, b) 6.4 nm, c¢) 3.9 x 10'® cm=3.

Pr. 9.4: Tonizace donort:
Uvazujme polovodi¢ s koncentraci donortit Ny a ionizac¢ni energii F4, kterd je definovana jako kladna
veli¢ina. Uréete koncentraci elektront ve vodivostnim pasu a polohu Fermiho meze pro: a) nizkoteplotni
limitu, b) pfi pokojové teploté. PouZijte vztahy (9.11) a (9.14). Pro nizkoteplotni limitu odvodte vztah
(9.24). Kittel, str. 250, pf. 5

Reseni: Nejprve obecné ur¢ime koncentraci ionizovanych donort. Pravdépodobnost, Ze je pfimés ionizo-
vana, odpovida pravdépodobnosti, ze je na tomto stavu dira:

fh _ (e(M—E)/kBT + 1)—1 — (e(;L—E9+EQ—E)/kBT + 1)—1 _ (e(u’—i-Ed)/kBT + 1)—1.
V tomto odvozeni je vhodné zavést u’ jako vzdalenost Fermiho meze od hrany vodivostniho pasu. Ioni-

zované donory jsou zdrojem pro volné elektrony ve vodivostnim pasu N j = n. Tuto rovnost mizeme
prepsat nasledovné

Nd 4
+ _ _ _ w'/ksT
Nd T oW +Ea)/ksT +1 =n=no¢ >
A to upravime na rovnost
Ng =ng o' /kBT (e”//kBT efa/ksT 1) . (9.27)

a) V nizkoteplotni limité zanedbame v (9.27) jednicku viéi exponenciele

o21 /[kBT _ Na e~ Fa/ksT = y = _Ea lk;BTln (no) )
no 2 2

Koncentraci elektroni potom dostaneme dosazenim za exponencielu z levé strany predeslého radku

!
n = nget kT — (nONd)l/2 o—FEa/2kpT

150



b) Pro pokojové teploty je kgT ~ 26 meV a v zavorce vztahu (9.27) miZzeme zanedbat exponencielu vii¢i
jednic¢ce. Tim piimo dostaneme, Ze vsechny donory jsou ionizované

Ny =nget/FT = p = w = —kpgTIn (no) )
Ng

Pi. 9.5: Parametry donoru v polovodici:

Uvazujme polovodié¢ s koncentraci donortt Ny = 102 cm™3, E; = 1 meV a m = 0.01 my.

a) Pouzijte vysledky z pfedchoziho piikladu a urcete koncentraci vodivostnich elektronti pii teploté 4 K.
b) Urcete navic jesté Halltiv koeficient. Kittel, str. 250, pr. 2

Népovéda: Piipometime hodnotu Boltzmannovy konstanty kg = 1.3807 x 10723 JK~! = 0.0862 meVK !,
Pfi vypoétu si nejprve spocitejme ng = 3.87 x 103 cm 3.

ReSeni: n = 0.46 x 103 cm™3, Ry = —1.35 m3C~ 1.

Pi. 9.6: Vypocet Hallova koeficientu pro polovodice:

Postupujte analogicky s odvozenim v sekci 7.9.1 a vypocitejte vztah pro Halliv koeficient pro polovodic¢
s dvéma typy nosi¢t proudu. Hledany vztah je analogii vyrazu (7.34). Pro vypocet je nutné znat koncen-
traci elektrond n, koncentraci dér p a pomér pohyblivosti obou nosi¢it b = p./up. Kittel, str. 250, pi. 3

Napovéda: Nejprve ukazte, ze pomeér b urcuje kromé poméru pohyblivosti i pomér cyklotronové frekvence
néasobené relaxa¢nim ¢asem a také pomér stfednich driftovych rychlosti, které ale maji opaény smér,

po He _ WeTe Ve
Hh WhTh Uha
Reseni: )
1 p—nb
Ry~ Lp=nt?
¢ (p+ nb)?

Pi. 9.7: Cyklotronova rezonance pro anizotropni efektivni hmotnost:
Uvazujme energetickou plochu ve tvaru jednoosé anizotropie.

- K2+ k2 K2
B(F) = <xy 4+ e

2mT 2mL

Konstanty mt a my, predstavuji transverzalni a longitudélni efektivni hmotnost elektronu. Urcete efek-
tivnl hmotnost a odpovidajici cyklotronovou frekvenci pro magnetické pole orientované: a) kolmo na osu
symetrie, b) podél této osy, ¢) v obecném sméru, ktery svird s osou thel 6. Kittel, str. 250, pt. 4

Néapovéda: Pro obecny smér magnetického pole je efektivni hmotnost dana elipsou,

1 cos? 6 sin® 60

(m*)? o mgf mrmyr,
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s
Titan, FCC, 45’30

Zelezo, BCC, 45’3d°

Cu

Meéd, FCC, 4s'3d"

Hlintk, FCC, 35’3p"

Fermiho plochy riaznych kovi. Prevzato z webu UNIVERSITY OF FLORIDA:
http://www.phys.ufl.edu/fermisurface/
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Kapitola 10

Fermiho plochy v kovech

Obsah kapitoly
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V kapitole 7 jsme probrali zédkladni vlastnosti kovl a ukézali si, ze typické elektrické a tepelné vlast-
nosti kovi 1ze odvodit z chovanim Fermiho elektronového plynu. Diky Pauliho vylu¢ovacimu principu je
stav kazdého elektronu v kovu popsan unikatnimi kvantovymi ¢isly. VSechny obsazené stavy elektront
pfi teploté absolutni nuly zapliuji v k-prostoru geometrické téleso ohrani¢ené Fermiho plochou. Stavy na
Fermiho plose maji nejvyssi energii a stavy uvniti tohoto télesa maji energii nizsi. Experimenty studujici
vlastnosti kovli jsou proto zamérené na zkoumani geometrického tvaru Fermiho plochy.

10.1 Zavedeni pasovych schémat

Pro periodickou strukturu krystalu se zavadi popis stavi elektronii pomoci Blochovych vinovych funkci.
Vlastni ¢islo téchto vinovych funkci je vlnovy vektor K , ktery lze diky symetrii vZdy transformovat do
1.BZ. Této proceduie se fikd mapovani energetické zavislosti do redukovaného pasového schématu. Pii
tomto mapovani je potfeba vlnovy vektor posunout o vhodny vektor reciproké mrizky G tak, ze k=K+G
uz lezi v 1.BZ.

Energetické disperzni zévislosti elektronti lze potom zobrazit tfemi zptsoby, které jsou vzajemné
ekvivalentni, jak ukazuje obr. 10.1.

Rozsifené pasové schéma: vychdzi z energetické zavislosti pro volné elektrony, pouze se zapocita
Stépeni past na hranach zdn.

Redukované pasové schéma: ziskdme posunutim vSech energetickych zéavislosti do 1.BZ. Toto schéma
ma tu vynikajici vlastnost, Zze kazdy energeticky pas obsahuje v 1.BZ praveé tolik stavi, kolik je elementar-
nich bunék v krystalu N. Pro spravny popis stavil vSech elektronti je tedy potfeba dodat nové kvantové
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rozsitené pasové schéma redukované periodické pdsové schéma

NS RIANTAAVN

K [n/a] k [n/a] K [r/a]

Obr. 10.1: Energetické pasy 1D fetizku zakreslené zleva v rozsifeném, redukovaném a periodickém paso-

vém schématu. Zelené Sipky ukazuji vektor G odpovidajici sifce BZ, o ktery se provadi posun energetickych
zévislosti.

¢islo. Pro zvoleny vektor k je potfeba jeSté udat c¢islo energetického pasu n. Blochovu vlnovou funkci pak
oznacujeme jako 1 (7). Podle poctu valenc¢nich elektront studovaného kovu miizeme odhadnout pocet
obsazenych pasu.

Periodické pasové schéma: vznikne kopirovanim redukovaného schématu do vSech zén. Diky tomu je
mozné nazorné sledovat dynamiku chovani elektroni ve vnéjsim poli, kdy mize elektron v daném pésu
plynule pfechazet do sousednich zén. Toto posledni pasové schéma ma zase nejblize k popisu energetickych
past pomoci metody tésné vazby.

10.2 Sestrojeni Fermiho plochy

Tento kol si priblizime pro pfipad 2D ¢tvercové miizky. Hranice mezi Brillouinovymi zénami jsou dané
podminkou (3.6), kterou jsme si odvodili v sekci 3.3

2%k -G = G2 (10.1)

Jednotlivé BZ jsou pro tuto miizku zakresleny v (PO. 3.2: Ctvercova m¥izka).

10.2.1 Model volnych elektronu

Sestrojeni Fermiho ploch pro volné elektrony provedeme Harrissonovym! postupem [20]. Obrazek 10.2a)
ukazuje reciprokou miizku, do které zakreslime vSechny mfizkové body (modré tecky). V kazdém miizko-
vém bodé zakreslime kruznici o poloméru odpovidajicimu dané koncentraci volnych elektronti. Polomér
této kruznice odpovida Fermiho vlnovému vektoru. Kazdy bod k-prostoru, ktery lezi uvnitf alespon jedné
kruznice, pfedstavuje obsazeny stav 1.BZ. Body spole¢né alesponi dvéma kruznicim odpovidaji obsazenym
staviim 2.BZ. Obdobné mizeme postupovat dal, bod sdileny m kruznicemi bude obsazen ve vSech zénach
az do radu m.

Obdobné bychom postupovali i u 3D krystalu, kde bychom kruZnice nahradili koulemi. Nejjednodu-
$8imi kovy jsou alkalické kovy, které maji jeden valenc¢ni elektron na bunku, Z* = 1. Fermiho plocha
napf. sodiku je prakticky kulova, jak ukazuje tvodni obrazek této kapitoly. Pro vicemocné kovy je tfeba
zapocitat vliv miizky a prejit od modelu volnych elektront minimalné k modelu téméf volnych elektronti.
Popisu kovi, jakozto specidlnich pevnych latek, se vénuji nékteré specializované knihy [7].

N

Vratme se jesté zpét k 2D ¢tvercové miizce. Polomér Fermiho kruznice na obr. 10.2a) je takovy, aby
odpovidal ¢tyrem elektrontim na elementarni butiku. Fermiho vinovy vektor mé v tomto ptipadé velikost

Py (10.2)
™ a

1W.A. Harrison je autorem fady knih o pevnych latkach: , Elementary Electronic Structure®, ,Electronic Structure and
the Properties of Solids: The Physics of the Chemical Bond*, ,, Fermi surface®“ a dalsi.
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1.BZ 2.BZ

3.BZ 4.BZ

Obr. 10.2: Harrisonova geometricka konstrukce Fermiho plochy volnych elektrond v prvni az ¢tvrté BZ
¢tvercové mrizky. Tmavsi Cervend barva odpovida vyssimu c¢islu Brillouinovy zény.

kde a znac¢i miizkovou konstantu a n udava pocet elektronti na elementarni bunku. To, jak Fermiho plocha
pro riizné hodnoty n zasahuje do jednotlivych 2D BZ, ukazuje obr. 10.3. Cislovani zén na obr. 10.2b)
odpovida tomu, z jakych barevné oznacenych oblasti na obr. 10.3 se prislusna zéna posklada.

=
[o9)
N

Obr. 10.3: Jednotlivé barvy zobra-
zuji pét BZ pro ¢tvercovou miizku.
Teckované jsou znazornény Fermiho
kruznice (10.2) s indexem, ktery
udavé pocty elektront na elemen-
B térni buiiku.

2Bz

&
N

10.2.2 Model témér volnych elektront

Jak pfejit od Fermiho ploch pro volné elektrony k Fermiho plochdm pro téméf volné elektrony? Pf¥iblizny
odhad mizeme provést bez slozitych vypoctl, vyuzijeme pouze nékolik ivah zohlednujicich symetrii fese-
ného problému.

1. Jak jsme si ukazovali v kapitole 8, interakce elektronti se slabym periodickym potencidlem miizky

zpisobi vznik zakdzanych energetickych past v misté kiizeni energetickych zéavislosti (na hranici
BZ nebo v bodé T').

2. Fermiho plocha bude vzdy? protinat hranici zény kolmo. Tim je zaru¢ena spojitost rychlosti odpo-
vidajiciho elektronu pfi pfechodu ptes okraj BZ.

20jedinéle jsou mozné piipady, kdy tomu tak neni.
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3. Ostré rohy na Fermiho plochéch se zaobli, aby se mohly elektrony spojité posouvat po Fermiho

plose vlivem vnéjsiho pole.

4. Celkovy objem uzavieny Fermiho plochou zavisi pouze na koncentraci elektronti, ale nezavisi na
detailech krystalového potencidlu. Pokud pii zakulacovani rohti nékde kousek Fermiho télesa ode-
bereme, musime jinde stejny objem pfidat.

Pod vlivem téchto poznatki se mtizeme pokusit upravit dvé zény z pravé strany obr. 10.2. Na zénach
2.BZ a 3.BZ nam vadi hlavné ostré rohy. Zaoblenim ziskdme realisti¢téjsi tvary Fermiho plochy, které
ukazuje obr. 10.4.

Zatim jsme se v této kapitole zabyvali pouze 2D modely krystalu. Realné 3D krystaly jsou podstatné
naro¢néjsi na predstavivost. Fermiho plochy typickych kovi jsou zakresleny na obrazku na zacatku této
kapitoly. Ruzné barvy oznacuji Fermiho plochu v riznych zénach. Prakticky kulovou plochu maji jedno-
mocné kovy jako sodik a méd. Néro¢néjsi jsou Fermiho plochy pro hexagonélni krystaly. Za povSimnuti
stoji také Fermiho plochy trojmocného hliniku s FCC mfizkou. Transformace energetickych zavislosti
do 1.BZ vede ke vzniku neocekdvanych geometrickych utvart ve t¥eti zéné (na tvodnim obrazku této
kapitoly zobrazeno fialové).

2.BZ 3.BZ

ViE Obr. 10.4: Kvalitativni odhad zmény tvaru

Fermiho ploch v druhé a tfeti BZ ¢étvercové
miizky podle obr. 10.2 pfi zapocitani slabého
periodického potencidlu miizky. Na jednom
misté Fermiho plochy je zakreslen smér deri-
vace Vi I, ktery smétuje k vyssi energii a tedy
ven z Fermiho télesa.

dérova orbita elektronové orbita,

10.2.3 Orbity v magnetickém poli

Pokud na kov, jehoz obsazené energetické stavy jsou uzavieny Fermiho plochou, piisobi magnetické pole,
budou se elektrony na Fermiho ploge pohybovat po orbitach®. Podle geometrie této orbity rozlisujeme tii
zékladni typy, jak ukazuje obr. 10.5. Elektronové orbita uzavird prostor se stavy obsazenymi elektrony,
dérova orbita uzavira prostor s prazdnymi stavy a elektrony ji obklopuji zvenku. Oteviena orbita je takova
dréha elektronu, kterd se neuzavird, ale elektron na této orbité ma stale jeden preferovany smér. Elektron
na spodni strané Fermiho plochy v obr. 10.5¢) se pohybuje doprava, pfejde-li hranici zény, objevi se na
levé strané opét v 1.BZ.

ot wE
dk
® dt
B \/
elektronové orbita dérova orbita oteviend orbita

Obr. 10.5: TFi typy orbit na Fermiho plose v magnetickém poli vystupujicim z plochy obrazku: a) elektro-
nova, elektrony se pohybuji proti sméru hodinovych ruéicek, b) dérova, elektrony se pohybuji po sméru
hodinovych rucic¢ek, c) oteviena orbita neni uzaviena v 1.BZ, ale piechézi do sousedni BZ.

3 Orbita“ popisuje ob&znou drahu &astice, kdezto atomérni ,orbital® (napf. 2s, 2p) predstavuje pravdépodobnostni
rozlozeni vyskytu elektronu v odpovidajicim atomarnim stavi.
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Zopakujme pohybové rovnice (9.7) a (9.2), které popisuji pohyb elektronu v magnetickém poli, a které
byly vysvétleny v predchozi kapitole

dk LA dk
ha = —e(Uy x B), Uy = =

e —

Je dobré si jesté navic promyslet pohyb dér na Fermiho plose. Zjistime, ze diry se diky kladnému
znaménku naboje, otocené energetické ose a oto¢enému vlnovému vektoru, budou po Fermiho plose po-
hybovat opaénym smérem nez elektrony. To ukazuje obr. 10.5 na misté a) a b). Musime si uvédomit, ze
elektronové orbita popisuje par elektrontt uprostied jinak prazdného pasu. Kdezto dérova orbita predsta-
vuje nehybny plny péas ve kterém se uprostied pohybuje par dér. Zkracené se da fFici, ze elektrony i diry
se pohybuji v takovém sméru, ze po levé strané mijeji stavy obsazené elektrony a po pravé strané maji
stavy prazdné (obsazené dirami).

10.3 Vypocet pasové struktury

Pouziva se nékolik metod vypoctu pasové struktury. Rizné metody se lisi tim, jak presné dokazi popsat
dany systém elektroni v pevné latce. Zminime zde tfi jednodussi metody, které jsou snadno pochopi-
telné a jsou vypocetné nenaroc¢né. Prvni vypocty tohoto typu byly provadény bez pouziti pocitact, coz
si dnes dokézeme jen stézi predstavit. Nicméné i s pouzitim nejmodernéjsi vypocetni techniky je tfeba
dobie formulovat feSeny problém a spravné naprogramovat odpovidajici algoritmus. V dalsich sekcich
budeme postupné probirat metodu tésné vazby, Wignerovu-Seitzovu metodu a jako tieti metodu pseudo-
potenciali. Narocnost téchto tii metod je mirné vzestupna. Vynikajici knihou, kterd se zabyva riznymi
vypocetnimi metodami pasové struktury, je ,,Solid State Physics* autorti Ashcroft a Mermin, ktera vysla
roku 1976 [7].

10.3.1 Metoda tésné vazby

Tuto metodu lze pouzit tam, kde se pri vytvareni krystalu z jednotlivych atomi zachovava atomarni cha-
rakter vlnovych funkci elektrond. Proto se tato metoda nékdy oznacuje jako LCAO — linear combination
of atomic orbitals. Metoda vychazi z predpokladu, Ze v blizkosti kazdého mfizkového bodu muzeme cel-
kovy hamiltonian krystalu H aproximovat hamiltonidnem volného atomu H,s, ktery se nachazi na této
mrizkové pozici. Zapiseme si systém elektronovych hladin volného atomu v poc¢atku souradného systému,

Hat¢n = Enwn- (104)

Dale predpokladejme, Ze vlnové funkce 1, obsazenych stavi jsou dobfe lokalizované, jejich hodnota je
zanedbatelné mala ve vzdalenosti od stiedu odpovidajici miizkové konstanté.

Uvazujme pro jednoduchost nejprve pripad, kdy k sobé pfiblizime dva atomy vznikajicitho krystalu
s jednim valen¢nim elektronem popsanym vlnovou funkci s orbitalu. Ve chvili, kdyz se za¢nou ¢astecné
prekryvat vinova funkce elektronu na atomu A (¢5) s vlnovou funkei elektronu na atomu B (¢p), jak
to ukazuje obr. 4.3, musime systém elektronti popsat jinymi vlnovymi funkcemi. Ty muzeme zapsat jako
linedrni kombinaci atomarnich funkei (o & ¢p). Symetrickd vlnova funkce (¢¥o + ¥p) bude mit energii
0 néco nizsi nez volny atom a piispiva k vazbé& obou atomt. Anti-symetrickd vlnova funkce (o — ¥B)
bude mit energii o néco vyssi.

Rozs{fime-li nase tivahy na N atomt (a N elektronii v pfipadé atomi s valenci jedna), potom se diky
prekryvu elektronovych obaldi musi ptivodni energeticka hladina odpovidajici volnému atomu rozsirit na
pés, ktery bude obsahovat pravé N povolenych energetickych stavii. Sitka pasu se zvétsuje se zvysujicim
se prekryvem. M4-li atom valenéni elektrony v s, p a d orbitalech, vytvori se odpovidajici pocet riznych
energetickych past. Riaznych znamena to, ze se pasy v k-prostoru mohou kiizit, ale nemohou se tuplné
prekryvat. Stavy, které jsou ve volném atomu degenerované, vytvori v krystalu rizné péasy.
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Podrobny vypocet

Uvazujme ten nejjednodussi pfipad atomu s jednim s valenénim elektronem? s vlnovou funkei zédkladniho
stavu 1) a energii F,;. Systém N vlnovych funkci popisujicich elektrony v krystalu budeme hledat ve
tvaru linearni kombinace atomarnich orbitali s vlastnim ¢islem &

N
V) = = 3 g (=), neboli ) = Z i) (105)
m=1

Za podminky spravné volby koeficienti C}; =~ bude mit tato vinova funkce Blochiv tvar. Ukazeme si, Ze
exponencialni tvar je spravna volba,

k@ 1 k@
Com =" = |p) = Wini > et iy,
1 k(G —7 S o
= up() = =) TN~ ). (10.6)

Jako diikaz spravnosti této volby ovéiime nyni periodi¢nost uz () pfi posunu o vektor piimé miizky T
up(F+ T) VN =" e* =Dy T — ) = ™ @Iy (7 — (d,, — T))

=3 R D7 — ) = up (7)) VN. (10.7)

Energie jednotlivych Blochovych vlnovych funkei napocitame v prvnim fadu poruchové teorie
E(k) = (gl Hlvg) = Z Z @) 4 | H 3. (10.8)

Dvojitou sumu muzeme diky transla¢ni symetrii krystalu vyjadrit jako N néasobek jednoduché sumy
s jednou atoméarni vlnovou funkci posunutou do poc¢atku souradnic,

= > e R (g, Hlebo). (10.9)

Celkovy hamiltonian zapiSeme jako atomérni hamiltonidn (10.4) plus porucha, ktera dopliiuje ato-
marni potencidl na periodicky potencial krystalu: H = H,; + AU. Jednoduse miZzeme f¥ici, ze AU je
vlastné periodicky potencial krystalu, od néhoz je odecten potencial jednoho volného atomu v pocatku.
Vztah pro energii prepiseme

E(R) = Eat + (0| AUJ0) + > B (4, | AU o)

m##0

= Fa— -7 e P, (10.10)

Prvni ¢len E,; predstavuje energetickou hladinu atomarniho hamiltonianu. Druhy ¢len —f3 popisuje pokles
atomdarni energetické hladiny vlivem poruchového potencidlu AU. Posledni ¢len popisuje poruchovou
zménu energie diky vlivu nejblizsich sousedti, které jsou na pozicich pg,, vici pocatku. Polohu nejblizsich
sousedii jsme probirali v prvni kapitole. Pro kubické mfizky je to znazornéno na obr. 10.6. Pfekryvovy
parametr v je konstantni, pokud jsou vsichni nejblizsi sousedé stejné vzdaleni o p a pokud je pouzita
atomarni vlnova funkce dostatecné symetrickd. Jako ptiklad lze provést vypocet tohoto parametru pro
dva atomy vodiku s 1s elektronovymi hladinami:

+[Ry] = 2 <1 + j) e=rlan, (10.11)
B

kde energie je v jednotkich Rydberg (= 13.6 V) a vzdalenost se skaluje v jednotkdch Bohrova poloméru
(~ 0.529 A).

