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Úvod

Tento studijní text by měl sloužit pro první seznámení studentů přírodovědných oborů se základními
principy fyziky pevných látek. V této vědní oblasti byla v nedávné době publikována celá řada velmi
kvalitních knih. Některé se ale věnují již pokročilejším tématům a navíc převážná většina publikací je
dnes dostupná pouze v anglickém jazyce. Tento text by měl proto ulehčit studium pevných látek i tím,
že je v češtině.

Řazení kapitol tohoto textu bylo inspirováno českým překladem knihy Ch. Kittela: Úvod do fyziky
pevných látek [1]. Tato kniha byla od svého vydání v minulém století doporučovaná jako úvodní text
pro studenty fyziky pevných látek. Dodnes je tato kniha uceleným textem, který lze doporučit i díky
výbornému překladu, který uvádí vzorce v jednotkách SI. Příklady na konci kapitol tohoto studijního
textu jsou často převzaty z tohoto českého překladu a jsou proto citovány i s odkazem na stránku jako:
Kittel, str. 49, př. 1. Příklady jsou často doprovázeny vysvětlivkami a jejich řešení může napomoci k
lepšímu pochopení probírané látky. Náročnější úlohy, které řeší složitější problémy, jsou označeny hvěz-
dičkou (*). Přestože Ch. Kittel vydal již osmé upravené vydání své knihy [2], český překlad je dodnes
dostupný pouze pro druhé vydání z osmdesátých let minulého století. Je pravda, že fyzikální vlastnosti
pevných látek se nemění, nicméně toto téma by si zasloužilo přece jen nové upravené vydání. Navíc český
překlad druhého vydání je dnes dostupný pouze v knihovnách.

Pokročilejšímu čtenáři je možné doporučit knihu R.F. Pierreta [3] Advanced Semiconductor Funda-
mentals. Tato kniha je ve výkladu stručnější, ale je zase doplněna o celou řadu dat a grafů parametrů
pevných látek. Kniha M. Razeghiho [4] je velmi podrobná a pokrývá i pokročilá témata. Symetrii krystalů
se velmi podrobně věnují M. De Graef a M.E. McHenry [5]. Jednou z mála původních českých knih je

[1] [2] [3] [4] [5]

[6] [7] [8] [9] [10]

[11] [12] [13] [14] [15]

Knihy doporučené pro doplňující studium, přesné citace jsou uvedeny v kapitole Literatura na str. 212.
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text L. Eckertové a kol. [6] Fyzikální elektronika pevných látek vydaný v roce 1992.

Převážně kovům se věnuje knížka autorů N.W. Ashcrofta a N.D. Mermina [7]. Přestože je tento text
již z poloviny sedmdesátých let, je pro výklad kovů jedinečný. Kniha C. Klingshirna [8] se v první polovině
podrobně věnuje výkladu fyziky pevných látek a v druhé polovině probírá optické vlastnosti polovodičů
a různé optické metody studia pevných látek.

Velmi zajímavá je i kniha L. Mihalyho a M.C. Martina [9], která vysvětluje problematiku pevných
látek na souboru řešených příkladů. Tato koncepce dovoluje čtenáři prohloubit si znalosti díky nutnosti
hledat řešení typických úloh. Při řešení těchto úloh nezaškodí si zopakovat některé matematické poučky,
vhodnou knihou může být např. Matematický aparát fyziky od J. Kvasnicy [10]. Navíc problematika
pevných látek využívá známá řešení typických úloh z kvantové mechaniky. Základy kvantové mechaniky
si lze zopakovat v knize L. Skály [11] Úvod do kvantové mechaniky.

Teoretičtější pohled na pevné látky podávají skripta E. Majerníkové [12] vydaná UP v Olomouci
v roce 1999. Kniha Ch. Kittela [13] Quantum Theory of Solids je opět souborem řešených úloh. Symetrii
krystalů se věnuje kniha autorů P.Y. Yua a M. Cordony [14], kterou lze ale opět doporučit pouze pokroči-
lému čtenáři. Poslední kniha, jejíž autor je J. Celý [15] z MU v Brně, se věnuje problematice kvazičástic
pro popis pevné látky a různých interakcí v pevné látce.

Seznam jmenovaných knížek, které se věnují problematice pevných látek, by mohl být mnohem roz-
sáhlejší, ale další hledání přenechme vlastní iniciativě čtenáře. Navíc mnoho zajímavých textů, ale i
multimediálních souborů na téma pevné látky lze najít i na internetových stránkách známých univerzit,
nebo na Wikipedii: http://www.wikipedia.org/. Jak známo, dlouhé vysvětlování může snadno zastou-
pit jeden obrázek a dynamiku nějakého procesu je možné nejsnáze pochopit z reprezentativní animace.
Není možné zde vypsat všechny zajímavé internetové odkazy, ale bez obav: „Kdo hledá, najde.ÿ

2

http://www.wikipedia.org/




Tento krystal je původně z Brazílie, ale dnes ho najdete na zeměpisné pozici: 49◦24’24.220”N, 11◦0’23.203”E.
Jde o krystal ametystu SiO2, trigonální krystalová soustava, tvrdost 7.
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Kapitola 1

Prostorové uspořádání krystalu
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Všechny látky dělíme podle skupenství na plyny, kapaliny a pevné látky. Jako čtvrté skupenství
se někdy uvádí ještě plazma. Pevné látky pak dělíme podle prostorového uspořádání na krystalické,
polykrystalické a amorfní. V celé této práci se soustředíme výhradně na látky krystalické, u kterých se
při popisu uspořádání atomů dá využít prostorová symetrie.

Krystalická pevná látka znamená periodické uspořádání atomů v pravidelné mřížce. O této pravi-
delnosti se můžeme přesvědčit díky tomu, že při difrakci rentgenového záření se za krystalem vytváří
pravidelný obrazec difrakčních maxim, ze kterého lze rozmístění atomů dopočítat. Částice, ze kterých je
látka složena, lze rozdělit na těžká atomární jádra a o tři řády lehčí elektrony. Při počátečním studiu
pevných látek bylo nutné řešit oba tyto systémy nejprve odděleně. O atomech již víme, že jsou rozmístěny
v periodické mřížce a řeší se pouze kinetické rovnice popisující dynamiku kmitání atomů kolem svých
rovnovážných poloh. Přitom elektrony na vnitřních energetických hladinách jsou lokalizovány blízko jader
a spolu vytvářejí kompaktní ionty. Navenek pak působí celkovým nábojem, který je součtem kladného
náboje jádra a záporného náboje elektronů vnitřních lokalizovaných orbitalů. Vibrace těchto atomů je
tedy první řešený problém.

Pokud máme známé periodické uspořádání atomů v prostoru, víme, že zbývající elektrony se musí
pohybovat v periodickém potenciálu, který tyto ionty vytvářejí. Průlomem při hledání správné vlnové
funkce valenčních elektronů byl Blochův teorém. S jeho použitím se odvodí to, že periodický potenciál
vede na pásovou energetickou strukturu povolených a zakázaných energetických pásů pevné látky. Nalezení
energetických hladin elektronů je tedy druhý základní problém, který je nutné vyřešit a je předpokladem
dalšího hlubšího studia fyziky pevných látek.

Teorie pevných látek vychází ze znalostí z celého rozsahu základního kurzu fyziky. Jedná se zejména
o termodynamiku a statistickou fyziku, kvantovou fyziku, dále pak elektronovou konfiguraci atomů a
popis elektronových orbitalů ze základů chemie. Je nutná také znalost matematické analýzy, protože v této
problematice se musí často sumovat, integrovat, derivovat a počítat limity funkcí. V neposlední řadě je
důležitá také znalost algebry pro popis symetrií krystalů pomocí grupové teorie. Výhodou fyziky pevných
látek je to, že se v ní dají uplatnit všechny řešitelné modely kvantové mechaniky. Studium pevných pátek
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je tedy ukázkou praktického použití kvantovky. Při výzkumu se postupovalo od nejednodušších modelů
a testovala se shoda teoretických výpočtů s experimentem. Shoda s naměřenými daty tak byla vždy
nejdůležitějším ukazatelem správnosti používané teorie.