4Pokud bychom uvazovali obsazeni vice orbitalt (s, p, d), pak bychom museli piidat jesté jeden index oznacujici &islo
pasu a sumaci pres tento index. Vypocet by byl obdobny, ale méné prehledny.
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SC: 6 BCC: 8 FCC: 12

Obr. 10.6: Polohy nejblizsich sousedt (Gervené body) viéi zvolenému atomu (modry bod) ve tfech typech
prostorového uspotradani kubickych miizek.
SC mrizka
Pro prostou kubickou mtizku je Sest nejblizsich sousedii na pozicich
7= (%a,0,0); (0,%a,0); (0,0, +a).
Energeticky pas (10.10) mizeme zapsat jako
E(k) = Ea — 8 — 27 [cos(kga) + cos(kya) + cos(k.a)]. (10.12)

Takto ziskdme kosinovy profil energetického péasu s celkovou Siftkou pasu 12v. Pokud bychom udélali
harmonicky rozvoj v minimu péasu, tak dostaneme vztah, z néhoz lze urcit efektivni hmotnost elektrona
na hrané tohoto pasu m*, viz obr. 10.7:

h2
- 2va?’

E(k) = By — B— 6y + k%> = m (10.13)

Obr. 10.7: Modfe je zobrazena energetickd zavislost (10.12), ener-
geticky pas je podbarven. Cervenou ¢arkovanou ¢arou je zakres-
lena parabolickéd aproximace na hrané pasu, ktera urcuje efektivni
hmotnost podle (10.13).

BCC mrizka

Stejny vypocet provedeme nyni pro prostorové centrovanou kubickou miizku. Osm nejblizsich sousedi je
zde na pozicich
a a a a
f=+—-(1,1,1); £=-(-1,1,1); £=-(1,-1,1); £=(-1,-1,1).
F= 501 5 (11,15 £5(0L,-1,1); £3(-1,-1,1)

Energeticky pas muzeme zapsat jako

E(k) = Ea — B — 87 {cos (k;a) cos (kza) oS (k;aﬂ .

FCC mtizka
Pro dplnost zopakujeme vypocet jesté pro plosné centrovanou kubickou mfizku. Dvanéct nejblizsich
sousedt je zde na pozicich
a a
f=+-(1,1,0); +=
p=%5(110; £5
Energeticky pas pro FCC mfizku vyjde

- kya kya kra k.a kya k.a
Ek)=FEy—p—4 il Y z z y 2 '
(k) ot — O 7{(:08(2>cos(2>+cos(2)cos<2>+cos(2)cos(2 )}
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10.3.2 Wignerova-Seitzova metoda

Pro alkalické kovy s jednim valenénim elektronem jsou vinové funkce elektronu v krystalu podobné ato-
mérnim funkcim volného atomu. Energetickou zavislost uvazujeme jako v modelu témér volnych elektronii.
VInové funkce ale musi respektovat hromadéni naboje v blizkosti iont1, stejné tak jako je tomu u ato-
marnich vlnovych funkci. To je rozdil proti rovinnym vlnam volnych elektroni, které nejsou v prostoru
nikde lokalizované. Zapiseme si Schrédingerovu rovnici pro Blochovu vlnovou funkci

2 oo - 7o
(;n + U(F)) FTup(7) = B(R) eF Tug (7). (10.14)
Pokud provedeme derivace exponenciely (p = —hV), ziskdme Schrédingerovu rovnici pro wuj ()
+ lik)? -
((p e S U(f’)) up(7) = B(k)uz (7). (10.15)

Ve sttedu BZ (bod T, k= 0) je TeSenim 1y = ug(7). Tato funkce je periodickd s periodou miizky a
blizko atomt bude mit charakter atomarnich vlnovych funkci. Je mnohem snazsi najit tvar funkce ug(7),
ktera je fesenim rovnice

(2 +007) ualr) = Baua (10.16)

2m
Energii v celé BZ pak aproximujeme vyrazem Eg + (h?k?/2m).

Dilezitou prednosti této metody je to, ze Wigner a Seitz vytvorili jednoduchy a pomeérné piesny
zpiisob nalezeni funkce ug (7). Napfiklad, pro 3s funkci elektronu v kovu sodiku je funkce e**7ug(7) ve
vétsiné objemu prakticky shodnd s rovinnou vlnou. Pouze v blizkosti atom® vzroste hodnota funkce a
zacne oscilovat.

Kohezni energie sodiku

P1i vzniku kovu z jednotlivych atomt dojde k rozsireni energetickych hladin na pasy. Diky tomu, Ze se
tento pas celkové posouva k niz$im energiim, a diky tomu, Ze valenc¢ni pas kovi, jako je sodik, je zaplnén
jen z Casti, je stfedni energie valenc¢nich elektront nizsi nez energetickd hladina volného atomu. Tento
rozdil udava kohezni energii kovu.

Parametry krystalové struktury jsme probirali v kap. 1, detaily pro sodik lze vycist z (PO. 1.1:
Periodicka tabulka). Sodik krystalizuje v BCC struktufe. Na za¢atku kapitoly Kovy (str. 100) jsme
si odvodili jeho Wigneriiv polomér, ry = 2.08 A. Z krystalového uspoiéddani odvodime, Ze polovina
vzdalenosti nejblizsich soused ¢ini 1.86 A.

Fermiho energii pro sodik pak spocitame podle vztahu uvedeného v tab. 7.1, Fr = 3.1 eV. V pfikladu
7.4 jsme si odvodili, Ze stfedni kineticka energie volnych elektront je %EF = 1.9 V. VSechny vyse uvedené
energetické vztahy jsou pro pfehlednost graficky znazornény na obr. 10.8. Obrazek nam pomitze spravné
zformulovat energetickou bilanci pro kohezni energii sodiku,

Bron = (=52 — (—8.24+1.9)) eV = 1.1 eV.

Energie atom kov

R I @ Obr. 10.8: Grafické znazornéni vypodtu

kohezni energie krystalu sodiku. Vlevo
je Cervené zobrazen potencial atomu so-
diku a modre vlnova funkce a energie
valen¢niho elektronu. Vpravo je modfe
energeticky pas kovu se zaplnénim po

-5.15eV ) B T .
Fermiho mez. Kohezni energie je rozdi-
b3ev lem energie atomarni hladiny a stfedni
energie v pasu krystalu kovu.
-8.2eV
-10eV +
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10.3.3 Dalsi metody vypoctu pasové struktury

Zminili jsme zde pouze nékolik metod vypoctu pasové struktury. Rlznych vypocetnich metod vsak vzniklo
zna¢né mnoho, a proto zde uvedeme pouze kratky vycet. Podrobny vyklad téchto metod lze nalézt
v literatufe napf. v [7].

Jaké metody vypoctu je vhodné pouzit tfeba pro krystal kovu zeleza, ktery ma elektronovou strukturu
18A1:4523d%? Elektrony ve 3d orbitalech popiSe metoda té&sné vazby, 4s elektrony zapo¢teme pomoci
modelu témér volnych elektront. Osmnact elektront v hlubokych slupkédch miiZeme popsat pfesnymi
atomarnimi vlnovymi funkcemi. Pro zpfesnéni vypoc¢td mizeme nyni pozadovat, aby vlnové funkce vyssich
stavl byly kolmé na hluboké atomarni stavy. Takto prejdeme k aproximaci OPW, kdy pozadujeme, aby
Blochovy stavy ve vodivostnim pasu byly zapsany rozvojem do ortogonalizovanych rovinnych vin. Na
tuto metodu navazuje metoda Pseudopotencialu, kterd zapocitava vyssi fady oprav.

Muffin tin

Obr. 10.9: Plech na peéeni mufin (vlevo) pfipomind tvar potencidlu s konstantni hodnotou v oblasti mezi
atomy. Mufiny po upeceni (vpravo) nechte vychladnout.

Redlny potencial krystalu miizeme také aproximovat atoméarnim potencidlem v oblasti blizko atomar-
nich jader (koule). V oblasti mezi témito koulemi pak potencidl nahradime konstantou. Toto p¥iblizeni se
oznacuje jako Muffin-tin potencial, coZ je dané podobnosti tohoto potencidlu s formou na peceni mu-
fin, jak ukazuje obr. 10.9. Metoda APW pouziva pro navazovani feseni na kulovych rozhranich prechod

vvvvvv

metodam patii metoda KKR, kterd spociva v Feseni Schrodingerovy rovnice pro krystalovy potencial
metodou Greenovych funkci.

Seznam zminovanych metod

Na zavér této sekce zopakujme vSechny zminované vypocetni metody sefazené podle naroc¢nosti:
B Metoda témér volnych elektront,

LCAO - linedrni kombinace atomarnich orbitaldi (metoda tésné vazby),

OPW - Orthogonal Plane Wave,

Metoda Pseudopotencialu,

Muffin-tin potenciél,

APW — Augmented Plane Wave,

KKR — vyziva Greenovy funkce.

10.4 Experimentalni metody zkoumani Fermiho ploch

Jak jsme si odvozovali v predeslych kapitolach, pro studium vlastnosti systému elektrond je vyhodné
pouzit statické magnetické pole. Protoze magnetické pole vyvolava silu kolmou na smér rychlosti nabité
Gastice, nemuze ji predavat energii a tato ¢astice se tedy pohybuje po ekvienergetické (Fermiho) plose. Na
tomto zékladé se vyvinulo hned nékolik experimentalnich metod mapovani tvaru Fermiho plochy. Mezi
né patii nasledujici méreni:

B oscilace magnetorezistence (Subnikoviiv-de Haastv jev),

B oscilace magnetizace (de Haastiv-van Alphentiv jev),

B oscilace délky vzorku,
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magnetoakustické geometrické rezonance,
oscilace teploty vzorku,

oscilace Peltierova jevu a termoelektrického napéti,

oscilace teplotni vodivosti.

Vsechny tyto jevy vyzaduji detailni teoreticky rozbor, z kterého se ziskd charakteristickd periodi¢nost
vlastnosti kovii (ale i polovodi¢l) v homogennim magnetickém poli B. Tyto vlastnosti jsou periodické
s periodou 1/B.

10.4.1 Kvantovani v magnetickém poli — Landauovy hladiny

Pro popis stavu dané ¢astice je potieba zadat kanonicky sdruzené veli¢iny, kterymi jsou pro volnou ¢astici
soufadnice a hybnost (impulz). V magnetickém poli B je k polohovému vektoru elektronu 7 kanonicky
sdruzen impulz (hk + eA) = (—1hV + eA). Néboj elektronu (—e) je zodpovédny za kladné znaménko
u druhého ¢lenu. Vektor A oznacuje vektorovy potencial, ktery musi spliiovat podminku B=VxA.
Zvolme si orientaci magnetického pole B = (0,0, B). Volba vektorového potencidlu neni jednoznacna.
Vybér vektorového potencidlu ve tvaru A= (0, Bz, 0) se nazyva Landauovo cejchovdni, viz obr. 10.10.
Schrédingerovu rovnici pro volny elektron v magnetickém poli zapiSeme jako modifikaci vztahu (7.6)

-,

(b ed) L [(_h;;) ; (—né?y ; eBx)2 n (—na‘?)] (7 = Be().  (10.17)

2m - 2m

Proti volnému elektronu nam pribyl jeden ¢len zavisly na soufadnici x. Proto budeme hledat feseni ve
tvaru
(7)) = () e Fvythe2), (10.18)

Tuto vlnovou funkci dosadime do Schrédingerovy rovnice a provedeme derivace podle souradnic y a z,
¢imz ziskdme cleny hk, a hk,,

B[ a2 1 . h2k2
—— | — — B 2 =F . 10.1
[ o (dm2> + o (hk, + eBz)” + o } o(x) o(x) (10.19)

Tuto rovnici upravime nasledovné

h [ a2 1 (eB\? (hk, ? h2k2
-— | — -m | — — 4z r)=|FE— = x),
[ 2m (do:2> + 2 (m) eB + #(z) 2m w(z)
a provedeme substituce za Cervené Cleny. Touto transformujeme Schrédingerovu rovnici na tvar rovnice
fesené pro harmonicky oscilator posunuty v soufadnici o hodnotu xg,

h2 d2 1 2 2
{_Qm (dﬂ) +gmwe (o +2) } p(2) = Eryp (@), (10.20)
©8
‘A = (0, Bx, 0)

Obr. 10.10: Volba sméru (cejchovani)

—

vektorového potencidlu A pro popis
vlivu magnetického pole B. Nejedno-
znacnost volby A znamena, Z%e neni
dtlezitd konkrétni hodnota v daném
misté ale symetrie rozlozeni potencialu
v prostoru, nebot magnetické pole se
pocité jako rotace vektorového poten-
cidlu.
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kde w. = eB/m je obvykla cyklotronova frekvence, v posunu souradnice xo = hk,/eB se skryva zavislost
na y-ové soutadnici. Celkovou energii, £ = E,, + h?k?/2m, jsme rozdélili na kvantovanou slozku v roving
zy a volny pohyb ve sméru z, t.j. ve sméru magnetického pole.

U harmonického oscilatoru dochazi k periodickému prelévani energie mezi kinetickou a potencialni.
Pii cyklotronovém pohybu v magnetickém poli dochéazi k prelévani kinetické energie mezi x-ovou a y-
ovou slozkou. Matematicky je to ale stejné a protoze feSeni rovnice harmonického oscilatoru je znamé
[11], mtzZeme rovnou zapsat vysledny vztah pro kvantovani energie harmonického oscilatoru

eh

= — 10.21
=, (10.21)

1
Exy = <’FL+ 2> hwc = (QTL + 1)[LBB, UB

kde jsme pouzili vyraz pro Bohriv magneton up. Kvantové ¢islo n oznacuje potradové ¢islo hladiny
harmonického oscilatoru a v tomto kontextu se nazyva &islem Landauovy hlading®, n=0,1,... .

Obr. 10.11: Znazornéni vyvoje Landau-
ovych hladin pfi zvySovani magnetické
indukce od 0 T do hodnoty B;. Tec-
kované jsou oznaceny piiklady nékolika
magnetickych poli, kdy je nejvyssi hla-
dina zcela obsazena.

E/E-

0 16 U4 13 12 1
B/B,

Obréazek 10.11 ukazuje typicky véjif Landauovych energetickych hladin. Magnetické pole je znor-
mované na hodnotu Bj, pri takto silném magnetickém poli je obsazena pouze jedna jedind Landauova
hladina s kvantovym ¢islem n = 0. Pro slabsi pole se za¢ne obsazovat vyssi hladina s ¢islem n = 1. Ze
vztahu (10.21) plyne podminka By = Er/2up.

Vlnové funkce stavii na jednotlivych hladindch maji tvar

1 2 /5y 2 Tr— h h
_ b cemgyg (T Ap =) —— =L 10.22
@n(x) an'AB\/;r € n < )\B > ’ B mwe er ( )

kde prostorové souradnice se skaluji s magnetickou délkou Ap, kterd udava polomér nejmensi orbity, po
které se elektron pohybuje. H,, oznac¢uje Hermittv polynom n-tého ¥addu. Obrézek 10.12 ukazuje, jak se
po zapnuti magnetického pole zformuji Landauovy hladiny v k-prostoru, viz téz pi. 10.6.

Celé feseni Schrodingerovy rovnice pro volny elektron v magnetickém poli by se dalo stejnym zpiso-
bem zopakovat i pro model témér volnych elektrond. Jak ale vime, slaby periodicky potencidl se da pro
stavy na hrané pasu zapocitat pouhym zavedenim efektivni hmotnosti. V priubéhu vyse uvedeného feseni
by se pouze provedla vsude substituce m — m*.

10.4.2 Cyklotronvy pohyb — integral v case

Pri pohybu elektronu v magnetickém poli B plati pohybova rovnice (10.3). Dale pouZijeme vztah pro
vypocet rychlosti elektronu pii pohybu v energetickém pasu uvedeny v témze ramecku. Vzajemnou kom-
binaci obou miizeme spocitat skaldrni soucin

dk OE Ok, A OE Ok, OE k. dE _
Vil =0 T G o ok, ot ok o

Prvni vyraz lze interpretovat tak, ze zména vektoru k je vzdy kolmo ke gradientu energie, coz vede na
rozpis diferencidlu vpravo, ktery iika, Ze energie elektronu se s ¢asem neméni. Jak bylo jiZz zminéno,
méfenim v magnetickém poli nutime elektrony obihat po ekvienergetické plose po kfivce, kterd je kolméa
na magnetické pole. Délame tedy sondu Fermiho plochy pomoci fezti kolmych na magnetické pole B.

5Lev Davidovi¢ Landau [Jles Jlapunoswu Jlangay | je nositelem Nobelovy ceny za fyziku z roku 1962.
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Obr. 10.12: a) Krystal bez magnetického pole, zelené tecky oznacuji povolené stavy vektoru E, které jsou
dané Bornovymi-von Karmanovymi okrajovymi podminkami. b) Krystal v magnetickém poli, v tomto
pripadé pro popis elektronovych stavii pouzivame kvantové ¢islo n — ¢islo Landauovy hladiny. V obrazku
je znazornéno n u prvnich Sesti hladin. Degenerace kazdé hladiny je v zobrazeném piipadé rovna D = 32.
Uhlové poloha zobrazenjch stavii na Landauové hlading neni relevantni.

_ Uvazujme pohyb elektronu v ¢asovém intervalu At = to—tq, pti kterém piejde vlnovy vektor z hodnoty
k‘l na kQ.

EQ EZ
[y
i ] eBzzl IVes

ta
At =ty —t = /dt = (10.23)
t1

Rozeberme vyznam V;E. Uvazujme plochu konstantni energie £ a sousedni plochu s energii E + JE.

Necht bod & na plose E je spojen vektorem 6k s bodem na ploSe E + §FE, viz obr. 10.13. Pro malé §F je
gradient kolmy na ekvienergetické plochy a plati

§E = V;E - 6k = |V E|0k.

Tento vztah dosadime do jmenovatele v integralu ve vztahu (10.23) a ziskdme

ko

2
L kdn, (10.24)

" ¢BOE
4

At =ty — t4

Ted jiz jen sjednotime body k; a ks a budeme tedy uvazovat periodicky pohyb po uzaviené orbité. Cas
At bude tedy odpovidat periodé obéhu a mizeme definovat thlovou frekvenci tohoto pohybu jako

B 2 B B
B _ 2 me = B B

= =
mi At ° 27 We

We =

V magnetickém poli bude elektron obihat po ekvienergetické orbité kolmo na vektor B. Uréenim frekvence
tohoto pohybu zjistime efektivni cyklotronovou hmotnost m} v tomto misté, ktera je urcena kiivosti

E +0E

Obr. 10.13: Geometrickéd interpretace v textu pouzitych parame- , ' ok
trii. Rovina nékresu je kolma na magnetické pole. Cervené je

zakreslena orbita s energii £ a modfe orbita s energii £ + 0E.
Rizova plocha oznacuje rozdilovou plochu mezi orbitami. Zelena
¢4st predstavuje integral mezi body ki a ks podle vztahu (10.24)

a je umérny rozdilu Gasu (to — t1). AE+SE)-AE) @ﬁ
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energetické zavislosti v tomto misté k-prostoru. Dosazenim (10.24) a integraci po uzaviené orbité ziskdme

. W2 OA(E,ky)
Me = 98 OE

Veli¢ina A(E, k) urcuje velikost orbity elektronu na ekvienergetické plose s danou velikosti paralelni
slozky k), ktera je projekci vlnového vektoru do sméru magnetického pole. Derivace této plochy popisuje,
jak roste velikost plochy s energii F pii diferenciadlnim zvyseni energie. Je ziejmé, Ze pokud je 0A/OFE > 0,
plocha orbity s energii roste, jedné se o elektronovou orbitu. Naopak pokud 0A/OFE < 0, plocha orbity
se vzristem energie klesa, jedné se o dérovou orbitu (obr. 10.14).

Obr. 10.14: Néakres dérové orbity
(rtiZovd) a elektronové orbity (tyrky-
sova) v energetickém schématu (vlevo)
/@ @ a v k-prostoru (vpravo). Cerchovana
¢ara predstavuje Fermiho mez. Smér
obihéni elektronti a dér v disledku

magnetického pole je naznacen Sipkou.
kx kx Srovnejte s obr. 10.5.

10.4.3 Kvantovani v magnetickém poli — kvantovani momentu hybnosti

Pro periodicky pohyb elektronu po uzaviené orbité musi platit Bohrova-Sommerfeldova kvantovaci pod-
minka na moment hybnosti ve tvaru

}{ﬁ- A7 = 2nh <n + ;) , (10.25)

kde n je kvantové ¢islo oznacujici Landauovu hladinu a fazova oprava velikosti % je dana kvadratic-
kou disperzni zévislosti energie na k pro volny elektron. Pravé tato hodnota je potfeba téz pro soulad
s odvozenim vedoucim na energii Landauovych hladin (10.21).