1.1 Historický vývoj pohledu na pevné látky

Nejprve připomeňme některé historické milníky ve vývoji pohledu na strukturu látky. Ty jsou do značné
míry svázány s formováním základů kvantové mechaniky na počátku dvacátého století.1

1853 – První pozorování čárového spektra vodíku.
1864 – Maxwellova teorie elektromagnetického pole (J.C. Maxwell).
1869 – Mendělejevova periodická tabulka prvků (D.I. Mendělejev).
1895 – Objev rentgenového záření (W.C. Röntgen).
1896 – Objev radioaktivity (A.H. Becquerel).
1897 – J.J. Thomson objevil elektron a navrhl tzv. pudinkový model atomu.
1898 – Identifikace α a β záření.
1899 – R.A. Millikan provedl první nepřímé měření náboje elektronu.
1900 – M. Planck odstartoval zrod kvantové teorie vysvětlením záření absolutně černého tělesa.
1905 – A. Einstein vysvětlil princip fotoefektu pomocí kvanta elektromagnetického záření.
1906 – E. Rutherford2 provedl experiment s rozptylem α částic na kovové fólii (100 atomárních vrstev).
1911 – Tento experiment vedl Rutherforda k závěru, že kladný náboj atomu je soustředěn do „bodovéhoÿ

jádra atomu.
1913 – N. Bohr použil planetární model pro vysvětlení stability atomu.
1921 – Objev silné nukleární interakce, která zodpovídá za stabilitu jádra.
1931 – Sir J. Chadwick a kolegové objevili neutronu.

Kdybychom chtěli začít historicky úplně na začátku, museli bychom se vrátit až k řeckým filozofům
jako byli Leukippos a Démokritos. Ti již v době 400 let před Kristem zavedli atom jako nejmenší dále
již nedělitelnou částici, ze které se skládá veškerá hmota kolem nás. Trvalo další dva tisíce let, než irský
badatel, fyzik a chemik Robert Boyle roku 1661 navrhl koncept, že se různé látky skládají z různých
atomů, které dnes nazýváme prvky. Podle Boyla bylo možné prvky rozlišovat podle zbarvení plamene,
když se daný materiál zapálí. Tímto způsobem vlastně poprvé použil spektroskopii jako metodu prvkové
analýzy. Jeho kolegové (A. Lavoisier, J. Priestley a J. Dalton) pak přišli se správnou myšlenkou, že
pro jednotlivé prvky je charakteristická jejich atomární hmotnost.

Kolem roku 1870 bylo známo již 65 různých prvků. Významným přelomem byla pečlivá práce ruského
chemika Dmitrije Ivanoviče Mendělejeva, který zkoumal systematické opakování vlastností prvků po
osmi a podařilo se mu uspořádat všechny prvky do periodické tabulky, která dnes nese jeho jméno. V jeho
tabulce některé prvky chyběly, nebyly totiž v jeho době ještě známy. Takto dokázal Mendělejev velmi
přesně předpovědět vlastnosti prvku, který je v tabulce ve sloupci IV.A pod křemíkem. Tento v přírodě
ne příliš častý prvek objevil až v roce 1886 německý chemik Clemens A. Winkler a pojmenoval jej
podle svého národa germanium. ((PO. 1.1: Periodická tabulka))

Na konci 19. století Joseph John Thomson objevil ve struktuře látky záporně nabité částice, které
nazval elektrony. Poté Robert Millikan provedl měření, kterým stanovit poměr náboje a hmotnosti
elektronu. Dále pak určil, že poměr hmotnosti elektronu a hmotnosti atomu vodíku (jednoho protonu)
je řádově 1/2000. Na to navázal Henry Moseley, který odhadl, že počet elektronů jednotlivých atomů
odpovídá atomovému číslu. Pokud jsou ale atomy navenek neutrální, musí záporný náboj elektronů kom-
penzovat nějaký kladný náboj.

Prvním, kdo navrhl planetární model atomu byl v roce 1904 japonský fyzik Hantaro Nagaoka.
Odmítal Thomsonův pudinkový model, kde by se kladné a záporné náboje překrývaly. Kladný náboj si
představoval jako planetu Saturn a elektrony jako Saturnovy prstence. Předpovědi o hustém atomovém
jádru potvrdl svými pokusy Ernest Rutherford, který pojmenoval kladně nabité částice jádra protony.
Dále předpovídal že jádro, složené z kladně nabitých protonů, musí pro udržení své stability obsahovat

1Tento seznam obsahuje hned několik nositelů Nobelovy ceny za fyziku: 1901 - W.C. Röntgen, 1903 - A.H. Becquerel,
1906 - J.J. Thomson, 1918 - M. Planck, 1921 - A. Einstein, 1922 - N. Bohr, 1923 - R.A. Millikan, 1929 - L. de Broglie, 1935
- J. Chadwick, převzato z knihy [5] na str. 51.
2Ernest Rutherford bývá považován za zakladatele jaderné fyziky. Za studium radioaktivity obdržel v roce 1908 Nobelovu

cenu za chemii.
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nějaké další neutrální částice. Rutherford o nich mluvil jako o lepidlu, které drží husté jádro pohromadě.
Tyto neutrální částice jádra dnes nazýváme neutrony.

Od počátku 20. století se začala rozvíjet kvantová fyzika. V roce 1900 Max Planck začal s kvan-
továním elektromagnetického pole. Částice tohoto pole se nazývají fotony a mají energii hν, kde h je
Planckova konstanta (h = 6.626 075 15 × 10−34 J s, přesně) a ν představuje frekvenci pole. Nastolenou
vlnově částicovou dualitu dokončil z druhé strany francouzský fyzik Louis de Broglie, když hmotným
částicím přiřadil vlnovou délku podle vztahu λ = h/p. Zde h je opět Planckova konstanta a p je hybnost
částice, kterou spočítáme jako součin hmotnosti a rychlosti částice. My v tomto textu budeme používat
výhradně jenom redukovanou Planckovu konstantu definovanou vztahem ℏ = h/2π. Všechny v textu
používané konstanty a symboly jsou pro přehlednost uvedeny v seznamu na konci skripta na str. 214.

Jeden ze základních postulátů popisujících kvantové chování elementárních částic je princip neurči-
tostiWernera Heisenberga3. Ten říká, že nelze současně přesně změřit dvě nekumutující veličiny jedné
částice. Nelze například současně určit přesně polohu a hybnost. Tento princip můžeme zapsat tak, že
neurčitost měřené polohy ∆x a neurčitost hybnosti ∆px částice je větší než nenulová konstanta,

∆x∆px ≥ ℏ.

Jak je patrné, konstanta, která omezuje maximální možnou přesnost měření, je opět redukovaná Planckova
konstanta. K vlnově částicovému dualismu přispěl dále Max Born4, když navrhl pravděpodobnostní
interpretaci vlnové funkce studované částice. A nakonec bylo ještě nutné, aby Erwin Schrödinger5

odvodil rovnici, která umožňuje počítat vlnové funkce a energie studovaných částic a předpovídat jejich
časový vývoj.

1.1.1 Bohrův model atomu vodíku

Pro vysvětlení stability atomu vodíku použil dánský fyzik Niels Bohr kvantování [11]. Předpoklady Bo-
hrova modelu jsou:

■ Elektrony se pohybují po kruhových drahách, pro které je splněna kvantová podmínka pro moment
hybnosti ∮

p dr = n 2πℏ, n = 1, 2, . . . , (1.1)

kde p je hybnost elektronu, dr je element kruhové dráhy, n je kvantové celé číslo a ℏ je redukovaná
Planckova konstanta.

■ Elektrony při pohybu na kruhových drahách, splňujících kvantovou podmínku, nevyzařují energii.

■ Elektron může přijmout nebo vyzářit energii pouze při přechodu z jedné dráhy na druhou.

Nyní použijeme klasickou podmínku vyvážení přitažlivé coulombovské a odstředivé síly při kruhovém
pohybu. Tak dostaneme na základě těchto semi-klasických úvah první rovnici,

v2 =
1

4πε0

e2

m0r
,

kde e je elementární náboj, m0 je hmotnost elektronu a ε0 je permitivita vakua. Druhou rovnici získáme
z kvantovací podmínky (1.1),

v =
ℏn
m0r

.