Nyni budem§ uvazovat obecnou orbitu pro elektron nebo pro diru s nabojem . Za kanonickou hybnost
dosadime p'= hk + GA. Pro odvozovéani budeme jesté potfebovat vztah mezi vektory k a 7, ktery ziskdme
integraci pohybové rovnice (9.7) nasledovné:

h—=4—xB =  hk=q§7xB. (10.26)

jq{ﬁ. df:j[m%- dF+G ¢ A-d7 (10.27)
:(j?{f’xg'dFJr(j/VX/_l’-dg (10.28)
- GB- j{Fx d7 + GB - /d§ (10.29)
=-24B-S+qB-S=-GB-§=-q2, (10.30)

kde ® oznacuje magneticky tok plochou, kterou ohranicuje drdha ¢astice v redlném prostoru. Pro tpravu
prvniho integralu jsme pouzili geometricky vztah, ktery udava, ze drahovy integral

‘%def

je roven dvojnasobku plochy uzaviené krivkou, po niz se integruje. Pro tupravu druhého integralu se
vyuzila Stokesova véta o pfevodu kiivkového integralu na plosny integral z rotace. Vysledek dosadime do

= |25] = 25,
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kvantovaci podminky (10.25) a dostaneme podminku kvantovani magnetického toku orbitou opisovanou
elektronem (G = —e) v magnetickém poli

21h 1 2mh 1

Velikost konstanty (27hi/e) je 4.14 x 1071° Tm?. Je diilezité si uvédomit, ze velikost cyklotronové orbity
se méni s magnetickym polem pravé tak, aby magneticky tok orbitou ®,, nezavisel na magnetickém poli.

Vyuzijeme opét (10.26) pro vypocet plochy orbity v k-prostoru

eB\? oreB 1
A, =2 e ~. 10.32
n (h)Sn - <n+2) (10.32)

P11 zvétseni kvantového ¢isla n o 1 se zvétsi plocha orbity v reciprokém prostoru o AA,

2meBB
AA=Apsi — A, = ”; . (10.33)

Pri zapnuti magnetického pole neni jiz vektor k dobrym kvantovym ¢islem. Dfive homogenné rozlozené
stavy v k-prostoru se shromazdi na Landauovych hladinach. Diky tomu, Ze plocha AA je konstantni, je
pocet stavii na vSech Landauovych hladinach stejny. Tato hodnota se nazyva degeneraci hladiny a mtzeme
ji odvodit nasledovné

AA 2reB [ L\° el?
D= TE =7 (2W> =pB, kde p=— (10.34)

kde L znaéi délku krystalu, jehoZ priifez kolmo na magnetické pole je L2. Z tohoto vztahu lze odvodit
velikost magnetického pole, pfi némz bude NN elektrony kovu obsazeno pfesné s Landauovych hladin. To
znamena, ze jsou zcela obsazeny Landauovy hladiny s kvantovym ¢islem: n =0,1,...,s — 1.

D(By)s = pBss = N = pBj.

P1i nulovém magnetickém poli jsou v kovu obsazeny vSechny stavy v kouli ohrani¢ené Fermiho mezi. Pro
magnetické pole o velikosti By, které se nazyva fundamentdlni pole, se stavy vSech téchto IV elektrond
pfesunou na jedinou Landauovu hladinu. (PO. 10.1: Obsazeni Landauovych hladin).

Ze znalosti velikosti plochy orbity A,, v k-prostoru miZzeme spocitat pricny vinovy vektor z podminky
A, = wkgy. Vysledek muzeme dosadit do vztahu pro energii a ziskdme

E

nk2  hkZ, 1
= z z - EZ h/UJ - . 1 N
om* | 2m* * (” * 2) (1035)

Tento vysledek pfesné souhlasi s kvantovanim do Landauovych hladin podle vztahu (10.21). Tyto 3D
energetické plochy tvofi valce v k-prostoru, jak ukazuje obr. 10.15.

Obr. 10.15: Znéazornéni 3D Landauovych
energetickych hladin v k-prostoru. Index n
znadi ¢islo hladiny podle (10.35), zelené je za-
kreslena poloha Fermiho meze pro ptipad bez
magnetického pole.
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10.4.4 Extremalni orbita

V této sekci jsme probiraly nékolik pohledt na vliv, ktery mé statické magnetické pole na chovani elek-
tronu a dér v pasové struktuie kovu nebo polovodice. Souhrnné lze Fici toto napf. pro elektrony:

Energie pohybu elektronu v roviné kolmo na magnetické pole je kvantované do Landauovych hladin
(10.21) s kvantovym &islem n = 0,1,.. ..

Kvantum energie pohybu v roviné je hw.. Pro pfechod mezi hladinami je potfeba dodat elektronu
toto kvantum energie.

Na rtznych Landauovych hladinidch maji elektrony rtiznou rychlost, ale thlova rychlost je vzdy
stejnd w.. Vsechny Landauovy hladiny maji stejny pocet stavii, kolik se na né da umistit elektroni.
Degenerace D se pocitd podle (10.34).

Plochy orbity v k-prostoru kolmo na B jsou rovnéz kvantované (podstava Landauovy trubky, viz
obr. 10.15). Pfechodem na vyssi hladinu se zvétsi plocha orbity vzdy o konstantni hodnotu AA,
jejiz velikost udava (10.33).

Kvantovanim orbit v k-prostoru dojde soucasné ke kvantovani velikosti orbit elektronu i v readlném
prostoru. Jejich velikost S, je imérnd Landauovu ¢islu.

Magneticky tok ®,, tekouci orbitou v realném prostoru se kvantuje v jednotkach podilu Planc-
kovy konstanty a nédboje elektronu (27/i/e). Velikost magnetického toku (10.31) nezavisi na poli B.
Dvojnasobné pole tedy zpiisobi zmenseni Landauovy orbity na polovi¢ni plochu.

Ve sméru magnetického pole se chova elektron volné a zachovava si konstantni projekci vlnového
vektoru k.

Pozorny ¢tenaf si mozné jiz polozil choulostivou otazku. Pro obecnou 3D Fermiho plochu budou mit

jeji fezy v ruznych bodech podél sméru B ruznou plochu a tedy i riaznou periodu oscilaci. Celkova odezva
latky bude souctem prispévka od vsech ¢asti Fermiho plochy. Bude mozné takto komplexni signal ro-
zumné interpretovat? Nastésti rozhodujici vliv maji pouze piispévky od extremalnich orbit, nebot ostatni
prispévky se diky rozdilim ve fazi vzajemné vyrusi. Tomu dava za pravdu i experimentalni pozorovani,
kdy se i u slozitych Fermiho ploch pozoruji ostré oscilace, ve kterych se projevuje nejvice extremélni or-
bita. Ta mutze byt elektronové, nebo dérova. Oteviené orbity se neprojevuji charakteristickymi oscilacemi.
Extremalni orbita v obr. 10.15 by byla kruznice o poloméru kg.
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Obsazeni hladin

1215 2024 30 40 60 120
B(T)

64

48T n=2
40 + n=1 i

21 n=0

Obsazeni hladin

[Eny
)]

—
1

o o

0 1 2 3 4 5 6 7 8 9 10 11

\\ s=(120 T)B

s=1,D=64 s=2,0=32 s=3,D=21 s=4,D=16
B=120T B=60T B=40T B=30T

PO. 10.1: Obsazeni Landauovych hladin v zavislosti na magnetickém poli. U horniho obrazku je
vodorovné osa B a u druhého obrazku je to 1/B. Pocet elektronti je vzdy N = 64, plocha pod zelenou
¢arou predstavuje zcela obsazené hladiny, zluté jsou zobrazeny elektrony v ¢aste¢né zaplnéné Landauoveé
hladiné. Dole jsou zakresleny polohy stavii na Landauovych hladindch uvnitt Fermiho koule pro ¢tyti
magnetickd pole. Fundamentalni pole ma hodnotu By = 120 T.
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10.5 Priklady

Pr. 10.1: 2D kov s ¢tvercovou mrizkou:

Obrazek 10.2 ukazuje geometricky zpusob nalezeni tvaru Fermiho plochy v jednotlivych zénich pomoci
Harissonovy konstrukce. Levou stranu tohoto obrazku jsme mohli vidét jiz v jedné z predeslych kapitol.
Zkuste tento obrazek najit.

Népovéda: Hledejte na obrazku v kapitole Uvod.

Pr. 10.2: Polomér 2D Fermiho plochy:

Odvodte vztah (10.2) pro velikost Fermiho vektoru pro étvercovou miizku s miizkovou konstantou a a
s elementarni bunkou obsazenou n valen¢nimi elektrony. Udélejte tabulku, ve které bude pro kazdé cislo
n < 7 a pro kazdou z prvnich péti BZ uvedeno, zda je tato zéna prazdna, nebo je obsazend c¢astecné,
nebo uplné.

Néapovéda: Pouzijte obr. 10.3.

Pr. 10.3: Polomér Landauovy hladiny:

Vyuzijte vztahy (10.32), (10.34) a obr. 10.12. Odvodte vztah pro polomér n-té Landauovy hladiny kg, »,
pokud znate degeneraci Landauovych hladin D a vzdalenost stavll v k-prostoru bez magnetického pole
Ak. Pro srovnani s obr. 10.12 dosadte (D = 32).

/D | 1

Pr. 10.4: Brillouinovy z6ny obdélnikové mrizky:
Nacrtnéte prvni dvé Brillouinovy zény 2D obdélnikové mfizky s pomérem miizkovych vektora b = 3a.
Kittel, str. 284, pr. 1

Reseni:

Pr. 10.5: Brillouinovy z6ny 2D kovu:
Uvazujte 2D kov se ¢tvercovou miizkou, ktery ma dva vodivostni elektrony na atom. Nacrtnéte Fermiho
plochu v pfiblizeni témér volnych elektront. Vyuzijte obr. 10.3. Kittel, str. 285, pt. 4

Pf. 10.6: Obsazeni Landauovych hladin:
Vyuzijte vztahy od (10.32) aZ po (10.34) a s vyuzitim vhodného pocitac¢ového programu spocitejte pocet
stavil, které geometricky spadaji na jednotlivé Landauovy hladiny s D = 32 podle obr. 10.16.

——.

®B

- D=32

o 0:37

c e e 132 Obr. 10.16: Vipodet obsazeni jednotlivich Lan-
2:28 , . , .

° o 332 dauovych hladin stavy z barevnych mezikruzi.

c° 4:32 Naépovéda: Pokud zvolime Ak = 1, potom bude

: : : 5:32 A, = D(n + 1/2). Takze t¥eba &ervena plo-

e . 6:28 cha obsahuje puvodné 37 povolenych stavi.

o o e 7.32 Poloméry barevnych ploch najdeme z rovnosti

8: 40 2
9 3 kg, = D(n +1).

10: 24

Pt. 10.7: Perioda oscilaci v magnetickém poli pro draslik:

a) Vypocitejte periodu A(1/B), kterou bychom dostali pro draslik v modelu volnych elektront. Tuto
periodu maji oscilace magnetického momentu (de Haasovy-van Alphenovy) i oscilace elektrického odporu
(Subnikovy-de Haasovy). b) Jaka plocha v redlném prostoru odpovida plose extremélni orbity pro velikost
magnetického pole B =1 T. Kittel, str. 285, pr. 7

Reseni: b) Primér plochy vyjde 72.6 nm.
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Kvazicastice Popis
EE—— elektron Blochuv elektron
AVAVAVAV .o foton elektromagetické pole
—~/NV\VNN— fonon kmity miizky
— Il plazmon kolektivn{ elektronova vina
magnon vlna magnetizace

@ exciton elektron-dira
—OOOO— polariton foton-fonon
—= polaron elektron-fonon

Kvazicastice v pevnych latkach.
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11.1 Zavedeni formalismu kvazicastic

Kvazicastici se ve fyzice oznacuje kolektivni excitace systému mnoha identickych ¢astic. Zavedenim kva-
zi¢astice mizeme modelovat chovani mikroskopicky komplikovaného systému mnoha interagujicich ¢astic
napf. elektrontt v pevné latce. Chovani latky lze potom popsat tak, jako by obsahovala fiktivni slabé
interagujici kvazicastice ve volném prostoru. Vezméme si jako ptiklad elektron v polovodié¢i. Pohyb elek-
tronu v polovodiéi je velmi obtiZzné popsatelny, nebot je ovlivnén coulombovskymi interakcemi se vSemi
ostatnimi elektrony a jadry.

Kvazicastici elektron pohybujici se v pasu polovodice definujeme jako kolektivni stav elektrond po-
psany pomoci Blochovy vlnové funkce. Tato kvazicastice se pohybuje jakoby bez interakci volné v objemu
celého krystalu, ale jeji hmotnost je pouze zlomkem hmotnosti volného elektronu mg. Pokud pfilozime
na polovodi¢ napéti pres elektrické kontakty, mizeme pti prichodu proudu sledovat elektron na jedné
strané vstupujici do polovodice a na druhé strané elektron vystupujici. Pokud by se mezi elektrodami
§iril elektron volnym prostorem, mél by hmotnost mg. Pokud se ale §ifi polovodi¢em, ma hmotnost nizsi,
prejit mezi kontakty je pro néj tedy snazsi.
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Abychom toto vysvétlili, musime si uvédomit, Ze polovodi¢ je systém s mnoha elektrony. Elektron na

vstupu je ,,jiny“ nez ten na vystupu, jenze elektrony jsou nerozliSitelné elementarni ¢astice, jsou vSechny
stejné. Proto ten elektron na vystupu z polovodice je ,stejny“ jako ten na vstupu.

Kvazicastice predstavuje elementarni excitaci systému identickych ¢astic. Je nutné, aby byl systém
téchto ¢astic blizky zakladnimu stavu a kvazicastice pak predstavuji energii, ktera je v systému navic. Je
zajimavé si uvédomit napf. to, Ze systém elektront v kovu ma i pii teploté blizké absolutni nule (0K)
stale obrovskou energii ulozenou v kinetické energii elektront diky Pauliho vylu¢ovacimu principu. Na
jeden kubicky centimetr vychazi stovky kilojoule.

11.1.1 Opakovani jiz dfive probranych kvazicastic

Pro popis prenosu elektrického proudu v polovodici se zavadi kvazicastice elekiron a dira. Blochuv elektron
popisuje dobfe velmi méalo obsazeny vodivostni pas. Naproti tomu dira je kvazic¢astice, kterda umoznuje
velmi efektivné popsat valenéni pas, ktery je skoro uplné obsazeny. Tyto kvazi¢astice jsme probrali po-
drobné v kap. 9. Podle Blochova teorému je pro kvazicastice mozné zavést jako dobré kvantové ¢islo
vlnovy vektor s tim, Ze veli¢ina hk se chova jako impulz (hybnost) této kvazi¢éstice.

Jako dalsi kvazic¢astici jsme definovali fonon pro popisu vibraci mfizky. Jedna se o elementarni ex-
citaci daného vibra¢niho médu. Diky harmonické aproximaci potencidlu atoméarnich jader jsme dospéli
k formulaci feSeného problému ve tvaru harmonického oscilatoru. Protoze energetické hladiny jsou zde
ekvidistantni, je mozné zvySovani energie vibraci mfizky pouze po kvantech, kterd nazyvame fonon.

Pro definici kazdé kvazicastice je nutné zadat t¥i vlastnosti:

—.

B disperzni zavislost E(k);
B statistické chovéani, t.j. zda se jedna o fermiony, nebo o bosony;

B zda je fixni pocet Castic, nebo je konstantni chemicky potencial.

Pro vypocty chovani systému kvazic¢astic je uméni zvolit dostatecné komplexni hamiltonian, tak aby
popsal vSechny studované efekty. Ale aby byl jen tak slozity, aby byl jesté rozumné feSitelny. Pii kvantovém
popisu se zavedou krea¢ni a anihila¢ni operatory. Vyuzije se tedy druhé kvantovani, které automaticky
zapocCitava statistické vlastnosti, coz se musi brat do avahy, pokud je téch kvazicastic v latce vice.

11.1.2 Nové kvazidastice

B Kvazicastice plazmon popisuje kolektivni podélné oscilace plynu vodivostnich elektroni. Tento efekt
je vyrazny u kovi a projevuje se vznikem plazmové hrany obvykle v ultrafialové oblasti spektra.
Pro nizsi frekvence a tedy celou viditelnou oblast jsou potom kovy perfektni zrcadla.

B Kvazicastice polariton popisuje interakci fotonového a fononového systému v pevné latce. Protoze
disperzni relace pro fotony a pro optické fonony v latce se protinaji, mizou tyto Castice vzajemné
interagovat. Vytvari tak spole¢né novou kvazicastici.

B Kvazicastice polaron je typickd spiSe pro soli. Elektron v tomto krystalu mtze svym elektrickym
nabojem modifikovat polohy iontt v polarni miiZzce. Tim se miiZzka pii pohybu elektronu krystalem
polarizuje, coz pociti i dalsi elektrony. U polaronu jde tedy o elektron-fononovou interakci.

B Fxciton je kvazicastice slozend z elektronu ve vodivostnim pasu a diry ve valenénim pasu. Diky
coulombovské interakci zdporné nabitého elektronu a kladné nabité diry mutize tento par vytvorit
vazany stav podobny atomu vodiku.

B Velmi popularni kvazicastici jsou Cooperovy pary elektroni, které vznikaji za velmi nizkych teplot,
kdy jeden elektron modifikuje miizku a tak se vytvari energetickd hladina pro druhy elektron v jeho
blizkosti. Diky mfizce tak vznika velmi slaba virtualni pritazliva interakce mezi elektrony. Zakladni
stav elektront v supravodi¢i je oddélen malou energetickou mezerou od prvniho excitovaného stavu.
Pokud je za nizkych teplot tepelnad excitace kg1 mensi nez Sitka energetické mezery, vede tento
material proud bez jakéhokoliv odporu. Proto se takovému materidlu fika supravodi¢ a pro jeho
provoz je ¢asto zapotiebi héliovych teplot (teplota zkapalnéni hélia, 4.2 K ~ —269 °C).

B Kvazicastice magnon popisuje Sifeni spinové viny, kterd se §ifi ve feromagnetiku.

S nékterymi z vyjmenovanych kvazicastic se jesté setkdme v dalsim vykladu této kapitoly. Podrobné;jsi
popis téchto jevi je ale nad rdmec tohoto tvodniho textu.
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11.2 Interakce pevné latky s optickym polem

V predeslych kapitolach jsme probrali zékladni koncepty popisu pevné latky od miizky vazanych iontd
pfes volné elektrony v kovu az po pasovou strukturu polovodi¢d. V této casti se pokusime vyuzit téchto
znalosti pro popis interakce optického pole s pevnou latkou. V celém skriptu striktné pouzivame soustavu
jednotek SI, které jsou sepsané v seznamu na konci skripta na str. 214. V celé fadé knih jsou ale optické
parametry latek popsané v soustavé CGS [2]. V ulebnici ,,Fundamentals of Semiconductors® [14] si dali
autofi Yu a Cardona tu praci, ze uvadi vzorce v obou soustavach. Neocenitelna je u nich také zadni
predsadka, kde prehledné shrnuli vSechny pfevodni vztahy. Vynatek z této jejich tabulky je pfepsan na
konci skripta na str. 217.

Vénujme se tedy popisu interakce pole a latky. Vyvoj klasického optického pole je presné popsan
feSenim ¢ty Maxwellovych rovnic

VxE=

0 —
= o =0
VxH=j+

:p.

(11.1)

Yo UUl
S

\Y
D \Y
Zopakujme znaceni jednotlivych veli¢in, E je elektricka intenzita a D indukce, H je magnetickd intenzita
a B indukce. Veli¢ina p oznacuje koncentraci volnych nadbojt a jejich pohyb popisuje hustota proudu j.

Pro feseni Maxwellovych rovnic (11.1) je potfeba jesté zadat materidlové vztahy, které popisuji odezvu
materiadlu na vnéjsi pole Budeme se vénovat pouze nemagnetickym materialim, takze prvni materidlovy
vztah je trivialni, B = MOH s permeabilitou pp = 47 x 1077 H/m. Druhy materidlovy vztah dava do
vzajemného pomeéru elektrické vektory optického pole

D=¢cyE+ P, =ccoE, = P, =(e—1)kE, (11.2)

kde P, je vektor polarizace, kter}'f predstavuje hustotu dipdlovych momentd v latce. V tomto vztahu
vystupuje relativni permitivita', kterd je obecné funkci frekvence a vlnového vektoru s(w K), e Je
permitivita vakua. Tfetim materidlovym vztahem by byl Ohmuv zékon pro elektricky proud, j = a(w)E

Pro popis nékterych jevi je nutné misto rozdéleni ndbojt a proudt na volné a vazané, které je obvyklé,
pouzit misto toho déleni na naboje a proudy externi a indukované. Toto déleni pouzijme nyni a ukazme
si, kam to vede. Pro naboje bude platit,

Ptot = Pext + Pind V. D = Pext) EOV : E = Ptot-

Jak je zfejmé intenzita pole je svazana s celkovym nabojem, kdezto externi ndboj vyvolava jako odezvu
elektrickou indukci. Provedeme Fouriertiv rozklad obou vztaht s divergenci do prostorovych frekvenci
s vlnovym vektorem K, kde pouzijeme D(K) = goe(K)E(K).

VD=0V SR BE) R = Y po(R) (113
K K
eV - E =gV ZE(E) T = ZPtot(K) e
K K

Protoze obé rovnosti musi platit pro kazdou harmonickou slozku, mizeme provést podil obou rovnic po
jednotlivych slozkich. Takto ziskdme rovnici pro vypocet permitivity,

E(I%) _ Pext _ Pext + Pind — Pind -1— pind. (114)
Ptot Ptot Ptot

11.2.1 Komplexni optické konstanty

Optické pole muze s pevnou latkou interagovat mnoha riznymi zpusoby. Rizné interakce jsou typické
pro ruzné spektralni oblasti. Studium interakce latky s optickym polem dalo vzniknout celé fadé experi-
mentalnich metod, které se dnes rutinné pouzivaji.

Na zacatku kapitoly 3 jsme si fikali, Zze strukturu krystalu miiZzeme pozorovat pouze pomoci zareni
v rentgenové oblasti. Viditelné svétlo se mtize na krystalu odrazit, miize projit nebo miize byt absorbovano.

1V nékteré literatufe se misto terminu permitivita pouzivéa dielektricka funkce.
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Mikroskopickou podobu latky takto nevidime a zdkon odrazu nebo lomu je dan optickymi konstantami
krystalu, jako je napf. index lomu. Pro Sifeni rovinné vlny v prostiedi s absorpci je vhodné zavést tyto
optické konstanty jako komplexni veli¢iny, které jsou diky disperzi zavislé na frekvenci optického pole w.

Pro znaceni komplexnich veli¢in pouzivame vlnovku. Komplexni index lomu mtizeme zapsat jako

N(w) = n(w) + k(w). (11.5)

Klasicky index lomu n(w) je zodpovédny za snizeni rychlosti $ifeni svétla uvnit¥ krystalu a diky tomu
zpusobi zkraceni vlnové délky uvnitf materidlu. Index extinkce k(w) je zodpovédny za absorpci a zpliso-
buje postupné snizovani amplitudy prochéazejiciho svétla. Protoze komplexni index lomu je analytickou
funkci v celém spektralnim rozsahu, da se na tuto funkci pouzit matematicky aparat komplexni funkce
komplexni proménné?. Ten vede na Kramersovy-Kronigovy relace, které ¥ikaji, Ze realn a imaginarni
Cast jedné komplexni proménné jsou spolu navzajem integralné svazané. Pokud namérim v dostatecné
Sirokém spektru absorpci danou extinkei x(w), pak mohu pomoci téchto relaci dopoéitat profil indexu
lomu n(w).

V nemagnetickém prostfedi plati mezi permitivitou a komplexnim indexem lomu vztah N2=ZF=¢+
1€5. Tato rovnost zavadi komplexni permitivitu, jejiz redlna ¢ast 1 oznacuje dosud pouzivanou permitivitu
napt. v (11.2). Imagindrni ¢ast permitivity €5 je svdzand s absorpci a téZ s vodivosti daného materidlu.
Podobné lze definovat také komplexni funkci odrazivosti pfi kolmém dopadu rozsifenim platnosti vztahu
platného piivodné pro realné veliiny

Fo) = YTl R e
(@) = 2 = VR e (11.6)

V tomto vztahu komplexni veli¢ina 7(w) oznacuje odrazivost pro elektrické pole a realné veli¢iny R(w) a
©(w) znadi intenzitni odrazivost a posun faze elektrického pole pfi odrazu.

Pro vSechny zavedené komplexni veli¢iny popisujici optické vlastnosti latky musi platit Kramersovy-
Kronigovy relace. Na tomto principu je zalozena metoda studia parametri krystali pomoci méfeni spekter
odrazivosti. Casto se pouziva konfigurace kolmého dopadu svétla na povrch krystalu.

11.3 Plazmon — reflexe na volnych elektronech

Piisobeni latky na prochézejici elektromagnetickou vinu je popsané komplexni permitivitou £(w, K ). Jeji
redlné limity maji nasledujici vyznam, e(w,0) popisuje objemové i povrchové plazmony a je svizana
s kolektivnim pohybem volnych nabojl jako celku. V nésledujicim odstavci ji budeme oznacovat jako
¢(w). Druh4 limita (0, K) predstavuje elektrostatické stinéni interakce elektronu s jinym elektronem,
s mfizkou nebo s primésemi v krystalu.

11.3.1 Drudeho model volnych elektronu v kovu

Prispévek volnych elektront ke komplexnimu permitivité a potazmo k indexu lomu se poc¢ita pomoci Dru-
deho modelu, ktery predpoklada volny pohyb vodivostnich elektrontt v celém objemu krystalu. Budeme
predpokladat, Ze elektrické pole je popsané ¢asovou harmonickou funkci a kmitd v jednom sméru. Jde
tedy o linearné polarizované svétlo. Potom nam staci pro vySetfovani pohybu volného elektronu v kovu
pod vlivem tohoto pole pouze 1D pohybova rovnice® pro soufadnici z ve sméru pole:

mi + mz /T = —eE.

Druhy ¢len na levé strané predstavuje tlumeni s relaxacni dobou 7. Ten je zodpovédny za ustéleni rov-
novahy systému, ale vede také k tomu, ze latku musime popisovat komplexni permitivitu. My tento ¢len
nyni zanedbame, ¢imz se vypocet podstatné zjednodusi, ale na popis zakladniho chovani systému to bude
stacit.

Pro harmonické elektrické pole s frekvenci w bude i soufadnice elektronu harmonickou funkci ¢asu se
stejnou frekvenci, e~**. Za tohoto predpokladu miizeme snadno vyjadiit druhou derivaci podle ¢asu a

2Francouzsky matematik A.L. Cauchy zpracoval teorii funkce komplexni proménné jiz v roce 1825.
3V literatufe se asto oznacuje jako Drudeho-Sommerfeldiv mikroskopicky modelu kovu.
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takto odvodime z pohybové rovnice vztah pro amplitudu harmonické vychylky,

—w?mz = —eFE = T =

(11.7)

Protoze ma kazdy elektron naboj —e, je dipélovy moment generovany jeho vychylkou na vzdalenost x
roven —ex. Polarizaci generovanou v jednotkovém objemu kovu mutizeme ziskat jako dipélovy moment
jednoho elektronu vynasobeny koncentraci elektront n

ne

P, = —nex = o (11.8)
Zavislost permitivity na frekvenci w mizeme odvodit dosazenim do (11.2). Takto ziskdme vztah
P, w2 ne?
_ —1-22 Kkd 2 11.9
£(w) + eoE w?’ ¢ “p gom (11.9)

je plazmova frekvence. Pokud se v kovu rozhybe plyn volnych elektrontd, bude mit tendenci kmitat prave
na této frekvenci.

Pro optické frekvence w < w, dochézi k tplnému odrazu dopadajicitho zafeni. V této oblasti totiz
podle (11.9) vychézi e(w) < 0, coZ nedovoluje $iFeni optického pole latkou. Vezmeme-li si jako typicky
priklad alkalické kovy, mizeme z koncentrace elektronu spocitat plazmovou frekvenci a plazmovou vino-
vou délku, kterd je uvedend v tab. 11.1. Graficky je zde zndzornéna generace plazmonu v kovové folii.

Tab. 11.1: Vlevo — koncentrace elektronti, plazmova frekvence a odpovidajici plazmova vl-
nova délka pro alkalické kovy. Vpravo — grafické znazornéni generace plazmoni v kovové
vrstvé pii nepruzném rozptylu elektront.

dopadajici elektron

Prvek Li Na K Rb
n 102 cm™] 470 265 140 115

15 (-1 lazmon N
Wp [101° s71] 12.23 9.18 6.68 6.05 %p '7\\ %
Ap [nm] 154 205 282 311 A
Tuw,, [eV] 8.05 6.04 4.39 3.98

rozptyleny elektron

N

Pro spravny popis chovani celého krystalu musime kromé elektront zapocist také m¥izku. Permitivitu
miizky v oblasti nad plazmovou hranou mizeme obvykle povazovat za konstantu. Pro kovovy krystal
budeme tedy pouze modifikovat vztah (11.9) tim, Ze k nému pfi¢teme vhodnou konstantu nasledovné:

e(w) = e(00) — —& = &(o0) ll - ])21 . (11.10)

Po této upravé je ziejmé, ze se plazmova frekvence posune na hodnotu @, = wy,/\/e(c0), jak ukazuje
obr. 11.1.
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odraz / tumenf : oblast Sifeni
3 ' 1 % " T ' ?

: ‘ ‘ Obr. 11.1: Cervena ¢ara je permitivita
|/ : § j spoCitand pro elektrony podle vztahu
[ P e R (11.9), zelend ¢ara je permitivita spoci-
‘ ; ; ; tand pro cely kovovy krystal podle
(11.10) s hodnotou &(o0) = 3. Zluté je
zobrazena oblast zadporné permitivity,
svétlo s touto frekvenci se nemize ma-
[ ‘ ; ‘ teridlem $ifit a dany kov se chova jako
-2 . - - i - L : i : perfektni zrcadlo.

£ (w)

Je zajimavé Ze Drudeho model, ktery pfedpovida odraz viditelného svétla na kovu se d& analogicky
pouZit i na odraz radiovych vin od ionosféry, nebot diky volnym elektrontim v ionosfére je permitivita
této vrstvy pro radiové viny zaporna.

Platnost Drudeho modelu je omezena do frekvenci, na kterjch se za¢nou projevovat mezipasové
optické prechody a zacne stoupat absorpce. To je typické pro zlato, které diky tomu ziskava svou charak-
teristickou barvu (PO. 11.1: Experimentdlni permitivita kovi).

11.3.2 Reseni vlnové rovnice

Pro popis optického pole v latce lze z Maxwellovych rovnic (11.1) odvodit vlnovou rovnici. Ta mé pro

elektrické pole tvar

0
E _,
%? = CQAE.

Predpokladame-li feseni ve tvaru rovinné vlny, E x eZ(E'F_‘”t), dostaneme disperzni relaci pro elektro-
magnetické pole v krystalu kovu

€

e(w, k) w? = 2k (11.11)
Tato relace nAm umozituje spocitat fazovou rychlost a index lomu ngpt

= N ) (11.12)

Disperzni relaci (11.11) mtizeme upravit dosazenim permitivity z (11.10) nésledovné

27,2
e(o0) w? = k2 —|—w§ = w(k)? = gc(:o) +wf,. (11.13)

Grupovou rychlost pro Sifeni energie optického pole bychom dostali derivaci této zavislosti, vy = dw/dk.
Je snadné ovérit, ze grupova rychlost bude vzdy mensi nez rychlost fazova, viz obr. 11.2.

Nyni mtzeme shrnout optické vlastnosti kovu v rtuznych frekvenénich oblastech:

B Prow < w, je permitivita zdporné a vlnovy vektor bude imaginérni. Zlut4 oblast v obr. 11.1. Vlna
se bude v materidlu tlumit s charakteristickou délkou 1/|k]|.

B Prow = w, je permitivita nulova. Pouze pro tuto frekvenci jsou mozné podélné oscilace plazmatu.

B Prow > @, je permitivita kladna a vlna se §ifi krystalem s fazovou rychlosti podle (11.12).
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Obr. 11.2: Cervens &ara piedstavuje
disperzni relaci pro pri¢nou elektromagne-

.7 pas zakazanych frekvenci tickou vlnu v plazmatu podle (11.13). Gru-
v pova rychlost je smérnice této kiivky a ni-
.7 kde neptesahuje rychlost svétla ve vakuu.
0 4 , , , | , , , | Disperzni zavislost se limitné blizi k modfe
0 1 2 zakreslené ose.
ck/wy,

11.3.3 Plazmony

Kvazicastice plazmon predstavuje kvantum kolektivnich podélnych oscilaci plynu volnych elektroni. Jak
jsme si ukazali, k témto oscilacim mifize dochdzet pouze na plazmové frekvenci w,. Plazmon se mtize
ve vrstvé kovu vygenerovat prichodem nebo odrazem elektronu s energii typicky 1-10 keV. Pfi vzniku
nékolika plazmont preda tento rychly elektron kovové vrstvé energii, kterd je celociselnym nésobkem
energetického kvanta fw,. Energetické spektrum rychlych elektronéi po prtichodu vrstvou kovu bude
vykazovat oscilace odpovidajici nasobktim energie plazmonu.

Experiment ale ukazuje, ze se ve spektru energetickych ztrat elektront ukazuji dvoji oscilace. Oscilace
s energii i, odpovidaji objemovym plazmontm, za druhé oscilace s nizsi energii (hw,/ \/5) jsou zodpo-
védné povrchové plazmony. Geometricky faktor odmocnina z jedné poloviny vychazi z toho, Ze povrch je
rovina, ktera oddéluje polovinu prostoru s volnymi elektrony od druhého poloprostoru bez jakychkoliv
naboji. Na konec jesté uvedme, Ze plazmon se miiZe vygenerovat i pfi odrazu fotonu na kovové vrstve.

11.3.4 Elektrostatické stinéni volnymi elektrony

Elektrické pole kladné nabytych iontd klesa se vzdalenosti » v krystalu kovu rychleji nez podle stan-
dardniho Coulombova zékona jako 1/r. Je to dané tim, Ze volné elektrony se vlivem pole pfeusporadaji
tak, aby elektrické pole efektivnéji odstinily. Toto stinéni lze popsat tim, Ze statickd permitivita (0, K )
je funkci prostorové frekvence. Oznacme stfedni hustotu naboje elektront —nge, které odpovida pozadi
kladné nabitych iontt s koncentraci +nge. V pfipadé vychylky z rovnovahy mtzem uvazovat harmonickou
stojatou vlnu ve sméru osy x. Pozitivni ndboj bude mozné zapsat jako

pT(x) = nge + pext (K) sin K.

Pext (K) predstavuje amplitudu harmonického zvlnéni naboje s prostorovou frekvenci K. To vytvoFi vnéjsi
elektrické pole, které bude ptisobit na plyn volnych elektront.

Vnéjsi elektrické pole dostaneme z hustoty ndboje fesenim Poissonovy rovnice, Ap = —p/eg. Stfedni
hodnoty kladného a zaporného naboje se vzajemné odectou a bude platit,

© = Pext (K) sin Kz, P = Pext (K)sin Kx.

7 Poissonovy rovnice pak plyne
K?@ext (K) = pexi(K) /20 (11.14)

Volné elektrony bude ovliviiovat jak tento externi potencial, tak i indukovany potencial, ktery vytvari
samy elektrony. Celkovy potencidl i celkovy naboj ziskdme jako prosty soucet externiho a indukovaného.
Vysledkem feseni Poissonovy rovnice bude tedy analogicky vztah,

K*p(K) = p(K)/=0. (11.15)
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Slozit&jsi vypocet, ktery vyzaduje nékolik pfedpokladi véetné Thomasova-Fermiho piiblizeni[1, 2],
ukazuje, ze pri teploté absolutni nuly bude chemicky potencial v krystalu konstantni, dany vztahem pro
Fermiho energii systému volnych elektront (7.11).

h2 2/3
b= — (37r2n0) .
2m
Diky tomu lze pak dopocitat v prvnim pfibliZeni lokélni koncentraci elektronil z lokalniho potencialu,

3 ep(x
n(x) %n0+§n0 QDE(F)

_ 3nge?
2Fp

= Pind (K) =

o(K). (11.16)

S vyuzitim FeSeni Poisonovy rovnice (11.15) a vztahu (11.4) ziskdme findlni vztah,

> Pind ks
S(R)=1-12 =1 25 (11.17)

Hodnota 1/ks je Thomasova-Fermiho stinici délka, kterou lze vypoéitat rliznym zptusobem. Uvedeme
nekolik moznosti.

€2 4 ,/3ng
k2 = = —D(Ep) = — /| —, 11.18
S 2 (C:OEF 50 ( F) aB T ( )

3 noe?

kde Er je Fermiho energie, D(Er) je hustota stavii na Fermiho energii a ag je Bohrtv polomér. Hodnoty
stinici délky mizeme spocitat tfeba z koncentrace volnych elektront, kterou lze urcit pfimo z krystalové
struktury. Jako piiklad je vhodné si vypoéitat stinici délku nap¥. pro méd, pro kterou vyjde 0.55 A. Tento
ukol tesi priklad 11.1.

Odvodili jsme dva limitni vyrazy pro permitivitu elektronového plynu,

k2 wh
5(0,K)=1+I§2; €(w70):1—w—g.

Je patrné, ze limita (0, K') pro K — 0 je jina nez limita e(w,0) pro w — 0. V blizkosti poéatku v roviné
w—K se musi s permitivitou zachéazet velice opatrné.

11.4 Polariton — interakce svétla s krystalovou mrizkou

Nyni popiSeme interakci fotonového a fononového systému v pevné latce. Protoze disperzni relace pro fo-
tony a pro optické fonony v latce se protinaji, mizou tyto Castice vzajemné interagovat. V misté priseciku
je pro vzajemnou interakci mozné splnit soucasné zakon zachovani energie i hybnosti. Kvantum vazanych
poli (fotonového a fononového) se oznacuje polariton. Pro optické pole vyuzijeme linedrni disperzni zdkon
(11.11), ktery upravime dosazenim elektrického materidlového vztahu (11.2) nasledovné

Ak%egF = w?eeyE = w?D = w?eyE + w?P,,
—— ~—_—————

Eeo(?k? —w?) = w?P.. (11.19)

V misté pruseciku maji obé pole stejnou frekvenci w a vlnovy vektor k. Resime 1D pfipad, kdy uvazujeme
jenom jednu slozku intenzity elektrického pole F a polarizace P.,.

V latce budeme fesit kmity odpovidajici optickému fononu s frekvenci wr, ktera je pro vSechny malé
vlnové vektory konstantni, t.j. bez disperze. Polarizace v latce je imérna posunuti kladnych iontt vaci
zapornym, pohybova rovnice je tedy podobné (11.7) z Drudeho modelu pro elektrony. Musime pouze
pouZit spravnou hmotnost jader M, nédboj @) a pfidat ¢len odpovidajici harmonickému oscilatoru pro
fonony na frekvenci wr

Mi + Mwhz = QE.

Tento model se oznacCuje jako Lorentziv-Drudeho. P¥i buzeni optickym polem na frekvenci w muZzeme
predpokladat vychylky atomu na stejné frekvenci a z pohybové rovnice si vyjadiime vztah pro amplitudy

—Muw?z + Mwiz = QE. (11.20)
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Vzajemna vychylka x poctu N iontovych part v objemové jednotce, které maji naboj @ a redukovanou
hmotnost M generuje polarizaci P, = NQz. Toto dosadime do predchoziho vztahu a dostaneme druhou
rovnici pro slozky pole E a polarizace P, z fononového systému

NQ?

2 2
~wP, P, =
w + w7

E. (11.21)

Fononovy a fotonovy systém bude interagovat v misté, kde se obé disperzni zavislosti protinaji. Toto
misto uréime z nulovosti determinantu obou rovnic, t.j. (11.19) pro fotony a (11.21) pro fonony,

(w? — 2k?) w2

NQ? 2 2
coM - wt)

det =0. (11.22)

(w

Prvni sloupec popisuje multiplikaéni faktor u ¢lenu €y F, druhy sloupec u ¢lenu P,. Determinant vede na
feseni kofenti kvadratické rovnice v w?

NQ?
EoM

wt — w? (02k2 + wa + ) + PkAwd = 0. (11.23)

Prozkoumejme nejprve piipad k£ = 0. V této limité chybi konstantni ¢len a existuje pouze jedno nenulové
feSeni kvadratické rovnice, a to pro frekvenci

N 2
w%zw%—kgocj’\y/j.

(11.24)

Toto feseni odpovida fononu, kdezto nulové feseni w = 0 patii fotonu. Permitivitu tohoto systému mtzeme
uréit z definice (11.9) dosazenim (11.21) v prvnim kroku a (11.24) ve druhém kroku

P NQ? 1 wi —w?
=1 - | =] 11.25
eoF * oM (w% — w2> <w% —w? ( )

11.4.1 Disperzni vztah pro polariton

ew)=1+

Tvar odvozeného disperzniho vztahu (11.25) zajistuje, Ze v oblasti frekvenci od wr do wy, se nemtize zafeni
krystalem $i¥it, protoze tu plati ¢ < 0. Vznika tedy zakazany pés optickych frekvenci. Tento zakazany pas
lezi pravé v rozmezi mezi pfi¢nym optickym fononem TO a podélnym optickym fononem LO. Vzajemnou
interakei fotonu s fononem dostaneme obvyklym feSenim kvadratické rovnice (11.23) v oblasti vzdjemného
kiizeni.

1
wi(k) = 3 ((02k2 +wi)+ \/(02k2 +w?)? — 402k2w%> . (11.26)

Tyto dvé disperzni zavislosti jsou zakresleny Cervenymi ¢arami v obr. 11.3a). Pés zakdzanych frekvenci
je znazornén zluté a modrou carou je vyznacen disperzni zédkon pro fotony w = mnepick. Z obrazku
je ziejmé, jak se vazba mezi fotony a fonony projevuje. Mimo oblast rezonance lze disperzni kiivku
oznacit jako fotonovou nebo fononovou. V oblasti rezonance dochézi k maximalnimu michéni a ke vzniku
zakézaného pasu. Tyto zévislosti se dobfe shoduji s experimentalnim pozorovanim provedenym napi. na
GaP krystalu®.

Pokud budeme opét chtit zapocitat vliv polarizace vzniklé vzajemnym posunutim iontt v mfizce a
zajistit soulad s limitou w — oo ziskanou z optickych experimenti, nahradime jedni¢ku hodnotou e(c0).
Timto zpusobem zapocitame disperzi indexu lomu, ktera je vzdy pritomnd diky absorpci. Potom mtzeme

vztah pro permitivitu pfepsat na
wi —w?
e(w) = e(00) (2 ) .

wi — w?
Z tohoto posunutého vztahu potom vychézi i rozdilné limita permitivity pro statické pole, w = 0. Vza-
jemny podil statické a vysokofrekvenéni limity (o) se oznacuje jako Lyddanetiv-Sachsiv-Telleriv (LST)
vztah a jejim duasledkem je modifikace disperzniho vztahu,

=YL (11.27)

4C.H. Henry, J.J. Hopfield, ,Raman scattering by polaritons®, Phys. Rev. Lett. 15, 964 (1956).
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Obr. 11.3: Zavislost frekvence polaritonu na vlnovém vektoru, ¢ervené ¢ary jsou teoretické disperzni kiivky
(11.26), zluté je znazornén pés zakazanych frekvenci a modie disperzni relace pro foton (11.11), a) jedna
fotonova kiivka, b) dvé limitni zévislosti pro statickou a vysokofrekvenéni permitivitu.

jak to ukazuje obr. 11.3b). Znaménka + a — oznacuji dvé feSeni kvadratické rovnice analogické k (11.26).

Nékdy se LST vztah piepisuje jako €(0) = (noptwr,/wr)?. VyuZije se toho, Ze oblast viditelného svétla
mizeme vzit jako vysokorychlostni limitu a kvadrat indexu lomu se v této oblasti rovna vysokorychlostni
permitivite, ngpt = ¢(00). V tab. 11.2 jsou uvedeny tyto parametry pro typické krystaly.