Kombinací obou rovnic prostým dosazením eliminujeme neznámou v a získáme poloměr povolených kru-
hových drah hladiny s kvantovým číslem n ve tvaru

rn = n2aB, kde aB =
4πε0ℏ2

e2m0
≈ 0.529 177 Å. (1.2)

Poloměr kružnice základní energetické hladiny aB se označuje Bohrův poloměr. Pro energie jednotli-
vých elektronových hladin dostaneme vztah, který je ve shodě s experimentálně pozorovaným čárovým
spektrem atomárního vodíku

En = −Ry

n2
, kde Ry =

e4m0

2(4πε0ℏ)2
≈ 13.605 8 eV. (1.3)

3Werner Heisenberg získal Nobelovu cenu za fyziku v roku 1932 za podíl na vytvoření kvantové mechaniky.
4Max Born je nositelem Nobelovy ceny za fyziku z roku 1954.
5Erwin Schrödinger je nositelem Nobelovy ceny za fyziku z roku 1933.
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Obr. 1.1: Červeně je zobrazen coulombovský potenciál atomu vodíku U(r), tečkovaně jsou znázorněny
energetické hladiny (1.3) a modře jsou zobrazeny atomární vlnové funkce 1s a 2s.

Energie základní hladiny se nazývá Rydberg.

Je zajímavé, že Bohrovu kvantovací podmínku (1.1) můžeme s využitím vlnové délky pro elektron
podle L. de Broglieho (λe = 2πℏ/p) zapsat následujícím alternativním způsobem. Délka stabilní kruhové
dráhy elektronu atomu vodíku je vždy celočíselným násobkem vlnové délky elektronu,

2πrn = nλe.

Podrobný kvantový výpočet spektra, které se získá řešením Schrödingerovy rovnice, lze nalézt v učeb-
nicích kvantové mechaniky [11]. Výsledkem jsou kromě energetických hladin (1.3) ještě vlnové funkce elek-
tronů. Kvadrát vlnové funkce představuje pravděpodobnost nalezení elektronu v daném místě prostoru.
Zde uvedeme pro ilustraci pouze vlnovou funkci základního kulově symetrického stavu (1s orbitalu)

ψ1s(r) =
1√
πa3B

e−r/aB . (1.4)

Energetické hladiny atomu vodíku a dvě vlnové funkce nejnižších hladin jsou zakresleny v obr. 1.1.

1.1.2 Popis atomárních vlnových funkcí a kvantová čísla

Jádro atomu vodíku představuje vlastně jeden proton, který vytváří sféricky symetrický potenciál (obr. 1.1).

U(r) = − 1

4πε0

e2

r
.

Řešením Schrödingerovy rovnice pro elektron s tímto sféricky symetrickým potenciálem dostaneme sou-
stavu energetických hladin a vlnových funkcí ψ(r⃗). Tyto vlnové funkce lze rozložit na součin sférické části
Rnl a úhlové části Ylm,

ψ(r⃗) = ψnlm(r, θ, ϕ) = Rnl(r) Ylm(θ, ϕ),

kde proměnné r, θ, ϕ představují sférické souřadnice. Indexy n, l,m představují kvantová čísla dané vlnové
funkce a těm se budeme dále věnovat.

■ První je n, které označuje hlavní kvantové číslo a nabývá hodnot n = {1, 2, 3, . . .}. Hlavní kvantové
číslo určuje energii kvantové hladiny podle (1.3), En = −Ry/n2.

■ Následuje l jako vedlejší kvantové číslo. Pro jeho hodnoty platí: l ≤ n−1, neboli l = {0, 1, . . . , n−1}.
Toto kvantové číslo určuje vlastní hodnotu operátoru kvadrátu momentu hybnosti L̂2, velikost
momentu hybnosti je rovna hodnotě:

√
l(l + 1)ℏ.

■ Třetím číslem je magnetické kvantové číslo m, které leží v intervalu −l ≤ m ≤ l. Toto číslo je vlast-
ním číslem operátoru L̂z a určuje projekci orbitálního momentu hybnosti. lz = mℏ. Název tohoto
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kvantového čísla vyplývý z toho, že vlivem působení magnetického pole dochází k rozštěpení ener-
getické hladiny elektronů v závislosti právě na projekci momentu hybnosti do směru magnetického
pole. Tento efekt se nazývá Zeemanův jev6.

■ Pro úplnost uvedeme ještě čtvrté kvantové číslo elektronu, kterým je spin s. Představuje vnitřní
moment hybnosti elektronu, je ryze kvantový a nemá klasickou paralelu. Při působení magnetického
pole se energické hladiny elektronu štěpí pouze na dvě hodnoty. Projekce spinu je totiž pouze dvojí
s = ±1/2.

l = 0

m = 0

s

m = 0

pz

l = 1

m = 1

px py

m = 0

dz
2

l = 2

m = 1

dxz dyz

m = 2

dxy dx
2
-y

2

m = 0

fz3

m = 1

fxz
2 fyz

2
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2
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2
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n = 5
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Obr. 1.2: Atomární orbitaly odpovídající vlnovým funkcím atomu vodíku. Každý řádek odpovídá jedné
hodnotě hlavního kvantového čísla. V jednotlivých sloupcích jsou uvedeny povolené kombinace vedlejšího
a magnetického kvantového čísla. Oblasti červené a modré barvy představují oblasti a kladnou a zápornou
hodnotou. Převzato z webu WIKIPEDIA: https://en.wikipedia.org/wiki/Atomic_orbital

Protože elektrony mají jen dvě možné projekce spinu, používá se pro jejich značení často jenom
šipka. Podle Pauliho vylučovacího principu7 musí mít každý elektron unikátní kvantová čísla. Musí se
lišit alespoň projekcí spinu, proto se elektronové obsazení daného atomu často maluje do schémat. Na
ukázku zde uvedeme schématický obrázek pro draslík s atomovým číslem 19.

1s 2s 2p 3s 3p 4s

19K

1.2 Pevné látky z pohledu kvantové mechaniky

Pevná látka obsahuje řádově 1023 atomů na krychlový centimetr. Matematicky lze systém interagují-
cích částic látky popsat pomocí Hamiltonova operátoru energie. Hamiltonián popisující perfektní krys-

tal má členy odpovídající kinetické energii elektronů,
∑
i

p2i
2m , a coulombovské interakci mezi elektrony,

1
2

′∑
i,i′

e2

4πε0|r⃗i−r⃗i′ |
. Čárka nad sumou znamená to, že indexy i a i′ musí být různé. Další členy přísluší kine-

tické energii jader,
∑
j

P 2
j

2Mj
, a coulombovské interakci mezi jádry, 12

′∑
j,j′

ZjZj′e
2

4πε0|R⃗j−R⃗j′ |
. Poslední člen odpovídá

vzájemné interakci mezi elektrony a jádry, −
∑
i,j

Zje
2

4πε0|r⃗i−R⃗j |
, kde proměnné m, r⃗i, p⃗i značí hmotnost, po-

lohy a hybnosti elektronů a proměnné Mj , Zj , R⃗j , P⃗j značí hmotnosti, atomové číslo, polohy a hybnosti
jader. Atomové číslo udává počet protonů (elektronů) daného neutrálního atomu.

6Nizozemský fyzik Pieter Zeeman získal za popis štěpení energetických hladin v magnetickém poli Nobelovu cenu za
fyziku v roce 1902.
7Wolfgang Pauli za formulaci vylučovacího principu získal Nobelovu cenu za fyziku v roce 1945.
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Celý systém popíšeme hamiltoniánem, který je součtem všech zmíněných členů,

H =
∑
i

p2i
2m

+
1

2

′∑
i,i′

e2

4πε0|r⃗i − r⃗i′ |
+
∑
j

P 2
j

2Mj
+

1

2

′∑
j,j′

ZjZj′e
2

4πε0|R⃗j − R⃗j′ |
−
∑
i,j

Zje
2

4πε0|r⃗i − R⃗j |
. (1.5)

Problém takového počtu interagujících částic nelze řešit a ani by to nemělo smysl. Z pohledu klasického
pozorovatele nás stejně budou zajímat makroskopické parametry, jako je třeba vodivost daného vzorku.
Je třeba provést zjednodušení daného řešeného problému.

0) Rozdělení elektronů na valenční a vnitřní slupky
Nulté zjednodušení můžeme provést tak, že rozdělíme elektrony na valenční, které vstupují například
do vazeb v látce, a na elektrony v uzavřených orbitalech. Pro křemík jsou uzavřené orbitaly elektronové
slupky 1s2, 2s2, 2p6. Tyto elektrony jsou lokalizované u jader a nemění se během procesu krystalizace.
Od této chvíle budeme proto používat indexy i pouze pro elektrony ve valenční slupce, protože prostorové
rozložení těchto elektronů se během krystalizace mění. Pro křemík jsou to elektrony ve slupkách 3s a 3p,
valence křemíku je Z∗ = 4. Jádro s elektrony v uzavřených orbitalech budeme považovat za fixní iont.

1) Bornova-Oppenheimerova8 aproximace (adiabatická aproximace)
Hmotnost elektronu je o tři řády menší než hmotnost protonu. Proto elektrony mohou reagovat na změnu
polohy jader prakticky okamžitě. To umožňuje použít pro elektrony aproximaci, kdy se polohy jader berou
jako stacionární. Naproti tomu atomová jádra nemohou sledovat pohyb elektronů a vidí tedy pouze časově
zprůměrovaný adiabatický elektronový potenciál. Takže hamiltonián lze přepsat následovně

H = HJ(R⃗j) +He(r⃗i, R⃗j0) +He−J(r⃗i, δR⃗j), (1.6)

kde HJ popisuje pohyb iontů v poli samotných iontů plus průměrný adiabatický potenciál elektronů. He

značí hamiltonián elektronů s ionty zamrzlými na stacionárních polohách R⃗j0. Konečně He−J popisuje
změny energie elektronů při posunu jader z jejich rovnovážné polohy o δR⃗j . Tento člen odpovídá za
elektron-fononovou interakci, která se bude diskutovat až v pozdějších kapitolách.

Elektronový hamiltonián má tedy tvar

He =
∑
i

p2i
2m

+
1

2

′∑
i,i′

e2

4πε0|r⃗i − r⃗i′ |
−
∑
i,j

Z∗
j e

2

4πε0|r⃗i − R⃗j0|
(1.7)

2) Aproximace středního pole (jedno-elektronová aproximace)
V této aproximaci předpokládáme, že každý elektron cítí stejný střední potenciál V (r⃗). Schrödingerova
rovnice, která popisuje pohyb libovolného zvoleného elektronu v pevné látce, bude mít následující tvar

H1eφn(r⃗) =

(
p2

2m
+ V (r⃗)

)
φn(r⃗) = Enφn(r⃗), (1.8)

kde φn označuje vlnovou funkci jednoho elektronu.

Řešení jedno-elektronové Schrödingerovy rovnice spočívá ve dvou krocích. V prvním kroku se spočítá
elektronový potenciál V (r⃗). Ve druhém kroku se nalezne řešení Schrödingerovy rovnice, takto získáme
spektrum energetických hladin a vypočítáme obsazení těchto hladin elektrony. Každá energetická hladina
může být obsazena pouze dvěma elektrony s opačným spinem, díky Pauliho vylučovacímu principu.

1.3 Krystalová mřížka

Krystal je periodické uspořádání atomů, které je pravidelné na velkou vzdálenost. Krystalová struk-
tura je definována pomocí mřížky a báze atomů v každé její elementární buňce. (PO. 1.1: Periodická
tabulka)

Krystal se dá chápat jako periodické opakování jedné elementární buňky, která je daná třemi elemen-
tárními translačními vektory a⃗1, a⃗2, a⃗3. Objem elementární buňky označíme Vc = |⃗a1 · a⃗2× a⃗3|. Primitivní
8Robert Oppenheimer byl šéfem projektu Manhattan, který se v Los Alamos věnoval vojenskému výzkumu jaderných

reakcí. Dne 16.7. 1945 zde provedli první pokusný výbuch atomové bomby Trinity.
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buňka je elementární buňka s nejmenším objemem. Pro kubické krystaly se často místo primitivní buňky
používá buňka elementární, jejíž objem je celistvým násobkem objemu primitivní buňky.
(PO. 1.2: Kubické SC, BCC, FCC)

Obrázek 1.3 ukazuje elementární buňku jednoduché kubické mřížky (SC) soli CsCl. Jednotlivé mříž-
kové body jsou červeně zobrazené atomy chlóru. Tyto mřížkové body jsou v prostoru vzdáleny vždy o
celočíselný násobek elementárních translačních vektorů. Bázi tohoto krystalu tvoří dvojice atomů (Cs-Cl),
kde atom cesia je posunutý vůči atomu chlóru o polovinu tělesové úhlopříčky. Abychom správně popsali
celý krystal, musíme jednotlivé atomy báze umístit přesně stejně do všech elementárních buněk mřížky.

Volba elementární buňky krystalu není jednoznačná, proto se někdy zavádí Wignerova-Seitzova bu-
ňka9, jejíž definice již jednoznačná je. V obr. 1.3 bychom si Wignerovu-Seitzovu buňku mohli zakreslit
jako prostor, ve kterém je v každém bodě zvolený počáteční atom chloru (červený) blíže, než kterýkoliv
jiný atom chloru. Přestože takto definovaná buňka dobře odráží symetrii krystalu, moc se nepoužívá.
K její definici se ale dostaneme v kapitole o difrakci (kap. 3).

a3

a2

a1
Cl

Cs

Obr. 1.3: Elementární buňka a ele-
mentární translační vektory v mřížce
soli CsCl. Elementární a současně pri-
mitivní buňka je jednoduchá kubická.
Bázi tvoří dva atomy. Celý krystal lze
vytvořit opakováním této elementární
buňky.

1.4 Sedm krystalografických soustav

Tabulka 1.1 shrnuje 7 krystalografických soustav. Mřížky v některých soustavách mají několik variant,
takže započtením všech variant dostaneme 14 Bravaisových mřížek, které popisují všechny možné varianty
uspořádání pravidelného třírozměrného krystalu. U kubické mřížky se tři varianty mřížky často značí jako:
prostá mřížka (P = SC), prostorově centrovaná (I = BCC) a plošně centrovaná (F = FCC). U ortorombické
a monoklinické mřížky je ještě navíc bazálně centrovaná varianta (C).
(PO. 1.3: 14 Bravaisových mřížek, 7 skupin)

Tab. 1.1: Parametry čtrnácti typů prostorových mřížek v sedmi krystalografických soustavách včetně ve-
likostí stran a úhlů elementárního rovnoběžnostěnu. U kubické mřížky budeme používat anglické zkratky
typů mřížek: prostá mřížka (P = SC), prostorově centrovaná (I = BCC) a plošně centrovaná (F = FCC).

Soustava Alternativní Počet jednotlivé strany úhly
český název mřížek typy a, b, c α, β, γ

kubická krychlová 3 P, I, F a 90◦

tetragonální čtverečná 2 P, I a, a, c 90◦

ortorombická kosočtverečná 4 P, C, I, F a, b, c 90◦

trigonální klencová 1 P a α

hexagonální šesterečná 1 P a, a, c 90◦, 90◦, 120◦

monoklinická jednoklonná 2 P, C a, b, c 90◦, β, 90◦

triklinická trojklonná 1 P a, b, c α, β, γ

9Eugene Paul Wigner je nositelem Nobelovy ceny za fyziku z roku 1963. Frederick Seitz byl jeho Ph.D. student na
Princetonské univerzitě
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1.5 Operace symetrie

Definice operace symetrie: Operace symetrie krystalu je transformací, která vede na stav
krystalu, který je fyzikálně nerozlišitelný od výchozího stavu.

Jak již bylo řečeno, krystal můžeme zobrazit prostým opakováním jeho elementární buňky. Elemen-
tární buňka je tedy taková stavební cihlička a jejím opakováním poskládáme celý krystal. Proto je první
operací symetrie ideálního nekonečného krystalu operace mřížkové translace daná vektorem mřížkové
translace T⃗ = ha⃗1 + ka⃗2 + la⃗3, kde {h, k, l} jsou celá čísla. Navíc samotná elementární buňka může mít
některé prvky symetrie podobně jako třeba molekuly. Tyto prvky symetrie se označují jako operace bo-
dové symetrie. Všechny operace bodové symetrie nechávají na místě jeden význačný bod. U molekul je
to těžiště, u krystalu to může být jeden atom nebo nějaký bod vyšší symetrie elementární buňky. Třetí
skupinu symetrie, která je typická pouze pro složitější krystaly, jsou potom ještě složitější operace, jako
je např. posunutí se současným pootočením. Tuto symetrii má uspořádání atomů do šroubovice. V tomto
textu se budeme věnovat pouze prvním dvěma typům symetrie, t.j. bodové a translační symetrii.