Tab. 11.2: Parametry mriizkové reflexe ruznych krystali pfi pokojové teploté. Data byla
pfevzata z [2]. Frekvence wr je experimentalni a wy, je dopocitand podle LST vztahu (11.27).
Obé frekvence wr i wy, jsou v jednotkach 10'1s~1.

krystal e(0) g(o0) wr wr, krystal e(0) g(00) wr wr,
LiF 8.9 1.9 5.8 12. MgO 9.8 2.95 7.5 14.
LiCl 12.0 2.7 3.6 7.5 GaP 10.7 8.5 6.9 7.6
NaF 5.1 1.7 4.5 7.8 GaAs 13.13 10.9 5.1 5.5
NaCl 5.9 2.25 3.1 5.0 InP 12.37 9.6 5.7 6.5
KF 5.5 1.5 3.6 6.1 InAs 14.55 12.3 4.1 4.5
KCl1 4.85 2.1 2.7 4.0 C 5.5 5.5 25.1 25.1
CsCl 7.2 2.6 1.9 3.1 Si 11.7 11.7 9.9 9.9
AgCl 12.3 4.0 1.9 3.4 Ge 15.8 15.8 5.7 5.7

11.5 Povrchovy plazmon polariton — SPP

Povrchovy plazmon predstavuje oscilaci elektronového plynu, kterd je vazana na povrch kovového krys-
talu. Vznika na rozhrani kovu a dielektrika a oscilace elektronti jsou svazané s elektromagnetickym polem
je tlumené na obé strany od rozhrani. Pro frekvence viditelného svétla je kov oblast s komplexni permiti-
vitou jejiz redlnd ¢ast je zaporna. Nad povrchem je bud vzduch nebo néjaké dielektrikum tieba sklo, jehoz
permitivita je kladna. Povrch kovu predstavuje rozhrani, kde na jedné strané je maléd kladné permitivita
a na druhé strané hodné velkd zdpornéd permitivita. Diky tomu dochézi k vazbé povrchového plazmonu
se svétlem za vzniku polaritonu. Zkratka SPP vyplyva z anglického oznaceni surface plasmon polariton.
Klem tohoto tématu se postupné rozvinul cely védni obor oznacovany jako plazmonika [22].

Povrchovy plazmon se vyznamné projevuje i pokud rozhrani neni rovinné. Typickymi piiklady jsou
rizné kovové nanocastice ve skle, které dokazi lokalizovat svétlo i v objemu pod difrakénim limitem.
Nékdy se pouzivaji mnohavrstevné kovové struktury napf. médi a niklu, které vytvari difrakéni miizku.
Povrchovy plazmon ¢asto prispiva k povrchové zesilenému Ramanové rozptylu (experimentalni metoda
SERS). Metoda rezonance povrchového plazmonu (SPR) se pouzivd v biochemii pro piesnou detekci
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stopového mnozstvi dané molekuly. Takto se délaji testy na COVID-19 nebo téhotenské testy.

Jiz tisicileti jsou zndme technologie pridavani kovit do skla, které zajisti spravnou velikost a tvar
kovovych nanocéstic a zpusobi charakteristické zbarveni finalniho skla diky SPP. Tyto techniky barveni
skla se tradi¢né pouzivaly pii vyrobé vitrazi, kdy pro jednotlivé barvy se pouzivaly nasledujici prisady:
fialovd/ametystova — mangan, modra — kobalt CoO, tyrkysova — méd CuO, zelend — chrém K,CraO7 nebo
zelezo, zluta — titan, oranzova — stiibro AgNOgs, ¢ervend — selen, kadmium nebo zlato. Ukézka vitraze
je i na avodnim obrazku této kapitoly. Zatimco organicka barviva se s Casem rozkladaji a ztraci sytost,
barveni skla pomoci SPP je zaloZené na vytvofeni zakdzaného pasu pro svétlo uréitych barev (mezi wr a
wr,). Barvy, které vidime pfi priichodu svétla timto sklem, se s ¢asem neméni.

Aby byla moZna interakce svétla s elektrony na povrchu kovu, je nutné, aby elektrické pole mélo
nenulovou normalovou slozky. Je tedy vhodné pouze jedna polarizace elektromagnetické vlny oznac¢ovana
jako TM nebo p-polarizace. Kromé interakce s dopadajicim svétlem lze SPP generovat i dopadem nabité
hmotné castice.

11.6 Polaron — elektron-fononova interakce

Nejcastejsi interakce elektrond v idedlnim ¢istém krystalu je s fonony. To se projevuje teplotni zavislosti
odporu. Nad Debyeovou teplotou je pocet fonont zhruba linedrné timérny absolutni teploté a linearné
s teplotou roste i mérny odpor. Efektem vyssiho fadu elektron-fononové interakce je narust efektivni
hmotnosti elektronti v kovech ale i v dielektrikach diky tomu, Ze elektron svym nédbojem elektricky piisobi
na iontové zbytky, viz ivodni obrazek této kapitoly. Diky tomu, Ze elektron polarizuje mfizku, oznacuje
se tato kvazicastice sloZzena z elektronu a deformacniho silového pole polaron. V kovalentnich krystalech
je tento efekt slaby, ale u polarnich soli, kde elektron interaguje opacné s kationty a s anionty, je tento
efekt znac¢ny. U soli KCI se zvysi efektivni hmotnost 2.5x proti hodnoté dané pouze pasovou strukturou.

Miru interakce elektronu s mrizkou popisuje bezrozmérna vazebné konstanta a definovana jako

a  deformacni energie
- = . 11.28
2 th ( )

Teoreticky lze odvodit vztah, ktery umoznuje z konstanty « napocitat efektivni hmotnost polaronu

e . 1-8x107%a?
m =m I
pol 1—a/6+3.4x10-3a2

11.7 Prispévek vazanych a valen¢nich elektrona k permitivité

Tato problematika se fesi obvykle ¢asové zavislou poruchovou teorii. Uvazujeme totiz elektrony vazané
v krystalové strukture, které se nemohou volné pohybovat. Proto je pro né vnéjsi pole pouze slabou poru-
chou. V prvnim kroku se tedy fesi stacionarni energetické hladiny F,, a pfislusné vlnové funkce elektront
¢y, pomoci bezporuchové Schrédingerovy rovnice. Diky poruse uz ale hledané feSeni neni stacionarni, ale
elektrony mizou vlivem poruchy prechazet mezi energetickymi hladinami. Vlnova funkce se tedy vyviji
v Case podle vztahu

U(F 1) = goe o+ N " () e En /T, (11.29)

n>0

kde Ey, ¢¢ popisuji zakladni stav a E,,, ¢, pro n > 0 popisuji excitované stavy.

Vysledek feseni ¢asové Schridingerovy rovnice se oznacuje jako Fermiho zlaté pravidlo, které lze
formulovat nasledovné. ,,Pokud je systém pod vlivem poruchy Hj,; ve formé harmonického pole s frekvenci
w, potom je pravdépodobnost pfechodu ze zdkladniho stavu do excitovaného stavu j za jednotkovy Cas
rovna nasledujicimu vyrazu“

2

W; = le;(0))?/t = 2% §(hw + Eo — Ej). (11.30)

/ dV ¢} Hinyo

Diracova d-funkce zajistuje zékon zachovani energie pfi absorpci fotonu. Pfechod do excitovaného stavu
je tim rychlejsi, ¢im je vétsi vazba mezi zakladnim stavem a excitovanym stavem zptisobena interakénim
poruchovym hamiltonianem.
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Pokud pracujeme v aproximaci obalkovych vlnovych funkci, zanedbame zmény obélkovych funkci
v objemu jedné burniky miizky a presny maticovy element piechodu ze zékladniho stavu do stavu j
zapiSeme jako prekryvovy integral amplitudy obalkovych funkci nasobeny konstantou. Tato konstanta
je dana oscilujici periodickou ¢asti Blochovych stavii a je stejnd ve vSech bunikach krystalu. Maticovy
element interakéniho hamiltonidnu lze tedy v této aproximaci vyjadrit pomoci prekryvového integralu
obalkovych funkci rekombinujiciho elektronu a diry.

11.7.1 Opticka absorpce — mezipasové optické prechody

Optickd absorpce materialu je popsand imaginarni ¢asti komplexni permitivity. Pokud ma dopadajici
svétlo energii vétsi nez je Sitka zakdzaného pasu, potom dochazi k mezipasové absorpci. Vypocet absor-
p¢niho spektra je objasnén na obr. 11.4. Diky tomu, Ze fotony s energii ~ 1 eV maji zanedbatelny vinovy
vektor, jsou optické piechody bez pfispéni fonont vertikalni v k-prostoru. Obréazek 11.4a) ukazuje razné
optické pfechody elektronu z valen¢éniho pasu E, (k) do vodivostniho pasu E.(k) v riznych bodech 1.BZ.
Obr. 11.4b) ukazuje energie optickych pfechodi (E.(k) — E,(k)) a c) je histogram téchto energii pro ekvi-
distantni povolené stavy vinového vektoru k. Tento histogram odpovida sdruzené hustoté stavi, kterou
bychom zjistili naptiklad méfenim absorpce. Z obrazku je patrné, Ze maxima ve sdruzené hustoté stavii
(oznaceny teckovanou ¢arou) odpovidaji misttim, kde jsou vodivostni a valenéni pas spolu rovnobézné.
Podminku pro tyto kritické body k-prostoru mizeme tedy zapsat ve tvaru

Vi B (k) — By (k)] = 0. (11.31)

11.7.2 Exciton

7Z optickych vlastnosti polovodici je zndmo, Ze absorp¢ni spektrum neni jednoduse urcéeno excitaci volnych
elektronil a dér. Elektron a dira na sebe coulombovsky ptisobi a mohou vytvotit vazany stav, kvazicastici
zvanou exciton. Vyskyt intenzivnich tzkych absorpénich ¢ar s energii pod hranou zakazaného pésu E,
je dukazem existence téchto vazanych stavi. Podobné jako u popisu pfimési i zde pouzijeme podobnost
s FeSenim atomu vodiku, ktery je feSen v ucebnicich kvantové mechaniky [11]. Dynamiku elektronu a diry
na hrané péasu popiseme efektivnimi hmotnostmi. V pripadé excitonu neni ale takovy rozdil v hmotnosti
elektronu a diry, jako je tomu u elektronu a protonu v atomu vodiku. Proto je pfi feSeni vhodné piejit
do soustavy svazané s tézistém.

Vyklad excitont se obvykle déli na dva limitni pfipady: silné vézany exciton (Frenkeltv exciton
s malym polomérem) a slabé vazany exciton (Mottiv-Wanniertv exciton s velkym polomérem). Tyto
limitni pfipady jsou zobrazeny na obr. 11.5.

3 E b) E.-E, %) E.-E,

Ec(k)

Ev(k) D(B)

| k |

Obr. 11.4: Optickd mezipdsové absorpce: a) Obecné pasové schéma, Gervené jsou vyznaceny fotoexcitované
mezipéasové piechody; b) zobrazeni energie optického pfechodu v riznych mistech BZ; ¢) sdruzené hustota
stavi jako histogram z b).
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‘ Obr. 11.5: Excitony: a) Mottav-
A ST o o 6 o o0 o ¢ Wanniertv slabé vézany, b) Fren-
' keluv silné vazany.

Slabé vazany Mottuv-Wannieruv exciton s velkym polomérem

Budeme predpokladat jednoduché pasové schéma s parabolickymi disperznimi zavislostmi podle obr. 9.8.
Vodivostni péas pro elektron a valenéni pés pro diru jsou oddéleny zakdzanym pasem siiky E,. Pro popis

Vv

g=7.—, ﬁex — w’ (11.32)
Me + Mmp,

kde 7. a 7}, oznacuji polohu elektronu a diry. Pro exciton lze zapsat Schréodingerovu rovnici ve tvaru

P2 2 2 . .
P T (. Rex) = (E — By, Rex). (11.33)

2(me + mp,) + 2u  Amwegep

K t&zistovym soufadnicim jsme zavedli také sdruZzené hybnosti a redukovanou hmotnost paru elektron-
dira.
meMmp

P=—hVg p=—1hVy w= (11.34)

Me +Mmp,

Vv

Nebof hamiltonidn nezavisi na poloze tézisté ﬁ, predstavuje hybnost P dobré kvantové &slo s vlastni
hodnotou AK. VInovou funkci excitonu mizeme prepsat na tvar

(7, R) = e’ flexp( ). (11.35)
Substituci (11.35) dostaneme

»? 02
— — ) = ). 11.36
(£ - ) el = et (11.36)

Tato rovnice odpovida FeSeni energetickych stavii donort (9.22), lisi se pouze jinou odpovidajici
hmotnosti. Vazané stavy excitonu maji energii n < 0, kdezto pro n > 0 ziskdme nezavisly elektron a diru.
7 analogie vyplyva i analogické feSeni, zakladni stav je 1s vodikova funkce, kde se pouziva modifikovany
Bohriiv polomér excitonu a.x. Vazebna energie zakladniho stavu je excitonovy Rydberg

_ dmegeh? R pe
o pe? T 2(4megeh)?’

Nebot redukovana hmotnost excitonového paru elektron-dira p < m., je vazebna energie excitonu mensi
nez vazebna energie primési. V GaAs vyjde Rex = 4.2 meV.

(11.37)

an

Silné vazany Frenkeluv exciton s malym polomérem

Tento typ excitonu se vztahuje na pripad, kdy elektron i dira excitonu jsou vazany na jeden atom v krys-
talové mriizce. Jde tedy v podstaté o jakysi excitovany stav jednoho atomu v krystalu. Tato excitace ale
mize diky vazbam mezi atomy v krystalu pfeskakovat. Exciton se miize tedy v krystalu pohybovat.

Frenkelovy excitony se vyskytuji u krystal inertnich plynt. Na krystalickém kryptonu, ktery ma
zakézany pas Sitky 11.7 eV, byl pozorovan nejnizsi prechod na energii 10.2 eV. Exciton ma tedy u krys-
talického kryptonu vazebnou energii (11.7 — 10.2) eV = 1.5 eV. Daéle se Frenkeltiv exciton vyskytuje u
silné iontovych soli typu I-VII (alkalické halogenidy jako NaCl, NaBr). U téchto soli se exciton lokalizuje
na zapornych iontech, které maji nizsi elektronové excitacni hladiny. Napfiklad u soli NaBr je exciton
lokalizovan na iontu Br™ a jeho vlastnosti jsou urc¢ené elektronovou strukturou tohoto iontu. Frenkelovy
excitony vznikaji téz u organickych molekul nebo u fotosyntetickych pigmentti, které prenaseji svételnou
excitaci do reakéniho centra. Jsou tedy zodpovédné za fyzikalni podstatu fungovani fotosyntézy.
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Obr. 11.6: Vliv excitont na absorpci 3D polovodice.
Excitonova spektra

Pokud se v absorpci daného materidlu projevuji excitony, objevi se ve spektru absorpce nebo luminiscence
nova ostra maxima pod hranici zakazaného pasu o energii odpovidajici jednotlivym excitonovym hladinam

3D : hw = Ey — Rex/n*.

Toto chovani ukazuje obr. 11.6 pro pfimy 3D polovodi¢. Jak je v obrazku naznaceno, i pii mezipasové
absorpci na hranici zakdzaného péasu je absorpéni koeficient ovlivnén coulombovskou interakci mezi elek-
trony a dirami.

Pokud by byl studovany polovodi¢ pouze tenkou vrstvou, byla by energie excitonové fady posunuta
diky snizeni dimenze,
Rex

2D : =F,— —.
o 7 (n+1/2)?

11.8 Optické experimentalni metody

11.8.1 Optické mezipasové prechody

Nejjednodussi optické metody studia pevnych latek jsou méfeni absorpce a odrazivosti. Obrazek 11.7
vlevo ukazuje typické chovani absorpce polovodice s nepfimym zakidzanym pésem. Zde jde konkrétné
o germanium pii teploté 300 K a 77 K. Je zfejmé, Ze v energetickém spektru nastupuje nejprve pozvolné
nepiimy prechod, ktery ma nizsi energii. Poté se zacne projevovat pfimy prechod, ktery méa vyssi energii,
Navic u pfimého pfechodu je mnohem strméjsi nastup a absorpce je zde o 2-3 fady vyssi. Z obrazku
je patrny jesté jeden typicky jev. Pfi snizovani teploty, kdy jsou mensi vibrace mftizky, vzroste Sifka
zakazaného péasu.

10! 1.2

1
—
[e=]

Y
! ~
1
1
I
I
1
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o
T

204 K 186 K 90 K

142 1.44 1.46 1.48 1.50

Absorption coefficient (cm™)
=
=
T

Obr. 11.7: Absorpéni koeficient: vlevo Ge, data jsou

z publikace R. Newman, W.W. Tyler, Solid State

. . ‘ Physics 8, 49 (1959). Vpravo GaAs, data jsou z pub-

Vo6 07 08 09 10 likace M.D. Sturge, Phys. Rev. 127, 768 (1962). Pie-
Photon energy (eV) vzato z [21].
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Opticka absorpce piimych polovodi¢t jako je GaAs m4 jiné vlastnosti. To ukazuje obr. 11.7 vpravo.
Absorpce je mnohem silngjsi. ProtoZe hrany past jsou parabolické bude nastup mezipasové absorpce dany
sdruzenou hustotou stavi s odmocninovou zavislosti na energii. Tésné pod hranou absorpce se zde ale
objevuje velice silna excitonova absorpce, kterd se u ¢istych polovodic¢i projevuje obzvlasté za nizkych
teplot. Excitonovy pik byva velice ostry, s ochlazovanim jesté sili a miize se objevit jeho struktura slozena
z nékolika pikt. To odpovida teorii probirané vysSe a obr. 11.6. I u pfimého polovodice dochazi opét
k rustu sitky zakazaného pasu pfi ochlazovani.

Dalsi metodou je méfeni luminiscence generované excitovanym vzorkem. Pokud se jako excita¢ni zdroj
pouZije optické zafeni (zpravidla laser), potom hovotime o spektrech fotoluminiscence. Po absorpci fotonu
s energii v&tsi nez I/, nejsou elektron a dira na hrané odpovidajiciho pasu. Rychle se ale pfemisti, elektrony
na nejnizsi elektronovou hladinu a diry na nejvyssi dérovou. Tomuto procesu se fika termalizace. Teprve
z téchto energetickych stavi dojde k zarivé rekombinaci. Proto ve spektrech fotoluminiscence vidime
obvykle pouze nejnizsi hladiny. (PO. 11.2: Spektra fotoluminiscence), na tomto obrazku jsou ve
spektrech luminiscence vidét t¥i pasy. Mezipdsové prechody (zelend ¢ara) spojené s excitony jsou pro
GaAs pii teploté 10K na energii 1.515eV. Nizsi energii maji donor-akceptorové prechody (Gevend ¢ara),
které vyuzivaji pfimésové hladiny v zakazaném pasu. Modfe zobrazené ¢ary predstavuji luminiscenci
z kvantovych jam, které byly na GaAs substratu vypéstovany. Tyto heterostruktury jsou diskutovany
v sekci 12.3.

Spektrum absorpce poskytuje tedy mnohem vice informaci o strukture energetickych hladin zkou-
maného vzorku. Pokud chceme experimentalné ziskat spektra vyssich prechodid, musime pouzit jinou
metodu méfeni. Analogickou metodou k absorpci je méfeni fotovodivosti. P¥i této metodé musime mit ale
vzorek opatfen kontakty. Po dopadu zafeni, které se absorbuje, dojde ke generaci nadbyte¢nych elektroni
a dér, které zptsobi zménu vodivosti vzorku. Je tedy tfeba projizdét excitacnim spektrem a v zévislosti
na dopadajici vlnové délce sledovat vodivost v dostatecné citlivém mistkovém zapojeni. Tato metoda méa
ale své slabiny, pfi méfeni za nizkych teplot jsou privodni kontakty vodici tepla, které narusuji méfeni.
Fotovodivost ovliviiuji tii pfispévky: 1) Mezipdsové prechody davaji vzniknout souc¢asné elektronu a dife.
Excita¢ni svétlo musi mit energii vétsi nez zakdzany pés. 2) Pro excitaci pfimési staéi energie fadu 10eV.
Vznika jeden volny nosi¢ a jedna vdzana ionizovand pfimés. 3) Absorpce na volnych nosi¢ich. Ta neméni
pocet vodivostnich elektronti, ale excitovany elektron mutze mit vyssi pohyblivost, coz se ve vodivosti
projevi.

Proto byla vyvinuta dalsi metoda analogicka k absorpci, kterou je méreni ezcitacnich spekter luminis-
cence. Opét projizdime spektrem excita¢niho laseru, ale méfime zavislost intenzity luminiscence zakladni
¢ary daného vzorku na vlnové délce excitac¢niho laseru.

Pro fotovodivost ndm staci malé excita¢ni intenzity, nebot kazdy absorbovany foton prispéje k vo-
divosti. Proto pro méfeni fotovodivosti ndm obvykle sta¢i halogenova lampa a monochrométor. Naproti
tomu luminiscence je vSesmérové a i¢innost navazani generovaného svétla na detektor je v fadu procent.
Proto je pro excitacni spektra luminiscence potieba excitacni laser, jehoz vlnovou délku muazeme spojité
meénit.

11.8.2 Ramanuv rozptyl

Pokud na vzorek polovodice dopada laserovy svazek s energii mensi nez je energie zakazaného pasu,
miuzeme sledovat nepruzny rozptyl tohoto zareni. Posun vinové délky zafeni je pfi tomto Ramanové roz-
ptylu® dany interakei fotonu s fonony. Jako Stokestiv proces oznacujeme piipad, kdy se emituje novy fonon
a vlnova délka fotonu se prodluzuje. P¥i anti-Stokesové procesu je fonon absorbovan a vlnova délka fotonu
po rozptylu je kratsi. Na tomto principu vznikla Ramanova spektroskopie jako u¢inny nastroj sledovani
vibra¢ni struktury polovodict a izolatord. O Ramanoveé spektroskopii a experimentalnich metodach, které
souvisi s povrchovym zesilenim, jsme se jiz bavili v sekci 11.5.