1.5.1 Prvky bodové grupy symetrie

V této kapitole se budeme věnovat pouze bodové symetrii. K bodovým prvkům symetrie patří rotace,
zrcadlení a jejich různé kombinace. Přestože atomy v mřížce neustále kmitají, pro popis symetrie nás
zajímají pouze rovnovážné pozice atomů. Následující seznam obsahuje všechny typy prvků bodové syme-
trie:

Î ⇒ identita,
Ĉn ⇒ n-četná osa rotace,
σ̂ ⇒ zrcadlení (podle roviny σ̂h horizontální, σ̂v vertikální, σ̂d diagonální),
Ŝn ⇒ n-četná osa rotace se zrcadlením podle roviny kolmé k ose,
î ⇒ inverze.

(PO. 1.4: Zobrazení prvků symetrie)

Uveďme několik jednoduchých příkladů. Osa nejvyšší symetrie Ĉn se obvykle značí jako svislá osa ẑ.
Úhel rotace kolem této osy činí 2π/n. Pokud provedeme tuto operaci rotace m−krát, značí se výsledná
operace jako Ĉn

m
. Z toho plyne, že pokud provedeme tuto rotaci n-krát, otočíme se o 360◦ (Ĉn

n
= Î).

Zrcadlení v horizontální rovině se značí σ̂h. Operace nevlastní osy rotace lze zapsat jako rotaci a poté
zrcadlení v rovině kolmé na osu rotace (Ŝn = σ̂⊥Ĉn). Na tomto zápisu je patrné, že operace symetrie se
provádí zprava doleva. Pokud operátor symetrie působí na nějakou funkci, která se zapíše úplně vpravo,
budou se jednotlivé operace provádět postupně právě v tomto pořadí směrem od této funkce. Je to
podobné jako pořadí provádění derivací funkce. Pomocí uvedeného popisu můžeme nyní zapsat následující
dvě identity a) pro zrcadlení σ̂ = Ŝ1, b) pro inverzi î = Ŝ2.

Kubická

Tetragonální

Ortorombická

Jednoklonná

Trojklonná

Trigonální

Hexagonální

Obr. 1.4: Diagram hierarchie symetrie jednotlivých
krystalových soustav. Zvolená krystalová soustava
obsahuje všechny prvky symetrie nižších soustav, t.j.
těch, ke kterým se lze dostat ve směru šipek.

Podle počtu všech prvků symetrie lze sedm Bravaisových krystalových soustav uspořádat do diagramu
podle obr. 1.4. Nejméně prvků symetrie má trojklonná soustava (může mít pouze jediný prvek, identitu).
Naopak nejsymetričtější soustava je kubická mřížka. Pro detailnější výklad krystalových symetrií lze
doporučit knihy [5, 14]. Jako cvičení hledání prvků symetrie zadaného objektu se doporučuje si najít
všechny operace bodové grupy symetrie např. krychle. Těchto 48 prvků symetrie krychle je zakresleno
v obr. 1.5. Symetrii krychle se věnuje též př. 1.1 na konci této kapitoly.
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Všechny operace bodové symetrie daného krystalu tvoří grupu. Grupová teorie je rigorózní matema-
tická disciplína, která se probírá v rámci přednášek matematické algebry. Na tomto místě nejsou uvedeny
detaily této teorie, ale stojí za to zopakovat základní vlastnosti grupy.

Definice: Grupa G je množina prvků {a, b, c, . . .}, pro které je definována operace násobení libovolných
dvou prvků. Tato operace musí podle definice splňovat čtyři vlastnosti:

Uzavřenost: Výsledek násobení dvou prvků grupy G, c = ab, je opět prvek grupy G.
Asociativnost: Pro libovolné tři prvky a, b, c platí: (ab)c = a(bc).
Identita: Grupa musí obsahovat identitu I, pro kterou platí xI = x pro libovolný prvek x z grupy G.
Inverzní prvek: Ke každému prvku grupy x existuje inverzní prvek x−1 splňující podmínku: x−1x = I.

3C2, 6C4, 6S4 6C’2 8C3, 8S6

3 h 6 d

Obr. 1.5: Operace symetrie krychle: horní řádek osy symetrie, spodní řádek roviny symetrie. Jednotlivé
sloupce odpovídají prvkům symetrie ve směru os [000], [110] a [111]. Nad jednotlivými krychlemi jsou
výčty odpovídajících prvků symetrie, např. 6S4 zahrnuje operace S4 a S−4 podle tří zobrazených os.

1.6 Indexy krystalových rovin

Libovolnou rovinu lze zadat třemi body, které neleží na přímce. Můžeme zadat průsečíky této roviny
s osami mřížky vyjádřené prostřednictvím mřížkových konstant, např. {3, 2, 2} pro obr. 1.6. Převrácenou
hodnotu těchto čísel převedeme na celá čísla se stejným poměrem: ( 13

1
2
1
2 )→

1
6 (233). Odpovídající rovina

se označí (233), všechny roviny k ní rovnoběžné označujeme jako ekvivalentní roviny {233}.

Millerovy indexy ⇒ Konvence pro označení směrů a
rovin v krystalografii:

Notace Význam
(hkl) rovina
{hkl} ekvivalentní rovina
[hkl] směr
⟨hkl⟩ ekvivalentní směr

(PO. 1.5: Indexy rovin čtvercové mřížky),
(PO. 1.6: Indexy rovin v kubické mřížce).

Obr. 1.6: Rovina ekvivalentní s rovinou (233).

Pokud chceme zadat nějaký symetrický směr v krystalu, můžeme k tomu použít translační vek-
tor, který je celočíselnou lineární kombinací elementárních translačních vektorů, T⃗ = ha⃗1 + ka⃗2 + la⃗3.
Pro zjednodušení zápisu se tento směr zapisuje jako trojice čísel v hranatých závorkách [hkl]. Všechny
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ekvivalentní směry, které jsou ekvivalentní díky symetrii daného krystalu, označujeme ⟨hkl⟩. V případě
kubických krystalů platí, že rovina (hkl) je kolmá na směr [hkl]. Například normálu k rovině (233) je
směr [233]. To platí ale pouze u kubických krystalů. U jiných krystalových soustav toto obecně neplatí.

Takto zavedené značení směrů a rovin se v krystalografii nazývá Millerovy indexy10. Je třeba ještě
doplnit, že pokud je některé číslo v zápisu roviny či směru záporné zapisuje se znaménko mínus jako čárka
nad číslo. Jako příklad uveďme (110), [111], (PO. 1.6: Indexy rovin v kubické mřížce). Nakonec je
důležité ještě zdůraznit, že Millerovy indexy souvisí vždy s danou volbou elementárních translačních
vektorů a⃗1, a⃗2, a⃗3. Pokud si zvolíme sadu jiných vektorů, budou mít zkoumané směry a roviny v krystalu
odlišné indexy.

Polovodičové součástky se velmi často vyrábějí litograficky na substrátu křemíku. Protože krystal se
štípe podél rovin symetrie, byla zavedena jednotná syntaxe pro orientaci substrátů s různou orientací
krystalových os. Značení krystalů ve formě kruhových destiček se provádí pomocí odlomení primární a
sekundární úseče na kraji destičky. Směr lomu odpovídá příslušné rovině symetrie. Jako příklad je uvedeno
značení křemíkových substrátů (PO. 1.7: Křemíkové substráty).

1.7 Jednoduché krystalové struktury

Soli:
CsCl – SC, bázi tvoří jeden atom Cs a jeden atom Cl posunutý o 1/2 tělesové úhlopříčky.
NaCl – FCC s bází s jedním atomem Na a jedním Cl posunutým o 1/2 tělesové úhlopříčky.

Kovy:
HCP – hexagonální struktura s nejtěsnějším uspořádáním (Mg, Ti, Zn, Cd).
FCC – kubická struktura s nejtěsnějším uspořádáním (Al, Cu, Ag, Au).
BCC – kubická struktura s méně těsným uspořádáním (Li, Na, K).
Nejlepší zaplnění prostoru koulemi (p = 74 %) splňují struktury HCP a FCC.
BCC struktura má koeficient zaplnění prostoru koulemi o něco menší (p = 68 %).

Obr. 1.7: Struktura koordinačních vazeb ve sfaleritu jako např.
GaAs. Červeně jsou zakresleny atomy galia a modře arsenu.

Polovodiče IV skupiny:
Diamant – kubický FCC, koordinační uspořádání vazeb (C, Si, Ge, Sn).