11.8.3 Rayleighiiv rozptyl

Anglicky fyzik John W. Rayleigh pfi popisu rozptylu svétla v zemské atmosféfe v roce 1899 vysel z pred-
pokladu, ze svétlo rozptyluji pfimo molekuly vzduchu a spocital, Ze intenzita rozptyleného svétla silné
zavisi na jeho vlnové délce (je nepfimo Gmérna jeji étvrté mocning). To znamend, Ze modré svétlo s krat-

58ir Chandrasekhara Venkata Raman ziskal za tuto metodu Nobelovu cenu za fyziku v roce 1930.
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kou vlnovou délkou se rozptyluje vice nez svétlo Cervené. Diisledkem této zavislosti je napiiklad modra
barva oblohy, vznikajici pfi prichodu slune¢niho svétla zemskou atmosférou. Nutnou podminkou ovsem
je, aby polohy jednotlivych rozptylujicich center (molekul, atomi) byly ndhodné.

Rayleightuiv rozptyl tedy popisuje pruzny rozptyl fotont latkou, kdy nedochézi k absorpci, ale pouze
k rozptylu do ndhodnych smért. Pfi méfeni luminiscence nebo Ramanova rozptylu pouzivame jako exci-
tacni zdroj obvykle laser s dostatecnou energii fotoni, tedy s modrou barvou nebo dokonce v ultrafialové
oblasti. Méfeny signal je o mnoho fadd slabsi nez vykon c¢erpaciho laseru. Rozptyl na nedokonalostech
rozhrani nebo na poruchach uvniti vzorku zptisobuje nepfijemny Sum na pozadi méfeného signalu a je
tfeba ho potlacit spravnou geometrii mérici soustavy a spektralni filtraci.
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PO. 11.1: Realna a imaginarni ¢ast permitivity zlata a sriibra. Méfené body jsou zakresleny ¢ervené,
Gerné ¢ary predstavuji fit pomoci Drudeho modelu, pfevzato z knihy S.A. Maiera Plasmonics[22]. Jak je
ziejmé, pro zlato je Drudeho model pouzitelny do 2.4eV a pro stiibro az do do 3.6eV.
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PO. 11.2: Ukazka spekter fotoluminiscence méfenych na dvou vzorcich heterostruktur na substratu
GaAs pii teploté 10 K. Prevzato z diplomové prace autora.
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11.9 Piiklady

Pr. 11.1: Thomasova-Fermiho stinici délka:
Podle ti{ dil¢ich vztahti (11.18) spocitejte stinici délku 1/ks pro méd.

Napovéda: Mezivysledkem je koncentrace ng = 8.47 x 10?2 cm™3, Fermiho energie 7.01eV.

Pr. 11.2: Spektra fotoluminiscence:
Prohlédnéte si spektra fotoluminiscence na str. 188 a uhodnéte, kterd maxima odpovidaji excitonim
v GaAs, kterd donor-akceptorovym prechodiim, a ktera prechodiim v heterostrukture GaAs-Gag 7Alp 3As.

Napovéda: Heterostruktury jsou diskutovany v néasledujici kapitole.
Pr. 11.3: Znaceni kvazicastic:
Vratte se k ivodnimu obréazku této kapitoly a zkuste odtivodnit mnemotechnické znacéeni jednotlivych

kvazicastic.

Pi. 11.4: Srazky kvazicastic:
Pojmenujte a popiste procesy zobrazené na obr. 11.8. Zapiste zadkony zachovani pro tyto pocesy.

a)—'\N\/\,—%\ b)J\AAg\N\M ’ )<
e f)

v @™

d)

\r///k

Obr. 11.8: Diagramy zobrazujici srazky kvazi¢astic.

Pr. 11.5: Exciton v GaAs:
Spocitejte vazebnou energii a polomér excitonu v GaAs podle (11.37). PouZijte parametry GaAs: m, =
0.067 mq, myp = 0.34 mg, € = 12.5.
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Tento studijni text vznikl s pouzitim zobrazenych polovodi¢ovych komponent
PC: zakladni deska GA-8IPE100, procesor Pentium 4; notebook: Gigabyte N601.

Zemépisna pozice: 49°35’36.992” N, 17°15’57.280” E.

Pievzato z webu GIGABYTE: http://www.gigabyte.cz/
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Kapitola 12

Povrchy a rozhrani
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12.1 Uvod

V kapitole 9 jsme probirali vlastnosti polovodié¢i, ale uvazovali jsme pouze pfipad homogenniho polo-
Nejjednodussi polovodicova soucastka je dioda, ktera obsahuje pravé jeden p-n pfechod. Kombinuje tedy
dva kusy stejného polovodic¢e napf. kiemiku, ale s riznym dopovanim, polovina je dopovana na p-typ a
druhd polovina na n-typ. Dva p-n pfechody umoznuji vytvorit tranzistor a pravidelnym stfidanim do-
povani vznikne tzv. n-i-p-i supermfizka. ProtoZe je jako zaklad pouzit stale stejny polovodi¢, mluvime
o homostrukture.

Jako heterostruktury oznacujeme polovodicové prvky, kde se méni slozeni polovodice. Typickym ptikla-
dem jsou heterostruktury, kde se kombinuji vrstvy slozené z materidli GaAs, AlAs a ternarni Ga; _, Al As.
Se zménou sloZzeni se méni i pasova struktura polovodice podél osy heterostruktury. Pokroc¢ilé metody
rustu krystald po jednotlivych vrstvach, jako je epitaxe z molekularnich svazkt, dovoluji vytvorit si
v krystalu libovolny profil potencidlu tak, Ze se pii rastu méni ve vrstvach Ga;_,Al,As pomér zastou-
peni hliniku.

Dnesni polovodic¢ové soucastky kombinuji obé vySe uvedené moznosti. Tedy jak zménu materialu,
tak zménu typu dopovani. Vyhodou GaAs—AlAs krystali je nepatrny rozdil mfizkové konstanty obou
materialti: a(GaAs) = 5.6533 A, a(AlAs) = 5.660 A. Obrazek 12.1 ukazuje hodnotu sifky zakizaného
pasu vaci mrizkové konstanté. Materialy, které lze kombinovat do slitin, které se pouzivaji, jsou spojeny
éarou. Tyto slitiny se oznacuji jako ternarni polovodice. Jednim z typickych je napf. Ga;_, Al As, kde
hodnota x tvoii pomérnou slozku hliniku. Pro mensi koncentrace hliniku je material pfimy polovodic¢ a pro
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lecko), II-VI wurtzit (krouzek). Pievzato
z [21], nicméné tento obrazek naleznete
v celé fadé knih, které se zminuji o hete-
rostrukturach.

L 0 7ZnS
5
= a4l H0.4
g =
%0 L AIP O ZnSe =]
, AR 2 ® _Alas ®CdS %5
Obr. 12.1: Hodnoty Sitky zakdzaného pasu = GaP &g ® ZnTe =
. /v , - . ap
E, jako funkce miizkové konstanty a pro & . g
polovodice s riznou strukturou: IV diaman- 8§ | £
tové (Gtveredek), III-V sfalerit (plné ko- § =
g

5.5 6.0 6.5
Lattice constant (A)

vyssi je nepfimy. Hrani¢ni hodnota odpovida z = 0.35. Vhodnou volbou z lze nastavit sitku zakazaného
pasu tak, aby odpovidala vinové délce, kde maji optickd komunika¢ni vlakna minimalni absorpci. Dalsi
ternarni polovodi¢ Hg;_,Cd, Te potkame hlavné v oblasti infracervenych detektorti pro okna propustnosti
atmosféry. Pro x = 0.2 bude zakdzany pas 100meV (10 pm). Pro z = 0.3 dostaneme 200 meV (5pum).
Navic vlnova délka 10 pym odpovida tepelnému zareni téles pfi teploté 300 K.

12.1.1 Vyroba heterostruktur

Jak bylo zminéno, vrstevnaté heterostruktury se vyrabéji metodami epitaxe, t.j. ristu po jednotlivych
atomarnich rovinach. Epitaxnich technologii je dnes jiz mnoho druhti. Mizeme je rozdélit do tii skupin
podle média, z néhoz krystal roste:

B epitaxe z molekularnich svazki MBE (Molecular Beam Epitaxy),
B kapalnd epitaxe LPE (Liquid Phase Epitaxy),

B plynnd epitaxe, do této skupiny se fadi epitaxe z organokovovych slouéenin MOVPE (MetalOrganic
Vapour Phase Epitaxy).

Metoda, kdy na sebe podle potfeby nanasime vrstvy tak, aby vznikla pozadovana struktura energetickych
pasu v prostoru, se nazyva pdsové inzenyrstui.

12.2 P-N prechod

Nejjednodussi polovodi¢ovou soucastkou je dioda, kterd ma pouze jeden p-n prechod. Typickou vlastnosti
p-n pfechodu je to, ze propousti elektricky proud pouze v jednom sméru a proto se pouziva k usmérnovani.
Pokud ale vyuzijeme i optické vlastnosti p-n prechodu, mtizeme ho vyuzit pro detekci nebo generaci svétla.

Prechod p-n se vytvafi na jednom krystalu zménou dopovani. Dopovanim, které se provadi napf.
iontovou implantaci pozadovaného prvku, se mize zménit typ vodivosti polovodice z p-typu na n-typ nebo
obracené. K vymezeni oblasti, na které se ma v polovodi¢ovém substratu zménit dopovani, se vyuzivaji
techniky litografie. Tyto technologické aspekty jsou jiz nad ramec tohoto studijniho textu. Pro nas vyklad
postaci, kdyz si pfedstavime vznik p-n prechodu tak, Ze k sobé pfitiskneme dva kusy polovodice, jeden
dopovany na p-typ a druhy na n-typ. Reédlné se takto vyrobit dioda ned4, nebof kontakt obou ¢asti by
vzdy obsahoval pfilis mnoho defekti.

Obrézek 12.2a) znazortiuje dva oddélené kusy polovodice, levy je polovodié p-typu a pravy je n-typu.
Pokud jsou obé c¢asti polovodice ze stejného materidlu a 1isi se pouze dopovanim, musi diky zakonu
ptisobeni aktivnich hmotnosti (9.16) plati nasledujici vztah mezi koncentracemi elektronti a dér

n? = Ny Pn = NpPp. (12.1)
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Obr. 12.2: Schéma p-n pfechodu: a) dva kusy polovodice pfed ndbojovym piesunem; b) ustleni rovno-
vahy; c¢) prostorovy profil hustoty nédboje, elektrického pole a potencialu.

Koncentrace elektront se zna¢i n a koncentrace dér p, index znamena dopovani polovodice. Napr. p,
oznacuje koncentraci dér v polovodici typu n, jde tedy o minoritni nosice. Naproti tomu koncentrace n,,
a pp oznacuji majoritni nosice.

Na obr. 12.2b) je zndzornéno vytvoreni rovnovahy na p-n pfechodu. Rovina pfechodu mé soufadnici
x = 0. Na rozhrani obou kust polovodice je po spojeni skok koncentrace nosi¢a. Diry jsou vlevo od
rozhrani majoritnimi nosic¢i, ale vpravo minoritnimi s koncentraci o nékolik fadi nizsi. Diky tomu zac¢nou
difundovat diry doprava a elektrony budou difundovat doleva. Vzajemné ale elektrony s dirami na rozhrani
zrekombinuji a tim vznikne po obou stranach rozhrani oblast prostorového naboje. Vlevo od rozhrani ve
vrstvé Sitky x, zmizely diry a zlstaly zde pouze ionizované akceptory se zdpornym nabojem. Napravo
v n-typu vznikne zase oblast odhalenych ionizovanych donort s kladnym nabojem.

Na obr. 12.2c) je zobrazeno prostorové rozlozeni hustoty ndboje a z ného odvozené elektrické pole,
které je v oblasti homogenni hustoty naboje linearni funkci souradnice. Maximalni elektrické pole je na
p-n rozhrani v bodé x = 0. V oblasti linedrniho vzestupu pole je elektricky potencidl V(z) kvadraticky.
Béhem nabojového presunu a vzniku oblasti prostorového naboje se zvysuje vnitini elektrické pole, které
urychluje elektrony doprava a diry doleva. Rovnovaha nastane tehdy, kdyz driftovy proud generovany
vnitinim elektrickym polem vyvazi difuzni proud dany spadem koncentrace nosi¢i. Vznikla oblast pro-
storového naboje ma sifku wy = x,, + x, a na potencidlu se vytvoii celkovy schod vysky Vj. Tato veli¢ina
se oznacuje jako difuzni potencial. Po ustaleni termodynamické rovnovahy jiz pfechodem netece zadny

proud.
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12.2.1 P-N prechod v rovnovaze

Je dobfe si uvédomit, ze izolovany kus polovodice je ndbojové neutralni. Ke vzniku prostorového naboje
dojde jen diky kontaktu rtizné dopovanych ¢asti. Koncentrace majoritnich nosi¢t a diky (12.1) i minorit-
nich nosi¢t je dana koncentraci majoritnich dopanti podle nasledujicich vztahii (v zavorkéch jsou typické
hodnoty)

pp = N, (1016 cm=3), nn = Ng (1017 cm™3),
— 105 em=3 _on? a3 (12.2)
ny = §- (10° em™?), pn = 7 (10" em™).
Tyto vztahy vyplyvaji z pfedpokladu tplné ionizace dopantt v oblasti prostorového naboje.
Prostorové rozlozeni hustoty ndaboje Q(z) z obr. 12.2¢) je nésledujici
—eN, pro —x, <x <0
Qz) = eNg O<z<zy . (12.3)
0 jinde

Pfi nabojovém presunu se musi zachovavat celkovy naboj, z ¢ehoz mizeme odvodit podminku celkové
neutrality
Nozp = Naz,. (12.4)

Vyznam tohoto vztahu celkové ndbojové neutrality mizeme téz formulovat tak, ze pfi rekombinaci nosi¢t
zmizi soucasné vzdy na jeden elektron pravé jedna dira. Tato rekombinace mtize byt zafiva, to znamena,
ze energeticky rozdil stavu elektronu a diry se uvolni ve formé optického kvanta — fotonu.

Pouzijeme Gaussuv zakon z Maxwellovych rovnic pro vypocet elektrického pole:

dE(x x
dE(z) _ Q@) (12.5)

dz €
Pfimou integraci dostaneme elektrické pole. Okrajovou podminkou feseni je nulovost pole mimo oblast

prostorového naboje sitky wg = x,, + x,. Pribéh elektrického pole vyjde
—ha (3 4 1) pro —x, <x <0
E(z) = eJ;fd (x —xp) O<zx<zm, . (12.6)
0 jinde

Maximalni elektrické pole je tedy pfesné na rozhrani p-n pfechodu (z = 0). Jeho velikost je E(0) =
—eNyz,/e. Toto elektrické pole vytvaii pro nabité nosice (elektrony a diry) dodate¢ny potencial V (z),

ktery 1ze dopocitat z definice
dV (x)
E(x)=— . 12.7
(0) = - (12.7

Mimo oblast prostorového naboje, kde je elektrické pole nulové, je potencial konstantni. Tvar potencidlu
v oblasti prostorového naboje ziskdme integraci vztahu (12.7). Zvolime-li si integraéni konstantu tak, ze
je V(0) = 0, dostaneme prtibéh potencidlu zobrazeny na obr. 12.2¢), ktery m4 analyticky tvar

eN, 2
e (g2 + 2zx,) pro —z, <z <0
v =] 0 P P . 12.
(z) {—62]\2‘1(1:2—2£U:L‘n) O<z<a, (128)
Zbyva uz jen vycislit velikost difuzniho potencidlu Vy
B € 9 2y € NNy 9
% = V(I’n) — V(*l’p) = %(Naxp + Ndxn) = 2*(3_ (M) wq - (129)

Nyni pouzijeme Ohmiv zédkon (7.27) a definici pohyblivosti (9.19). Celkovy proud mtZeme rozdélit na
Cast, kterou prenaseji diry jj a ¢ast, kterou prenaseji elektrony j.. Kazdou tuto slozku miZzeme napsat jako
soucet difuzniho proudu j4f generovaného gradientem koncentrace a driftového proudu j© generovaného
elektrickym polem. V termodynamické rovnovaze jsou celkové proudy nulové

dp(z)

IR+ G = —eDn=g = + emnp(z) E(x) =0, (12.10)
) d
je 4+ j¢ = +eDe %x) + epen(z) E(x) = 0.
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Tyto vztahy mtZeme pfepsat s vyuzitim definice potencidlu (12.7)

D, 1 d dv
D L dp@) gy V@) (12.11)
wn p(x) dx dzx
D, 1
D. dn(zx) _ ()= dV(J:).
te n(z) da dz
Integraci pfes sitku oblasti prostorového néboje ziskdme

Dy 14 D. 14

—h / S =y, =2 | 2Ll4p =1, (12.12)

Bh pdz e n dx

_wp —IP

V roce 1905 publikoval Albert Einstein ¢lanek, kde vysvétlil Browntuv pohyb ¢astic v kapaliné pomoci
kinetické teorie. Z této teorie mimo jiné vyplyva vztah mezi difuznimi a driftovymi koeficienty. Specialni
ptipad Einsteinovy relace ndm déva pomeéry veli¢in

D D kT
Zh _ e _ DB , (12.13)
Hh He €
kde T samoziejmé oznacuje absolutni teplotu vzorku. Pomoci Einsteinovy relace miZeme vyjadiit difuzni
potencial z koncentraci dopanti

Vo = kT In (pp) — kBlm (n"> — Mln (N“évd) ) (12.14)

e Dn, e Ny e

Je tfeba si uvédomit, ze difuzni potencial Vj; na p-n prechodu nelze mérit pfimo voltmetrem na kontaktech
diody. Voltmetrem se totiz méfi pouze rozdily v chemickém potencidlu, ktery je ale podél p-n piechodu
v termodynamické rovnovaze konstantni. Déle je potieba zduraznit, Ze vlivem difuzniho potencidlu se
pasové struktura (vodivostni a valen¢ni pas) posouvaji o potencidlni energii, ktera je rovnd —eVj.

%

12.2.2 P-N prechod s prilozenym napétim

Nas bude samoziejmé nejvice zajimat chovani p-n prechodu po prilozeni vnéjsiho elektrického napéti
V. Diky konec¢né vodivosti celého polovodi¢ového krystalu s p-n pfechodem se toto napéti rozlozi podél
celé osy x. V nasich tivahadch budeme ale uvazovat privedeni vnéjsSiho napéti az na p-n prechod, viz
obr 12.3. U typickych elektrickych soucastek se vzdalenost mezi kontaktem a oblasti prostorového naboje
minimalizuje a pokles napéti mimo p-n pfechod je potom zanedbatelny.

Diky nesymetrii se pfechod bude chovat rizné pro obé rizné polarity pfilozeného napéti. Vnéjsi
priloZené napéti zpusobi rozposunuti Fermiho meze na obou koncich vzorku o hodnotu eV'. Podle zna-
ménkové konvence je prilozené napéti kladné, pokud je pridany potencial na strané dopované na p-typ
vy$$i, nez na strané n-typu. Lapidarné feceno na p-kontaktu je plus a na n-kontaktu je minus. Napéti
prilozené v tomto sméru se oznacuje jako napéti v propustném smeéru, opacny pripad se oznacuje jako
zavérny smér. Ze znaménkové konvence potom vyplyva, Ze celkovy napétovy rozdil na p-n piechodu je
vzdy Vo — V.

Propustny a zavérny smér

Po ptilozeni napéti V' v propustném sméru dojde ke snizeni napéti na prechodu na V) — V. Tim dojde i ke
snizeni interniho elektrického pole a ke zGzeni oblasti prostorového naboje w < wy. Pasova struktura p-n
prechodu se ¢astecné narovna. Pokud by pfilozené napéti spliovalo podminku Vj, = V', byly by vodivostni
a valenc¢ni pasy zcela narovnané a oblast prostorového naboje by se zuzila k nule.

V rovnovaze se vyrovnava driftovy proud zpusobeny vnitinim elektrickym polem difuzi nosic¢t s riz-
nou koncentraci na stranach prechodu. Naproti tomu, po pfiloZeni napéti v propustném sméru budou na
hranici prostorového naboje koncentrace minoritnich nosi¢i o An a Ap nad rovnovaznou hodnotou daleko
od prechodu. Proto budou tyto nerovnovazné nosice difundovat dale z oblasti prostorového naboje. Jde
tedy o difuzi nekompenzovanych minoritnich nosici, elektroni doleva do p-typu a dér doprava do n-typu.

Pro napéti v zédvérném sméru dojde k opacnému jevu. Protoze prilozené napéti je zaporné, celkové
napéti na prechodu Vy — V vzroste. Vzroste interni elektrické pole a oblast prostorového naboje bude
irsi nez v rovnovaze w > wy.
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Obr. 12.3: Pésové schéma p-n pfechodu: a) v rovnovéze bez vnéjsiho napéti; b) s napétim v propustném
sméry; ¢) s napétim v zévérném sméru.