Polovodiče III-V:
Sfalerit – kubický jako diamant, ale střídají se dva atomy (GaAs, ZnS, CuCl, InAs), viz obr. 1.7.

Polovodiče II-VI:
Wurtzit – hexagonální struktura (ZnS, ZnO, ZnSe, CdSe).

(PO. 1.8: Obrázek nejtěsnějšího uspořádávání koulí v prostoru),
(PO. 1.9: Příklady uspořádání krystalů typických solí),
(PO. 1.10: Příklady uspořádání krystalů kovů).

10Indexy jsou pojmenované podle britského mineraloga Williama Hallowese Millera (1801-80). Přestože byly tyto indexy
navrženy ještě dříve jinými mineralogy, označují se podle Millera, protože ve své knize Treatise on Crystallography (1839)
vysvětlil jejich zavedení.
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PO. 1.1: Krystalová struktura prvků. Každé políčko obsahuje chemickou značku prvku, krystalovou
soustavu a mřížkové parametry a, případně c. Parametry jsou uvedeny v Å (1 Å=10−10 m). Prvky
stejné krystalové soustavy mají políčko podbarvené stejným barevným odstínem, označení soustav je
shrnuto v tab. 1.1, navíc diam. označuje diamantovou strukturu a cmplx. neperiodické mřížky. Data

byla převzata z [2].
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FCC, Cu diamant, GaAs

SC BCC, Fe

PO. 1.2: Kubické krystalové struktury.
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PO. 1.3: Čtrnáct Bravaisových krystalografických mřížek. Převzato z [4].
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PO. 1.4: Zobrazení operací symetrie: 2-, 3-, 4-, 6-tičetná osa a zrcadlení. Převzato z [5].

a

a

PO. 1.5: Ukázka krystalových rovin ve 2D čtvercové mřížce.
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PO. 1.6: Millerovy indexy rovin v kubické mřížce. Převzato z webu WIKIPEDIA:
http://en.wikipedia.org/wiki/Miller_index
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(100) Si
p-typ

[011]

[011]

(100) Si
n-typ

[011]

[011]

(111) Si
p-typ

[110]

[112]

(111) Si
n-typ

[110]

[011]

Si monokrystal

PO. 1.7: Příklady značení orientace krystalografických os u křemíkových substrátů.

Křemík se uměle vyrábí Czochralského metodou růstu. Polský chemik Jan Czochralski objevil tuto
metodu již v roce 1916. Při této metodě se precizně orientovaný primární krystal zanoří do taveniny
křemíku. Tento primární krystal se potom velmi pomalu vytahuje z taveniny (10–100 mm za hodinu) a
na jeho povrchu dochází ke krystalizaci. Touto metodou se dá vypěstovat monokrystal ve tvaru dlouhého
válce, viz fotografie vlevo převzatá z webu WIKIPEDIA:
http://en.wikipedia.org/wiki/Czochralski_process

Monokrystalický válec se rozřeže podélně na tenké destičky (substráty), které se brousí a leští.
Tyto substráty se pak používají pro litografickou výrobu polovodičových součástek. Protože je substrát
tenká destička pravidelného krystalu, štípe se při ohybu podle rovin vyšší symetrie. Odštípnutím jedné
nebo dvou úsečí z kruhového substrátu se provádí označení typu krystalu. Pokud jsou např. primární a
sekundární úseče provedeny kolmo na sebe, jedná se o krystal, který rostl ve směru [100] a jde o křemík
s dopováním na p-typ.
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’1’

’121’
HCP

’12’

’123’
FCC

PO. 1.8: Geometrie nejtěsnějšího uspořádání koulí vedoucí na kubickou strukturu FCC (123123123,
kolmo z obrázku vystupuje osa [111]), nebo hexagonální HCP (121212, kolmo z obrázku vystupuje

6-tičetná osa C6).
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PO. 1.9: Příklady prostorového uspořádání atomů typických solí: a) až c) kubické mřížky, d)
hexagonální mřížka s osou shora dolů. V obrázku a) jsou zobrazeny elektronové obaly, v obrázku b) jsou
zobrazena atomární jádra. U obrázků c) a d) jsou zobrazeny směrové vazby. 3D modely těchto krystalů
si lze vytvořit a prohlédnout pomocí programu z webu OpenRasMol: http://www.rasmol.org/
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PO. 1.10: Příklady prostorového uspořádání atomů kovů. Všechny mřížky jsou kubické. a) až c) jsou
mřížky s těsnějším uspořádáním, d) mřížka SC je méně obvyklá.
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1.8 Příklady

Př. 1.1: Symetrie krychle: Napište 48 operací symetrie krychle Oh a načrtněte příklady prvků
symetrie do obrázku krychle.

Nápověda:
Oh = { I, 3C2(100), 6C4(100), 6C ′

2(110), 8C3(111),
i, 3σh(200), 6S4(100), 6σd(110), 8S6(111)}.

Př. 1.2: Symetrie tetraedru: Symetrie čtyřstěnu odpovídá symetrii krychle ale bez operace inverze.
Celkový počet prvků symetrie je tedy poloviční. Napište 24 operací symetrie tetraedru Td.

Nápověda: Td = {I, 3C2(100), 6S4(100), 6σd(110), 8C3(111)}.

Př. 1.3: Symetrie krystalu: Napište operace symetrie ortorombické (kosočtverečné) krystalové sou-
stavy, D2h neboli mmm. Navíc sestavte matice transformující souřadnice R⃗′ =

←→
T R⃗.

Nápověda: D2h = {I, C2(x), C2(y), C2(z), i, σxy, σxz, σyz}.

Cmn (z) =

 cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 , α =
2πm

n

σv =

 cos(2β) sin(2β) 0

sin(2β) − cos(2β) 0

0 0 1

 , σh =

 1 0 0

0 1 0

0 0 −1

 .

Př. 1.4: Tetraedrické úhly: Úhly mezi tetraedrickými vazbami v diamantu jsou stejné jako úhly
sevřené tělesovými úhlopříčkami krychle, viz obr. 1.8. Užitím elementární vektorové analýzy spočítejte
velikost tohoto úhlu. Kittel, str. 49, př. 1

Diamant

Obr. 1.8: Schéma prostorového uspořádání tetraedru v krychli.

Př. 1.5: Bohrův model atomu vodíku: Postupujte podle semi-klasického planetárního modelu atomu
vodíku popsaného v sekci 1.1.1. Odvoďte vztahy pro Bohrův poloměr aB (1.2) a pro energii jeden Rydberg
(1.3), které počítají tyto parametry vodíku pomocí elementárních konstant elektronu.

Nápověda: Je nutné použít rovnováhu sil při kruhovém pohybu elektronu a kvantovací podmínku.

Př. 1.6: Elektronová 1s funkce atomu vodíku: Základní stav atomu vodíku je daný 1s funkcí ato-
márního orbitalu (1.4). Ukažte, že: a) tato vlnová funkce je normovaná, b) nejpravděpodobnější vzdálenost
elektronu od protonu (jádra atomu vodíku) je Bohrův poloměr aB.

Nápověda: a) Pravděpodobnost výskytu elektronu (n(r) = |ψ1s(r)|2) v celém prostoru je rovna jedné.
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Integrací per-partes ukažte, že
∞∫
0

4πr2 dr e−2r/aB = πa3B.

b) Pravděpodobnost výskytu elektronu ve vzdálenosti r je daná n(r), množství bodů s touto vzdáleností
je 4πr2. Maximum pravděpodobnosti je dané podmínkou

d

dr
(4πr2 e−2r/aB) = 0.

Z této podmínky přímo dostaneme rmax = aB.

Př. 1.7: Indexy rovin: V mřížce FCC uvažujte roviny (100) a (001). Indexy se vztahují k Bravaisově
elementární kubické buňce. Jaké indexy mají tyto roviny vzhledem k translačním vektorům primitivní
buňky a⃗′1, a⃗

′
2, a⃗

′
3 podle obr. 1.9. Kittel, str. 49, př. 2

a1

a2

a3

a1’

a2’a3’

Obr. 1.9: Schéma prostorového uspořádání vektorů primitivní buňky FCC.

Př. 1.8: Koeficient zaplnění: Vypočítejte koeficient zaplnění prostoru tuhými koulemi v geometrickém
uspořádání daném základními mřížkami

SC: π/6 = 52 %,
BCC:

√
3π/8 = 68 %,

FCC=HCP:
√
2π/6 = 74 %,

diamant:
√
3π/16 = 34 %.

Př. 1.9: Optimální HCP mřížka: V přiblížení nejtěsnějšího uspořádání koulí HCP spočítejte poměr
výšky a základny elementárního šestihranu c/a. (Pokud je v reálném krystalu tento poměr výrazně větší,
můžeme krystal pokládat za složený z těsně uspořádaných rovin, které jsou na sebe volně vrstveny.)
Kittel, str. 49, př. 3

Nápověda: Výška c je dvojnásobkem vzdálenosti vrstev koulí nad sebou, strana základny a je rovna
průměru koulí.

Řešení: c/a =
√

8/3 ≈ 1.633.

Př. 1.10: Rekrystalizace železa: Železo krystalizuje při teplotě T < 910◦C v BCC mřížce. Při vyšší
teplotě krystalizuje v FCC mřížce. Z geometrie uspořádání určete, jaký je poměr hustot těchto různých
krystalů železa. Výpočet proveďte za předpokladu, že atomy železa jsou tuhé koule o poloměru r.

Řešení:
ρFCC
ρBCC

=
4

3

√
2

3
= 1.09
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Př. 1.11: Krystaly solí: Pro krystaly GaAs, CaF2 načrtněte elementární buňku, určete o jakou krys-
talovou strukturu jde a jaké jsou vektory primitivní buňky a⃗i, i = 1, 2, 3.

Řešení: GaAs (sfalerit): polohy prvků – Ga na (0, 0, 0), As na a
4 (1, 1, 1). Elementární buňka je kubická

FCC s 4 atomy Ga a 4 atomy As.
CaF2 (sfalerit): polohy prvků – Ca na (0, 0, 0), F na a

4 (1, 1, 1) a na
3a
4 (1, 1, 1). Elementární buňka je

kubická FCC s 4 atomy Ca a 8 atomy F.

Př. 1.12: Křemíkové substráty: Pomocí vektorové algebry dopište do obr. 1.10 označení chybějících
směrů, podle kterých se dělají typické zlomy křemíkových substrátů.

Obr. 1.10: Nákres křemíkového substrátu se
směrem růstu (111). Červeně označené směry,
které odpovídají kubickým osám x̂, ŷ a ẑ,
směřují mírně dopředu. Na obvodu substrátu
je provedeno 12 symetrických zlomů.

[010][100]

[001]

[110](111) Si

Př. 1.13: De Broglieho vlnová délka: S využitím de Broglieho vztahu spočítejte vlnovou délku pro
uvedené částice v angstromech: a) kuličku o hmotnosti 0.01 g s rychlosti 10m/s; b) elektron s energií
10 eV.

Řešení: 10−19 Å, 4 Å
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Tato kapitola je věnována odkazu doc. Jaroslava Pantoflíčka, který je
autorem této kresby. Originální pozice: 50◦4’10.193”N, 14◦25’41.561”E.
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Kapitola 2

Grupová teorie pevných látek
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V této kapitole si podrobně probereme, jak se dá matematický aparát grupové teorie aplikovat na
bodovou symetrii krystalu. K tomuto tématu je možné najít velké množství různých výukových textů
[16, 17]. Nicméně pro nezasvěceného čtenáře může být jejich čtení obtížné. Zkusme to tedy shrnout v
této kapitole. Zopakujme si všechny možné prvky bodové grupy symetrie krystalu:

I ⇒ identita,
Cn ⇒ n-četná osa rotace,
σ ⇒ zrcadlení (podle roviny σh horizontální, σv vertikální, σd diagonální),
Sn ⇒ n-četná osa rotace se zrcadlením podle roviny kolmé k ose,
i ⇒ inverze.

Kdybychom chtěli zapsat operátory těchto uvedených operací symetrie, pouze bychom nad značky
operace přidali operátorovou stříšku, např. Î nebo Ĉn. Pokud bychom grupovou teorii aplikovali na
molekulu, je zřejmé, že všechny prvky dané grupy symetrie, G = {a, b, c, . . .}, musí zachovávat nehybný
jedem bod prostoru. V tomto bodu se musí protínat všechny operace symetrie a tímto bodem je těžiště.
Také u krystalu musí mít všechny prvky symetrie jeden společný bod, ale prvky symetrie se aplikují na
elementární buňku daného krystalu.

U molekul i krystalů má symetrie několik důležitých důsledků, které se hojně používají. A) Dipólový
moment molekuly může být jen ve směru symetrické osy Cn. Molekula smí mít rovinu zrcadlení, ale pouze

29



vertikální σv ve které leží osa symetrie. Jiné operace mít nesmí. B) Materiál, který má být opticky aktivní
(chirální) nesmí mít inverzi i, ani žádné zrcadlení σ a tedy ani žádnou osu se zrcadlením Sn. Chirální
materiály jsou totiž schopny stáčet rovinu polarizace procházejícího světla a dělí se proto vždy na dvě
chirální varianty, které se označují jako levotočivá a pravotočivá.

2.1 Grupa prvků bodové symetrie

To, jaká je souvislost mezi jednotlivými prvky dané grupy symetrie, se dá shrnout pomocí multiplikační
tabulky. Ta nám ukazuje výsledek násobení libovolných dvou prvků této grup. Jako příklad zvolíme
molekulu amoniaku NH3. Molekula amoniaku není rovinná, ale vypadá jako trojnožka namalovaná na
obr. 2.1. Multiplikační tabulka této molekuly je zapsaná v tab. 2.1. Protože grupa je uzavřená vůči operaci
násobení, musí být každý řádek nebo sloupec této tabulky permutací všech prvků grupy. Z toho plyne,
že v multiplikační tabulce je v každém řádku/sloupci každý prvek právě jednou. Tvrzení této věty lze
dokázat jednoduše sporem.

x

y

c

ba
C3

a) b) c)

Obr. 2.1: Molekula amoniaku NH3, převzato z webu Wikipedie.

C3v I C3 C2
3 a b c

I I C3 C2
3 a b c

C3 C3 C2
3 I c a b

C2
3 C2

3 I C3 b c a

a a b c I C3 C2
3

b b c a C2
3 I C3

c c a b C3 C2
3 I

Tab. 2.1: Multiplikační tabulka pro molekulu
NH3, která má symetrii C3v. Pro zjednodu-
šení jsou roviny symetrie {σa, σb, σc} zapsány
pouze indexem {a, b, c}.
Pro symetrii D3 by byl rozdíl pouze v tom,
že symboly {a, b, c} by znamenaly dvojčetné
osy rotace kolmé na hlavní osu symetrie
{C2a, C2b, C2c}.

Počet prvků grupy definuje řád grupy (h). Grupa popsaná v tab. 2.1 má řád h = 6. Prvky grupy
dělíme do tříd vzájemně sdružených (konjugovaných) prvků. Počet tříd budeme označovat písmenem
t. Prvky a a b jsou sdružené, pokud v dané grupě existuje prvek x s jehož použitím můžeme zapsat
podobnostní transformaci:

a = x−1bx. (2.1)

Pro zjištění, které prvky jsou spolu sdružené, použijeme podobnostní transformaci na všechny prvky
grupy C3v. Výsledek je zapsaný v tab. 2.2.

C3v I C3 C2
3 a b c

I I C3 C2
3 a b c

C3 I C3 C2
3 b c a

C2
3 I C3 C2

3 c a b

a I C2
3 C3 a c b

b I C2
3 C3 c b a

c I C2
3 C3 b a c

Tab. 2.2: Všechny podobnostní transformace
prvků grupy C3v. Např. na řádku a ve sloupci
b je uveden výsledek podobnostní transfor-
mace aba−1 = c.

Sdruženost prvků je vzájemná a tranzitivní vlastnost. To znamená, že v rámci třídy jsou prvky
sdružené každý s každým. Z definice tříd a z tab. 2.2 je zřejmé, že grupa C3v má 3 třídy (t = 3). První
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třída má pouze jeden prvek a tím je identita I. Druhá třída má dva prvky, kterými jsou rotace C3 a C2
3 .

Třetí třídu tvoří tři operace zrcadlení {σa, σb, σc}.