I-V charakteristika p-n prechodu
P1i odvozovani tvaru potencialu podél p-n prechodu s pfiloZzenym polem mutzeme postupovat analogicky
jako v predchozich odstavcich. Diky vnéjSimu napéti se zméni okrajové podminky feseni. Mezi Fermiho

hladinou v p-typu Er, a n-typu Er, bude nyni rozdil EFr, — Fr, = —eV. Pro sifku oblasti prostorového
naboje muZeme pfimo zapsat vztah analogicky k (12.9) nasledovné

w= \/%M(VO—V), (12.15)

e NaNd

e 2£ Na _ ro_ % N, .
Tp = \/ e Na(Na +Nd) (Vb V)? Ty = e Nd(Na +Nd) (VYO V)

Nyni si vyjadiime koncentrace minoritnich nosicti na hranici modifikované oblasti prostorového na-
boje integraci (12.12) v novych integra¢nich mezich. Z exponencidlniho poklesu koncentrace v oblasti

prostorového naboje ziskdme
n(—x! ! V
(Cop) _pleh) _ exp (e ) (12.16)

Zvysenou koncentraci minoritnich nosi¢t na krajich oblasti prostorového naboje mizeme vyjadfit pomoci
prilozeného napéti
An, =n, (eev/kBT — 1) , Ap, = py (eev/’“BT — 1) . (12.17)

Protoze mimo oblast prostorového naboje je elektrické pole nulové, mizeme ziskat proud p-n prechodem
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jako prosty soucet difuzniho proudu (12.10) elektront a dér na hranicich této oblasti

Any, Apy,
D . 12.18
L, T¢I, (12.18)

j=id (=) + it (a,) = eD,

Pri odvozeni tohoto vztahu jsme derivaci koncentrace podle soufadnice nahradili podilem zvysené
koncentrace minoritniho nosi¢e a tomu odpovidajici difuzni délkou (L,,, L,). Nyni dosadime koncentrace
nosiéu z (12.17) a integraci proudové hustoty pfes pii¢nou plochu dostaneme findlni I-V charakteristiku
idealniho p-n pfechodu (zévislost proudu na pfiloZeném napéti)

=1 (eev/kBT - 1) . (12.19)

Tvar této zavislosti je zakreslen ¢ervenou carou na obr. 12.4, Iy zna¢i maximélni hodnotu zavérného
proudu, na které se saturuje proud v zavérném smeéru u ideadlniho p-n pfechodu. U realnych soucas-
tek dojde pfi prekroceni urcitého zavérného proudu k prirazu, ktery ale nasim jednoduchjym modelem
nepopiseme. Tento jev se pouziva u Zenerovych diod ke stabilizaci napéti.

|
oo

Obr. 12.4: Cervené je zakreslena I-V charakteristika
ideélniho p-n pfechodu podle (12.19). Modfe je za-
kreslena I-V charakteristika p-n pfechodu s optickou
excitaci nadbyteénych nosi¢t. Zluté je oznadena ob-

@_N_® last moznych pracovnich bodu fotovoltaického prvku
-] g vV s p-n prechodem pfi urcitém osvétleni.

Modrou ¢arou je v obr. 12.4 zakreslena jesté jedna velmi dulezita krivka. Je to I-V charakteristika p-n
prechodu, na ktery dopada svétlo a optickou excitaci dochéazi ke generaci nadbyteénych nosi¢a proudu.
Touto modrou zavislosti je tedy popsan fotovoltaicky prvek s p-n pfechodem. Prisecik s vodorovnou osou
uréuje fotovoltaické napéti naprazdno bez zitéZe a prisecik se svislou osou udava zkratovy proud. Zluté
podbarvena plocha pak oznacuje oblast moznych pracovnich bodu daného fotovoltaického prvku.

12.2.3 LED, laser, detektor

Pro aplikace polovodic¢t jsou typické dveé oblasti. V elektronice dominuji elektrony a v této oblasti se fesi
hradla pro logické operace, binarni spinace, analogové obvody, zesilovace. Ve fotonice jsou dominantni
fotony a je zapotiebi prvki, které jsou schopné zajistit nasledujici funkce: prenosové obvody, transformace
signalu z elektront na fotony, detekce zaieni. Vsechny tyto fotonické funkce mohou zajistit strukturované
polovodice vyuzivajici p-n pfechod nebo tranzistor.

P-N prechod mize slouzit jako dioda LED, laserova dioda, nebo fotodioda pro detekci optického
zatreni. Z pohledu optiky dochazi v aktivnim materidlu polovodice ke tfem procesim:
Absorpce: Je to dominantni proces u fotodetektori, kde se absorbuje zafeni s energii vétsi nez sirka
zakdzaného pasu F, a vznikne elektricky signal.
Spontanni emise: Je to dominantni proces u LED diod. Pfi rekombinaci nosi¢tu injektovanych do p-n
prechodu se vyzaii energie odpovidajici Ej,.
Stimulovana emise: Je dominantni u laserovych diod. Injekce nosi¢i je takové, Ze dojde k inverzi
populace. Pro dosazeni laserovani musi stimulovana emise pfevazit nad spontanni emisi. Toho se dosahuje
vysokou proudovou hustotou v polovodiéi s p-n pfechodem.

12.3 Heterostruktury

Heterostruktury' vznikaji kombinaci vrstev riizného polovodice podél osy riistu. Zvolime si znaceni os tak,
Ze osa ristu je shodné s osou z. Oznac¢me si polovodi¢ na jedné strané heteropiechodu jako A a na druhé

1E. Hulicius, B. Velicky, ,, Heterostruktury, které slouzi véem*, Vesmir 80, 32 (2001).
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strané B. Pasova struktura obou polovodic¢ti je riizné, a proto se pasy podél osy ristu heterostruktury
méni. U redlnych heteroprechodt neni rozhrani mezi materialy idedlné rovinné a na rozhrani se vlastnosti
neméni skokem. Pro zjednoduseni vypoctt ale budeme skokovou zménu struktury a pasovych schémat
predpokladat.

E Typl Typll Typ 1l

A B A A B A A B A

[ e R

p

Obr. 12.5: Prostorovy profil vodivostniho (modré ¢ara) a valenéniho pasu (Cervend ¢ara) pro tii zdkladni
typy heterostruktur s vrstvami A-B-A.

12.3.1 Metoda obalkové vlnové funkce

Podle napojeni vodivostniho a valen¢niho pasu na rozhrani rozliSujeme nékolik typ® heterostruktur.
Zakladni t¥i typy jsou zobrazeny na obr. 12.5. U typu I je polovodi¢ B kvantovou jamou, kde se lokalizuji
elektrony i diry. Pfikladem této struktury je AlAs-GaAs-AlAs. V heterostruktuie typu II se lokalizuji
elektrony a diry v rtznych vrstvich. Jako priklad uvedme Ge-Si-Ge. U heterostruktur typu III dochézi
k tunelovani nosi¢ti mezi vodivostnim a valenénim pasem. Zde jako priklad poslouzi heterostruktura
s posloupnosti vrstev GaSb-InAs-GaSbh.

Kombinace polovodi¢u GaAs—Gag 7Alg 3As je piikladem heterostruktury I. typu. Oba tyto polovodice
krystalizuji ve sfaleritové kubické struktufe, navic je dulezité, ze tyto materidly maji prakticky stejnou
mi{Zzkovou konstantu a, relativni rozdil je mensi nez 0.1 %. Pokud jsou vrstvy heterostruktury tzké,
miize byt i vétsi rozdil miizovych konstant vyrovnan vznikem malého mechanického napéti ve vrstvach.
Zakazany pas GaAs je uzsi neZ u AlAs. Pokud v heterostruktufe vrstvu GaAs oblozime z obou stran
vrstvami Gaj_,Al,As, budou se volné elektrony i diry hromadit ve vrstvé GaAs, kterd pisobi jako
jama pro oba typy nosi¢t. Elektrony padaji v pasovém schématu dold a diry nahoru. Zména velikosti
zakazaného pasu na rozhrani GaAs-Gai_,Al, As je dand empirickym vyrazem AE,; = 1247 2 meV. Tento
skok pasi se rozdéli mezi vodivostni a valenéni pas v poméru 60/40. Napf. pro = 0.3 dostaneme skok
vodivostniho pasu AF, = 225 meV, a skok valen¢niho pasu AE} = 150 meV. Pfipomenme, Ze zakazany
pas GaAs je pii pokojové teploté 300 K roven E; = 1.42 eV.

VInovou funkci elektronu v materidlech obou polovodic¢u lze zapsat v Blochové tvaru, elk'?'uE(F).
Pokud budeme hledat elektronovou vlnovou funkci rozkladajici se pres nékolik vrstev heterostruktury,
miizeme piedpokladat, Ze rychle kmitajici periodickd ¢ast Blochovy vInové funkce uj(7) je stejna ve viech
vrstvach v celé heterostruktuie. Vétsinou nés tato oscilujici ¢ast vlnové funkce v prvnim pfiblizeni ne-
zajima. Na pfechodu tedy FeSime spojitost obélky x(z) oscilujici Blochovy vlnové funkce. Tato obalkova
vlnovéa funkce x(z) vznikla z harmonické funkce, kterd odpovida rovinné viné. Chova se tedy tak, ze
v ohranicené kvantové jameé osciluje a v bariéfe se exponencialné tlumi.

Pro obalkovou vlnovou funkci potom feSime odpovidajici stacionarni Schrédingerovu rovnici
2

2m*

Ax(2) + U2)x(2) = Ex(2)- (12.20)

Vypocet provedeme stejné pro elektrony i pro diry, pouze za efektivni hmotnost m* dosadime spravnou
hodnotu, kterd je navic v riznych vrstvach rizn, viz tab. 12.1. Potencial U(z) popisuje profil vodivostniho
nebo valenéniho pasu. Obrazek 12.6 ukazuje vysledek vypocCtu nejnizsi energetické hladiny a obalkové
vinové funkce pro elektron a tézkou diru. Pokud do potencidlu zahrneme elektrické pole pfiloZené ve
smeéru osy z, muzeme sledovat Starkiv jev. Diky posunu vlnovych funkci zédkladnich stavi elektronu a
diry vlivem elektrického pole do opacnych stran kvantové jamy dojde ke zmenseni rozdilu energie hladiny
elektronu a hladiny diry. Diky tomu se snizi i energie fotonu, ktery se pfi rekombinaci elektronu a diry

198



vyzafi. Tato energie je v obrazku zakreslena modrou Sipkou.

Polovodi¢ GaAs AlAs Ga;_, Al As Tab. 12.1: Efektivni hmotnosti
Me 0.0665 0.15 0.0665 + 0.0835 x elektrond a dér.
mp 0.34 0.76 0344042z

0kV/cm 40 kV/cm

Obr. 12.6: Cerna ¢ara predstavuje profil vodivostniho a valenéniho pasu pro kvantovou jamu GaAs siiky
10 nm obklopenou Gag 7Aly 3As. Pasy jsou naklonény vyznacenym elektrickym polem. V tomto potencidlu
jsou spocitdny prvni dvé hladiny pro elektrony a tézké diry podle (12.20). Modrou sipkou je zakreslena
vzdalenost zakladni elektronové a dérové hladiny.

Rovnice (12.20) ptedstavuje obvyklou Schrédingerovu rovnici s jednoduchym potencidlem. Hleddme
tedy vlastni stavy energie FE a jim odpovidajici obalkové vinové funkce x(z). Kvantovani energie dosta-
neme jako obvykle z okrajovych podminek. V bariéfe se musi vlnova funkce exponencialné tlumit. Na
kazdém rozhrani materidlu A-B musi byt spojita vinova funkce, coz odpovida spojitosti pravdépodobnosti
vyskytu dané ¢éstice (elektronu, diry). Spojitd ale musi byt i derivace délend efektivni hmotnosti, coz
odpovidé spojitosti rychlosti Siteni dané ¢astice a potazmo spojitosti elektrického proudu.

Lodxa _ 1 dxs

XA = XB> my dz  mp dz

Pro konstantni potencidl budou fesenim harmonické funkce, jak to vychazi v Kronigové-Penneyové mo-
delu, ktery se fesil v sekci 8.8. Pokud jsou ale pasy naklonéné, budou fesenim Airyho funkce. To se
diskutuje v piikladu 12.4 a jedna z Airyho funkci Ai(z) je zakreslena v obr. 12.11 pro elektron i pro diru.

12.3.2 Optické vlastnosti kvantovych jam

Excitace kvantové jamy na obr. 12.6 znamena, Ze je hladina ve vodivostnim pasu obsazena elektronem
a hladina ve valenénim pasu tézkou dirou. Pokud mé dojit k zafivému prechodu, dojde k rekombinaci
tohoto excitovaného péaru elektronu a diry. U¢innost pfechody uréuje piekryvovy integral elektronové a
dérové obalkové funkce Pro nulové elektrické pole maji vinové funkce sudou a lichou symetrii. x(z).

B Pokud je zména kvantového ¢isla hladiny Ai = 0 (pFipadné vyssi sudé éislo) bude ptfechod povoleny
a silny.

B Pro Ai = 1 bude prechod zakazany a v optickych spektrech bud nebude vidét viibec, nebo bude
jen velmi slaby.

Pro optické prechody v jaméach plati, ze pfi zuzovani jdmy dochézi vlivem prostorového omezeni ke
zvySovani energie pfechodu (modry posun). Spektrum absorpce mé schiidky odpovidajic postupnému
pridavani stale vyssich energetickych hladin. Projevuji se prechody elektront na hladiny tézkyjch, ale
i na hladiny lehkych dér, které nejsou degenerované. Prostorové omezeni elektronii a dér do prostoru
kvantové jamy zesiluje excitonové prechody, které jsou spektralné tuzké a jsou patrné i pii pokojové

teploté. Rekombinace je v jameé efektivnéjsi a proto jsou vyhodné pro vyrobu fotonickych soucastek jako
LED a laserové diody.
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12.4 Supermrizky

Supermfizkou oznacujeme polovodi¢, ve kterém je vyrobena periodickd struktura slozeni (kompozice)
nebo dopovéani. Supermfizku muzeme tedy ziskat periodickym opakovanim jedné kvantové jamy. Pokud
budeme mit sadu kvantovych jam, jejichz vinové funkce nejsou lokalizované v jedné jameé, fesime pro obal-
kovou vlnovou funkci problém, ktery je ekvivalentni Kronigovu-Penneyovu modelu, ktery jsme probirali
v sekci 8.8 na str. 121 a nésledujicich.

12.4.1 Kompozi¢ni supermrizka

Obalkové vinové funkce vlastnich stav kompozicni sumermiizky maji evanescentni charakter ve vrstvach
bariér. Protoze ptivodné ostré energetické hladiny jedné kvantové jamy se zacnou pfekryvat se stavy
v sousedni jameé, dojde k rozsifeni energetickych hladin do past, které se nékdy oznacuji jako podpdsy.
Sitka téchto podpast roste: a) pifi zuzovani iiky jamy; b) pii zuZovani &itky bariéry; c) divame-li se
pro dané §itky jam a bariér na energeticky vyssi podpasy. Sifka podpésti klesa téz s rostouci efektivni

_
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Obr. 12.7: Zavislost polohy a sitky elektronovych energetickych podpést supermiizky na sifce jamy (sitka
bariéry je stejnd jako $iika jamy). Pfevzato z [23].

Jak roste sitka podpasi pii souCasném zuzovani jam i bariér ukazuje obr. 12.7. Obrazek je prevzat
z knihy autori C. Weisbuch a B. Vinter z roku 1991, ktera je jednou z prvnich a velmi dobrych texta
popisujicich kvantové heterostruktury a supermiizky [23]. Kazdy stav v supermiiZce je popsan vlnovym
vektorem k se slozkou podél osy ristu k, a slozkou kolmou k. Dalsim kvantovym c¢islem n je ozna-
¢eno poradi pfislusného podpasu, ktery odpovida ¢islu pivodni hladiny v jednoduché kvantové jameé.
Na obr. 12.7 jsou u téchto car symboly E;, E;, atd. Na pozadi obrazku je zakreslen potencial hrany
vodivostniho péasu, z ¢ehoz jasné plyne podobnost s Kronigovym-Penneyovym modelem. Pokud dochéazi k
tunelovani bariérami, rozsifi se energetické hladiny na podpéasy. Vznika periodické opakovani potencidlu
s periodou d odpovidajici souctu §itky jamy a bariéry. Z toho plyne Ze ptivodni 1.BZ s §ifkou 27 /a, kde a
oznacuje m¥izkovou konstantu, se z0zi na Sitku 27 /d. Energetické pésy, které lezi mimo tuto zizenou BZ
se musi do této zény preklopit. KP model s periodickym potencidlem tedy dava vzniknout minipastm
dovolenych a zakazanych energii.
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a)

Obr. 12.8: Dopované n-i-p-i supermiizka: a) Prostorové schéma uspofadani vrstev; b) profil pasti v redlném
prostoru v rovnovéaze a c¢) pii optické excitaci nadbyteénych nosici.

12.4.2 Dopované n-i-p-i supermrizky

Polovodi¢ovou supermiizku lze ziskat také stiidanim dopovani, kdy vznika tzv. n-i-p-i struktura?. V této
strukture se stfidaji oblasti dopované na n-typ a na p-typ. Mezi tyto silné dopované oblasti se cCasto
vkladaji nedopované (intrinsické) vrstvy, viz obr. 12.8. Vyhodou dopovangch supermiizek je automaticka
rovnost mrizkovych konstant vSech vrstev. Zvlastni zajem o dopované supermfizky prameni téZ z moznosti
ovladani elektronové struktury priloZzenym elektrickym polem, coz je mozné diky tomu, Ze elektrony a

diry jsou lokalizované v riiznych vrstvach supermiizky.

Prostorové rozlozeni ionizovanych pfimési ve vrstvach dopované supermftizky vytvari periodicky po-
tencidl zakresleny na obr. 12.8. Ten modifikuje pribéh kraju pasi tak, ze elektrony a diry jsou v krystalu
prostorové oddéleny. Modelovat rtizné pribéhy lze volbou koncentrace dopovani a sitkou dopovanych a
nedopovanych vrstev. Duisledkem vzdjemného oddéleni nosicti je predevsim prodlouzeni doby zivota do
rekombinace o mnoho fadi. Diky tomu lze dosahnout velkého zvySeni koncentrace nosict i malou optickou
excitaci ¢i slabou injekci a dostat se daleko od termodynamické rovnovahy. Takto lze na daném vzorku
meénit koncentrace nosicti v Sirokém rozsahu. Prostorové oddéleni kladnych a zapornych nosic¢t také vede
k castecné kompenzaci potencidlu prostorového naboje ionizovanych primeési. Jak vzriistda koncentrace
nosicl, klesd amplituda modulace potencidlu supermiizky a stoupa efektivni sitka zakdzaného pasu. Tim
je soucasné ovlivnéno tunelovani a tedy i doba Zivota nosica.

Vypocty energetickych hladin*

Obrézek 12.8b) zobrazuje energeticky diagram n-i-p-i struktury v redlném prostoru v zékladnim a excito-
vaném stavu. Modulace hran vodivostniho a valen¢niho pasu lze vypocitat integraci Poissonovy rovnice

?V(z) _ Q)
= (12.21)

Takto ziskdme vztah

dn\” dy\”
2Vy = 2% (dnNg+ dpyNy)d; + Ny (2) + N, (;) ] , (12.22)

kde d,,, d, a d; oznacuji $iftky vrstev typu n, p, resp. intrinsickych. Za pfedpokladu celkové nadbojové ne-
utrality lze psat d,,Ng = dpN,. Pohyb nosi¢it v podélném smeéru je kvantovin potencidlem supermiizky,
coz vede ke vzniku tzv. podpési. Nebot v tomto pfipadé pracujeme v oblasti minima i maxima s harmo-
nickym potencidlem, muzeme zapsat odpovidaji nejnizsi energie harmonického oscilatoru s kvantovym

2G.H. Déhler, P. Ruden, , Properties of n-i-p-i doping superlittices in I1I-V and semiconductors®, Surface Science 142,
447 (1984).
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Cislem n

EMe mp 2

2N, 1 2N, 1
E. =M< d(n+2), Ey=h 65 <n+ ) (12.23)

Energie jsou méfeny z extrému ve stfedu dopované oblasti. Hodnoty Aiw odpovidaji formélné energiim
plazmonti v dopovaném prostorovém polovodici, kde je koncentrace elektronit Ny, nebo dér N,.

Velikost efektivniho zakazaného pasu E;f je definovand jako rozdil extrémi hladin energie,
ES' = By — 2V + Ee + Eh. (12.24)

Jeji hodnota je urcena prevazné velikosti modulace potencidlu 2eVy a zavisi tedy linedrné na dopovani
a kvadraticky na Sifce aktivnich vrstev. Pro jisté specialni nastaveni lze docilit podminky ng =0.V
tomto pfipadé se bude supermiizka chovat jako polokov. V tomto extrémnim pripadé nebo v pfipadé op-
tické excitace vzorku, je nutné pro vypocet pasové struktury pouzit self-konzistentni vypocet. V mnoha
pfipadech aplikaci ale vystacime s pfibliznym vypoctem, napt. lze pfijmout zjednodusSeni, ze elektrony
v jAmé v n-typu zarovnaji dno vodivostniho pasu v okoli extrému a diry analogicky zarovnaji dno vale-
néniho pasu. Modulace, ktera byla v zakladnim stavu 2eVj, se takto zméni na 2eV;. V efektivni energii

zakdzaného pasu (12.24) pouze nahradime V; hodnotou V3.

Doba zZivota nosi¢ti je kone¢na diky tunelovani a tepelné indukovanym vertikalnim preskoktim. Ktery
z obou procesu pirevazi, zalezi na dopovani. Pro GaAs za pokojové teploty prevlddne tunelovani, pokud
Ng= N, >3 x10¥® cm=3.

Pii absorpci svétla n-i-p-i strukturou relaxuji elektrony (diry) do minima vodivostniho pdsu (ma-
xima valen¢niho péasu) s ¢asy ~ps. Efektivita tohoto procesu je diky pomalosti konkurenéni rekombinace
znacna. Z duvodu dlouhé doby zivota zavisi pocCet indukovanych nosi¢d na intenzité a dobé expozice.
Rychlost spinani téchto efektii je nepfimo timérna intenzité osvétleni, ¢asy vypinani jsou téz dlouhé, ale
existuji zptsoby, jak odezvu zhasnout rychleji.

Vliv elektrického pole na n-i-p-i supermfrizku*

Elektrické pole 1ze na n-i-p-i strukturu pfilozit pomoci riuznych kontaktt. Podélného pole je mozno dosah-
nout pomoci tzv. sendvic¢ového usporadéni (obr. 12.9a)). Toto pole zptisobi, Ze efektivni zakazany pas se
$tépi na dva prispévky E;er a E;f’. To je nezavislé na tom, zda je krystal v zdkladnim, nebo excitovaném
stavu. Protoze se modulace pasti méni pfimo piiloZzenim napéti V, a neni spojena se zménami koncentraci
nosicu ve vrstvach, je odezva ultrarychla, ¢ehoz lze vyuzit u elektrooptickych spinaci.

Pokud napéti piilozime na selektivni kontakty V,,,, mizeme jim pfimo ménit velikost modulace pésii.
Selektivni kontakty jsou ohmické viéi vrstvam jednoho charakteru dopovani a jejich vyroba vyzaduje
kombinovat specidlni litografickou metodu s riistem vrstevnatého vzorku. Obrézek 12.9b) ukazuje, Ze ze
selektivnich kontaktt lze injektovat nosice nebo je naopak z vrstev odsat, tak se vyrovna rozdil kvazi

|

I

2 2
Obr. 12.9: Dva zpusoby pfilozeni elektrického napéti na dopovanou n-i-p-i supermfizku: a) Napéti podél

osy rustu V,, pasova struktura se nakloni, jak je naznadeno zlutym klinem. b) Napéti V,,, aplikované
pomoci selektivnich kontaktti mezi n-typové a p-typové vrstvy méni modulaci n-i-p-i potencialu.
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Fermiho hladin vnéjsimu napéti V;,,. Casova konstanta téchto zmén je pro GaAs se vzdalenosti kontaktt
10 pm fadové ~ns.

12.5 Nové soucastky

Technologie popsané v této kapitole se pouZivaji pro vyrobu modernich elektronickych a fotonickych sou-
¢astek. LED diody vSech barev dnes potkdvame snad skoro vSude, pouzivaji se pro barevnou signalizaci
i osvétleni. Diky zvysené svitivosti a mensi spotfebé proti zarovkam je dnes vidame i v semaforech nebo
v reflektorech automobild. Polovodi¢ové lasery se pouzivaji pro vlaknové komunikace, pro zapis a ¢teni
v CD a DVD mechanikach, v laserovych tiskarnach, v laserovych ukazovatkach a na mnoha dalsich mis-
tech. Polovodi¢ové lavinové fotodiody jsou diky novym technologiim dnes schopné detekovat jednotlivé
fotony s pravdépodobnosti vétsi nez 50 %. Polovodi¢ové fotovoltaické ¢lanky se zase pouzivaji pro zis-
kavani elektrické energie. Na heterostrukturach jsou zalozeny polovodicové vysokofrekvencéni soucastky,
které pracuji v mobilnich telefonech a navigacich.

Polovodice s heterostrukturami dovoluji vyrabét tunelovaci soucastky, které by jinak nemohly fun-
govat. Za vizkum v této oblasti byla v roce 2000 udélena Nobelova cena®. Cel4 elektronika navazuje
samoziejmé na vyzkum tranzistorového za ktery byla udélena Nobelova cena uz v roce 1956. Tranzistor
se dvémi p-n prechody ma ale svd omezeni plynouci z konstrukce zalozené na homoptechodech. Hete-
ropfechody umoznuji vyrobit mnohem rychlejsi souc¢astky a my se zaméfime pouze na tu nejjednodussi
soucéstku a tou je rychly tranzistor HEMT ( High-Electron-Mobility Transistor) [21, 24].

12.5.1 HEMT

Depletion charge

reTon

Conduction band

Chemical potential

Valence band Obr. 12.10: Pasové schéma modula¢né dopovaného
heteroptechodu GaAs-Ga;_,Al,As. Na heteropfe-
E vs . ’ ) .
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Z

nikova kvantova jama, kterd se zaplni elektrony
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Obrazek 12.10 ukazuje zékladni princip konstrukce rychlého tranzistoru HEMT. Modula¢ni dopovani
zde znamend, ze zékladni polovodi¢ GaAs je nedopovany (Fermiho mez je v prostfedku zakdzaného
pasu). Po pfechodu do Gag 7Alg3As dojde skokové k nartstu $itky zakdzaného pasu, ale dopovéni je
stale minimalni (spacer layer). Poté nésleduje vrstva silné dopovaného Gag7AlysAs, a proto se zde
Fermiho mez musi dostat k donorové hladiné tésné pod krajem vodivostniho pasu. Fermiho hladina je
konstantni v celém prufezu tranzistorem, ktery je v termodynamické rovnovaze. K této konstantni hladiné
se tedy priblizuji energetické pasy. K ohybu energetickych pasa dochézi diky nabojovému presunu, ktery
generuje vnitini elektrické pole.

Pohyb elektront v trojuhelnikové kvantové jamé je kvantovan pouze ve sméru osy z. V roviné zy
se mohou elektrony pohybovat volné a vytvari 2D metalickou vodivostni vrstvu. Pohyblivost téchto
elektront je typicky velmi vysokd u ~ 1x 107 cm?/Vs. Nepohyblivé ionizované piimési jsou od 2D vodivého
kanalu oddélené vrstvou spaceru, a proto nenarusuji volny pohyb elektronti 2D ve vrstvé. Koncentraci
elektronii ve vodivostnim kanalu je ale mozné ovlivnit napétim pfiloZzenym na elektrodu, kterd zajisti
posun trojthelnikové jamy nad Fermiho mez. Tyto souddstky se pak souhrnné nazyvaji FET (Field-
Effect Transistor). Ty se obvykle pouzivaji v obvodech zpracovavajicich signaly s GHz rychlostmi.

3Zores Ivanovi¢ Alferov [Kopec sanosuu Andepos | a Herbert Kroemer jsou nositelé Nobelovy ceny za fyziku z roku
2000 za vyvoj polovodicovych heterostruktur pouzivanych ve vysokorychlostni elektronice a optoelektronice.
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12.6 Piiklady

P¥. 12.1: Sifka oblasti prostorového naboje:

Uvazujte p-n piechod v GaAs s koncentraci dopovani v jednotlivich éastech: N, = 2 x 107 cm™3,
Ng =1 x 10" cm~3. Permitivita pro GaAs je e = 13.1 a n; = 1.79 x 10° cm~3. Spoéitejte sitky oblasti
Zp, Tn & wo pii pokojové teploté 300 K. Déle spocitejte velikost difuzniho potencilu a srovnejte s sirkou
zakazaného pasu.

Pi. 12.2: Zavérny proud p-n prechodem:

Odvodte velikost konstanty I ze vztahu (12.19). Namalujte diodovou I-V charakteristiku pro kfemikovou
diodu s plochou 50 um? s koncentraci dopovani v jednotlivych ¢astech: N, = Ny = 10'® em~3. Doby
#ivota obou nosi¢l jsou stejné 7 = 1 us, difuzni koeficienty se lisi, D,, = 35 cm?/s, D, = 12.5 cm?/s.

Pi. 12.3: Zména Sirky prostorového naboje s napétim v propustném sméru:

Navazeme na pr. 12.1 a zde spocitany difuzni potencial V{. Spocitejte podil Sifek oblasti prostorového
naboje w/wg, kde w je §ifka oblasti prostorového naboje po pfilozeni propustného napéti 0.3 V.

Pr. 12.4: Franzuv-Keldyshuv jev:

Vlivem vnéjsiho elektrického pole pfilozeného na polovodi¢ dojde k posunu absorpéni hrany pod hodnotu
E, a pro vyssi energie bude spektrum absorpce oscilovat. Vysvétlete fenomenologicky tento jev pomoci
prekryvu vlnovych funkci elektronu a diry rozposunutych prostorové ve sméru elektrického pole.

Napovéda: Pouzijte pasové schéma a obalkové vlnové funkce zakreslené na obr. 12.11.

elektron ve vodivostnim pasu

dira ve valenénim péasu

Obr. 12.11: Pasova struktura polovodi¢e naklonénd elektrickym polem. Obéalkova vlnova funkce elek-
tronu je zobrazena modrou ¢arou a diry ve valenénim péasu ¢ervenou ¢arou. Sipkou je znazornéna sitka
zakdzaného pasu F,.

P¥. 12.5: Sifka zakizaného pasu jako funkce miizkové konstanty:
Zkuste dohledat obr. 12.1 ve vice nez dvou zdrojich a zkuste vysvétlit jejich rozdily.
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Nustrace od Tonyho De Saullese z knihy Nicka Arnolda Zrddné sily (2004).
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Priloha A

Napéti

A.1 Elastické napéti

Pokud budeme uvazovat homogenni materidly, ve kterych se $if{ viny s vinovou délkou A > 10 nm (s frek-
venci w < 10! Hz), miizeme zanedbat atomarni strukturu latky. Pro elastické napéti Ize pouzit klasicky
Hookutv zékon. Budeme chtit popsat deformaci, aniz bychom fesili detaily, zda jde o jev izotermicky,
nebo jev adiabaticky. Pfi deformaci se posune vybrany atom z mista popsaného vektorem R na misto R’
Posunuti popiseme tenzorem malé deformace €;; ve slozkach

Rj = (3ij + €ij) ;)
kde 6;; znac¢i Kroneckerovo delta. Oznacime-li si objem vzorku pfed deformaci V' a po deformaci V’,
potom mizeme vyjadrit relativni zménu objemu pfi deformaci popsané tenzorem ¢;; jako
V! —
v

R €pp + €yy + €2z

Nyni si definujme tenzor napéti Fy; jako zobecnénou silu pusobici na krystal. Jde o silu piisobici ve
sméru osy k na rovinu kolmou na osu I. Pro pfiklad uvedme F, je sila piisobici ve sméru osy X na rovinu
kolmou na osu ¥, jde tedy o te¢nou slozku pusobici smyk.

A.1.1 Hookuv zakon

Hooktuv zakon fika, ze v elastické oblasti je deformace imérna ptsobicimu napéti. Pro vysSe zavedené
tenzory muzeme Hookiiv zadkon zapsat dvéma zpiisoby

€ij = SijktFr,  Fr = Chuijeij- (A1)

Koeficienty linearni zavislosti mezi napétim a deformaci pfedstavuji tenzory ¢tvrtého fadu, ? se oznacuje
jako elastickd poddajnost (angl. compliance) a je tuhost (angl. stiffness). Jednotkou tuhosti je N/m?
nebo J/m3, poddajnost ma jednotky inverzni. Diky linearité se redukuje pocet prvki maticového zépisu
tenzoru tuhosti/poddajnosti na (6 x 6).

Diky symetrii krystalu se redukuje pocet maticovych prvki jesté vyraznéji. Pro nejbéznéjsi piipad
kubického materidlu ma Hookuv zdkon tvar

oy C11C12C12 0 0 O €xa
Fyy Clg Cll Clg 0 0 0 Eyy
F,. Ci2Ci2C11 0 0 O €2z

_ A2
Fyz 0 0 0 044 0 0 €yz ’ ( )
F,, 0 0 0 0 Cu O €r
ny 0 0 0 0 0 044 Vzy

kde nenulové ¢leny matice tuhosti jsou pouze tii rizné koeficienty: Ci1, Cio a Cyy.
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A.1.2 Elastickad vlna ve sméru osy [100]
Pokud je vlnovy vektor $ifici se vlny ¢ = (1,0,0), mizeme si zapsat pohybovou rovnici pro vychylku u
ve sméru osy X nasledovné

82U 8quj aFa:y 8FEZ
+

Z , A3
Por = oz oy | o: (A-3)
kde p znaci hustotu materidlu. Uvazujme podélné harmonické kmity. Vychylku zapiseme jako
u = up ez(qx—wt).
Vlnovéa délka téchto kmiti je A\ = 27 /q. Pouzijeme defini¢ni vztah pro nenulovou slozku deformace
€zz = Ou/Ox. Dosazenim do (A.3) dostaneme disperzni vztah
w?p = C11q°. (A.4)

Odtud muzeme snadno uréit rychlost podélné viny ve sméru [100] jako

q P

Zcela analogicky je mozné dostat pro ptricné vinéni, které se Sifi podél osy X, nasledujici

w?p = Caaq?, v =/ %~ (A.6)

Obdobné by bylo mozné pokracovat i pro dalsi sméry vyssi symetrie v kubickém krystalu. Pro obecny
smér Siteni, kdy se musi pracovat s celymi tenzory, je vypocet podstatné méné prehledny.
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Priloha B

Statisticka rozdéleni

B.1 TY¥i statisticka rozdéleni

Na tomto misté zopakujeme tvar statistickych rozdélovacich funkci, které se vyuzivaji pii popisu identic-
kych castic ve statistické fyzice. Tvar téchto funkci je zakreslen v obr. B.1.

3.0 —

25

2.0 |

1.5

rozdélovaci funkce

10 b

0.5 F

(E-p) ' kgT

Obr. B.1: T¥i pouzivané statistické funkce: Fermiho-Diracova frp pro fermiony, Boseho-Einsteinova fpg
pro bosony a klasicka statistickd Maxwellova-Boltzmannova fyg.

Stfedni pocet fermiont ve stavu na energii £ ddva Fermiho-Diracova statistika

1

fFD(E) = e(E—n)/ksT +1 : <B1)
Protoze na jedné hladiné nemohou byt soucasné dva fermiony, jsou hodnoty funkce frp v intervalu od
nuly do jedné. Proto miuZeme tuto funkci interpretovat jako pravdépodobnost obsazeni dané energetické

hladiny.

Statistiku bosont popiSeme Boseho-Einsteinovym rozdélenim. To miizeme zapsat analogicky s (B.1)
jako
1
feE(E) = oE—w)/keT _ 1" (B.2)

Jak ukazuje modra kfivka v obr. B.1, toto rozdéleni je definované pro energie vétsi nez p. Odéitani energie
se vétsinou voli tak, ze chemicky potencial i je roven nule. Pro bosony neni zadné omezeni na pocet stavi
na jedné energetické hladiné. Proto muZe funkce fgg(F) nabyvat hodnot vétsich neZ jedna a pro energii,
ktera se blizi k nule, dokonce diverguje.
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Pokud se pohybujeme na energiich o 2kg7T nad u, potom miizeme obé vyse uvedend rozdéleni na-
hradit limitou, kdy zanedbame jednicku ve jmenovateli. Tato limita se shoduje s klasickym statistickym
Maxwellovym-Boltzmannovym rozdélenim

1 _
fus(E) = S kT = Ae B/ksT (B.3)

Konstanta A je dand normalizaci.
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Seznam pouzitych symbolii

V nasledujicim seznamu je uvedeno znaceni velicin a zkratky pojmi, které se v textu castéji pouzivaji.
Velikost fyzikalnich konstant je uvedena s takovym poctem platnych cifer, Zze chyba je mensi nez polovina
posledni cifry. Vétsina uvedenych fyzikalnich konstant je dnes definovana presné, a tato presnd hodnota
slouzi k zafixovani vzajemného pomeéru fyzikalnich veli¢in. Volba fixovacich konstant byla zvolena s ohle-
dem na maximalni kompatibilitu s pfedchozi definici. Zdrojem konstant je seznam z webové stranky NIST
(National Institute of Standards and Technology) [25], coZ je instituce, kterd ma zajistovat dostupnost
aktudlnich informaci o vSech fyzikalnich konstantach. Na téchto strankach je zaznamenan i historicky
vyvoj v této oblasti.

Symboly v latince

znacka popis
1D jednodimenzionalni, jednorozmérny
2D dvoudimenzionalni, plosny
3D trojdimenzionalni, prostorovy
X,¥,% osy kartézského souradnicového systému
a miizkova konstanta 1D, ¢tvercovych nebo kubickych mfizek
ap Bohriv polomér, ag = 0.529178 A
Gex polomér excitonu
A, plocha magnetické orbity v k-prostoru
ay,ds, ds elementarni mfizkové vektory
51, 52, 53 elementarni mrizkové vektory reciproké mrizky
G amplituda rozptylu
A vektorovy potencial
B vektor magnetické indukce
¢ rychlost svétla ve vakuu, ¢ = 299792458 m/s (pfesné)
Cp silové konstanty
? tuhost
cr operace symetrie n-Cetnd osa rotace zopakovana m-krat
Cy,cy tepelna kapacita, mérna tepelné kapacita
d vzdélenost krystalovych rovin
D degenerace Landauovy hladiny
D., Dy, difuzni koeficient elektront, dér
D vektor elektrické indukce
D hustota stavi
e Eulerovo ¢islo, e = 2.718 281 828
e element4rni naboj, e = 1.602 176 634 x 101 C (piesné)
eV elektronvolt, energie, kterou ziska elektron piechodem potencidlu 1 V
D elektrické pole
E energie
Ea energie zakladni hladiny jednoho atomu
E.(k),E,(k) vodivostni a valen¢ni energeticky pas
E, §itka zakadzaného pasu
Fyon kohezni energie krystalu
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s

Fermiho energie

f statistické rozdéleni (napf. frp, fBE)

fi atomovy rozptylovy faktor

F sila

Fy tenzor napéti

G miizkovy vektor reciproké miizky (celo¢iselnd kombinace vektorii 5)

h redukovana Planckova konstanta, i = 1.054 572613 x 10734 Js
Planckova konstanta, 27h = 6.626 075 15 x 1073% Js (presné)

H hamiltonian

H hamiltonian jednoho atomu

H vektor magnetické intenzity

2 imaginarni jednotka (: = v/—1)

) operace symetrie inverze

1 operace symetrie identita; nebo proud

f hustota proudu

J tok, proud

kg Boltzmannova konstanta, kg = 1.380649 x 10723 J/K (presné)

vlnovy vektor (elektronu, ¢asto vybrany z 1.BZ)

vlnovy vektor v rozsifeném pasovém schématu

stfedni volna draha

délka vzorku

difuzni délka elektronti, dér

Lorentzovo ¢islo

hmotnost elektronu

klidova hmotnost volného elektronu, mg = 0.910938 370 x 10~ kg
efektivni hmotnost nosice v pasu

Me, Mp, efektivni hmotnost elektront, dér

hmotnost atomérniho jadra

klidovd hmotnost neutronu, M, = 1.674 927498 x 10~ kg
koncentrace elektront

opticky index lomu

pocet elementarnich bunék krystalu

Avogadrova konstanta, Ny = 6.02214076 x 102> mol™* (pfesng)
koncentrace akceptort, resp. donori

hustota dér v polovodici

mifzkové sumy > p; 0 a > p; '

hybnosti elektronu

* O

Sﬁﬁh;b‘Nwm
ﬁh

S

5
5

<
o
~

<
]
o

S

hybnosti jadra

TSNl

vektor polarizace

naboj elektronu ¢ = —e, resp. naboj diry ¢ = e

naboj kationtu (aniontu) v soli

vlnovy vektor fononu

absolutni termoelektricka sila

polohovy vektor elektronu

Wignertiv polomér, polomér koule s jednim valené¢nim elektronem

Tiot HORULO=
S

polohovy vektor atomarniho jadra

Halluv koeficient

Rydberg, energie zdkladni hladiny atomu vodiku, Ry = 13.6056726eV
excitonovy Rydberg

spin

element plochy

plocha magnetické orbity v redlném prostoru

operace symetrie n-Cetnd nevlastni osa rotace zopakovana m-krat
strukturni faktor

n n U &
LIRS EE

»n
!

poddajnost
cas
teplota

HP&
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IS
?T‘l?i‘

T QQ
1)

55
qul

Fermiho teplota

miizkovy translaéni vektor pfimé miizky (celo¢iselnd kombinace vektort @)
vektor vychylky atomu z rovnovahy

periodicka ¢ast Blochovy vinové funkce
potencial pro elektrony

koeficienty rozvoje potencialu

potencial jader

vektor rychlosti

fazova, resp. grupovéa rychlost

difuzni potencial p-n prechodu

objem elementarni bunky krystalu

objem celého krystalu

sitka oblasti prostorového naboje p-n prechodu
pravdépodobnost prechodu do stavu j

pocet nejblizsich sousedu v miizce

atomové c¢islo

valence

Symboly v recké abecedé

popis

Madelungova konstanta; silové konstanta nejblizsich sousedii
pfevracend hodnota sou¢inu Boltzmannovy konstanty a teploty, 8 = 1/kgT
Diracova §-funkce

Kroneckerovo delta

tenzor malé deformace

relativni dielektrickd konstanta (permitivita)
permitivita vakua, g = 8.854 18781 x 10712 F/m
parametry Lennard-Jonesova potencialu inertnich plynu
Braggtv tihel rozptylu

Debyeova teplota

vlnova délka svétla; tepelna vodivost

magnetickd délka elektronu

chemicky potencial

permeabilita vakua, o = 47 x 10~ H/m

pohyblivost elektroni a dér

Bohriiv magneton

Ludolfovo éislo, m = 3.141 592653 6

Peltieruv koeficient pro elektrony a diry

mérny odpor; hustota; hustota volného naboje

mérna vodivost

operace symetrie rizné orientované roviny zrcadleni
doba zivota, relaxa¢ni doba, ¢asova konstanta

vlnova funkce

tenzor silovych konstant

magneticky tok plochou orbity v redlném prostoru
Blochova vinovéa funkce

kruhové frekvence (fuw je energie fotonu nebo fononu)
cyklotronové frekvence (elektronu v magnetickém poli)
Debyeova frekvence

frekvence pricného a podélného optického fononu
plazmova frekvence elektront v kovu

objem primitivni reciproké bunky
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Jednotky a velié¢iny v soustavé CGS

V nékterych knizkach se stale jesté pouziva znaceni v soustavé CGS. Proto je vhodné na tomto misté
uvést prevodni vztahy do soustavy SI, podobné jak to maji autofi Yu a Cardona na zadni predsadce
knihy [14].

veli¢ina SI jednotka koeficient konverze CGS jednotka
SI—-CGS CGS—SI

délka metr [m] 102 1072 centimetr [cm]

hmotnost kilogram [kg] 103 1073 gram [g]

energie Joule [J] 107 1077 erg

naboj Coulomb [C] 3 x 10° 1/3 x 107 statcoulomb

potencial Volt [V] 1/300 300 statvolt

odpor Ohm [Q] 1/9 x 10711 9 x 10! statohm

velic¢ina hodnota v CGS vypocet z SI konstant

néaboj elektronu 4.803205 x 10719 esu 10ec

hmotnost elektronu 9.109384 x 10728 g 103 myg

energie 1eV 1.602177 x 10~ 2 erg 107e

Pro pfevod vzorcii, které najdete v literatufe v CGS, pouzijte nasledujici tabulku (viz Appendix
Jacksonovy knihy [26]). Napfiklad pokud se bude ve vzorci vyskytovat ¢, nahradi se hodnotou 1/,/gopg.

veli¢ina (podobné& pro dalsi) vyraz v CGS nahradit vyrazem v SI
rychlost c 1/\/Eotto
elektricka intenzita (potencidl, napéti U) E Ve, E
elektricka indukce D Var/eg D
néboj (proud j, polarizace P) p 1/v/Ameq p
magnetickd intenzita H VaTpo H
magnetickd indukce B Ar [ B
vodivost (kapacitance) o o /(4meo)
permitivita € e/eo
permeabilita 1 1/ o
odpor (impedance, induktance) R (4meg) R
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