Pro porovnávání různých grup se zavádí vztah izomorfie. Dvě grupy (Gi,Gj), které mají stejné mul-
tiplikační tabulky jsou vzájemně izomorfní. Každému prvku ai z první grupy odpovídá ekvivalentní prvek
aj z druhé grupy. Přitom se mohou některé prvky u obou grup různit, nicméně identitě bude určitě od-
povídat identita. Izomorfní jsou tedy například grupy D3 a C3v, pro které je shoda multiplikační tabulky
patrná z tab. 2.1.

2.1.1 Abelovské grupy

Grupa G se nazývá abelovská neboli komutativní, pokud pro libovolné dva prvky a, b této grupy platí
rovnost ab = ba. Dá se ukázat, že všechny grupy do řádu čtyři (h ≤ 4) jsou abelovské neboli komutativní.
Tato úloha se řeší v příkladu 2.3. Abelovy grupy mají jednu zajímavou vlastnost, totiž že každý prvek
této grupy má svou vlastní třídu, musí tedy pro ně platit t = h.

2.1.2 Vlastnosti tříd prvků libovolné grupy

Vlastnosti tříd lze shrnout do tří základních tvrzení.

Věta 2.1.1 Každá třída je jednoznačně určená svým libovolným prvkem.

Věta 2.1.2 Grupa je sjednocením tříd konjugovaných prvků, kde tyto třídy jsou neprázdné a navzájem
disjunktní.

Prostě každý prvek grupy patří právě do jedné třídy. Grupa je jako škola s žáky, kde každý žák patří
právě do jedné třídy.

Věta 2.1.3 Počet prvků p každé třídy je dělitelem řádu grupy h.

Řád grupy C3v z tab. 2.1 je: h = 6. Číslo šest má tři dělitele {1, 2, 3}. Jak jsme si říkali, grupa C3v

má právě tří třídy, t = 3, s počty prvků v jednotlivých třídách právě {1, 2, 3}.

2.2 Reprezentace grupy

Soubor čtvercových matic dimenze (n × n), které se při provedení operace násobení chovají stejně jako
elementy dané grupy, definuje reprezentaci grupy. Operaci násobení prvků grupy zde představuje násobení
čtvercových matic. Číslo n určuje dimenzi této reprezentace. Mějme operaci symetrie a, reprezentací této
operace nechť je čtvercová matice D(a). Dimenze této reprezentace je n a všem prvkům grupy, do které
náleží a, musí být přiřazena stejně velká čtvercová matice. Zopakujme, že počet prvků grupy a tedy i
počet čtvercových matic reprezentace grupy se nazývá řád grupy a značí se písmenem h.

Uvažujme grupu G = {a, b, c, . . .}. Pro každý prvek teto grupy a k němu inverzní prvek musí platit, že
mají v libovolné reprezentaci k sobě navzájem inverzní matice. To lze zapsat pro jednu konkrétní operaci
takto, D(a−1) = [D(a)]−1. Dále musí platit, že operaci identita I musí v každé bázi odpovídat jednotková
matice. Jiná matice by totiž nesplnila definiční podmínku pro identitu: Ix = xI = x, ∀x ∈ G.

2.2.1 Reprezentace Γx

Tato reprezentace popisuje, jak se pomocí prvků symetrie mění polohový vektor x⃗ = (x1, x1, x1). Dimenze
této reprezentace je samozřejmě n = 3, neboť popisujeme zobecněnou rotaci vektoru ve 3D prostoru.
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Zapišme si tyto transformační matice pro naší oblíbenou grupu C3v.

I =

 1 0 0

0 1 0

0 0 1

 , C3 =

 −1/2 −
√
3/2 0√

3/2 −1/2 0

0 0 1

 , C2
3 =

 −1/2
√
3/2 0

−
√
3/2 −1/2 0

0 0 1

 ,

σa =

 1/2
√
3/2 0√

3/2 −1/2 0

0 0 1

 , σb =

 1/2 −
√
3/2 0

−
√
3/2 −1/2 0

0 0 1

 , σc =

 −1 0 0

0 1 0

0 0 1

 . (2.2)

Protože jde o matice transformace prostoru, která musí zachovávat skalární součin, mají tyto matice
vzájemně ortogonální řádky a sloupce. Provedeme-li skalární součin dvou různých řádků, dostaneme
nulu. Součin řádku sama se sebou dá jako výsledek jedničku. Pokud bychom označili prvky některé
z matic jako aij , potom můžeme zapsat vztah ortogonality jako aikajk = akiakj = δij . V tomto zápisu je
použito Einsteinovo sumační pravidlo. Sčítá se automaticky přes právě dvakrát uvedený index, což
výrazně zjednodušuje zápis skalárních součinů. Funkce δij je Kroneckerovo delta.

Jak je zřejmé, jsou matice (2.2) blokově diagonální. Tato reprezentace je tedy reducibilní a jednotlivé
bloky jsou samy o sobě ireducibilní reprezentací. Levý horní blok je dimenze 2 a pravý dolní je dimenze
1. Reducibilní reprezentaci Γx lze v tomto konkrétním případě zapsat jako direktní součet dvou neekvi-
valentních ireducibilních reprezentací (NIR), Γx = E ⊕A1. Abychom pochopili, co tento zápis znamená,
musíme postupně zavést některé termíny. Tak třeba reprezentace E, která je popsaná maticemi dimenze
2, se nazývá věrná reprezentace, neboť všechny operace mají různé matice. Naproti tomu reprezentace
A1 je tzv. úplně symetrická reprezentace (někdy označovaná též totálně symetrická), všechny operace
mají přiřazenou stejnou jedničku, a proto reprezentace A1 není věrná. Všechny operace násobení lze
v reprezentaci A1 zapsat jako výraz: 1 · 1 = 1.

S maticemi jakékoliv reprezentace grupy by se dalo různě točit. Nejsou tedy dané jednoznačně a
vlastně nás z pohledu symetrie ani nemusí zajímat konkrétní hodnoty jednotlivých prvků matice. Co je
ale při všech otočkách matice stále invariantní, je její stopa. Stopa matice D(a) proto určuje důležitou
vlastnost, která se nazývá charakter a značí se písmenem χ:

χ(a) = Tr(D(a)). (2.3)

Z definice je zřejmé, že charakter identity je roven dimenzi reprezentace (χ(I) = n). Dále platí, že cha-
raktery operací symetrie téže třídy musí být stejné (viz Věta 2.1.1). Proto pro charakterizaci grupy stačí
uvést charaktery všech neekvivalentních ireducibilních reprezentací (NIR). Tabulku charakterů grupy C3v

ukazuje tab. 2.3, viz také (PO. 2.1: Tabulky charakterů).

Tab. 2.3: Tabulka charakterů pro molekulu NH3,
která má symetrii C3v. Pro symetrii D3 by byl
rozdíl pouze v tom, že poslední sloupec by měl
nadpis 3C2. Poslední řádek k tabulce nepatří,
ukazuje charaktery reducibilní reprezentace.

C3v I 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Γx 3 0 1

2.2.2 Blokově diagonální reprezentace

Pokud bychom zvolili jinou soustavu os ve 3D, vyšly by nám jiné matice reprezentace než ty v rovnicích
(2.2). Vždy by však bylo možné najít transformační matici s stejného řádu právě tak, že by bylo možné
k blokově diagonálnímu tvaru přejít pomocí podobnostní transformace: a′ = s−1as. Pomocí stejné trans-
formační matice s bychom transformovali všechny matice všech operací grupy z nečárkované do čárkované
soustavy. Jednotlivé čtvercové bloky, vyříznuté z původních matic, představují NIR.

D(R) =


D(1) 0 · · · 0

0 D(2) · · · 0
...

...
. . .

...
0 0 · · · D(m)

 . (2.4)
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Tento rozpis znamená, že reprezentaci D(R) lze rozepsat do direktního součtu m NIR. Matematicky by
to bylo:

D(R) = D(1) ⊕D(2) ⊕ · · · ⊕ D(m).

Přitom platí, že některé ireducibilní reprezentace se mohou v rozepsaném zápisu vyskytovat vícekrát.

Povšimněme si, že výše uvedená podobnostní transformace, je totožná s transformací hledající sdru-
žené prvky (2.1). Z pohledu matic mají tedy všechny prvky sdružené do jedné třídy vzájemně ekvivalentní
matice.

Zopakujme zavedené značení. Reprezentace, které jsou svázané podobnostní transformací, jsou vzá-
jemně ekvivalentní a mají stejné charaktery. Reprezentace, mezi kterými neexistuje podobnostní transfor-
mace, jsou neekvivalentní. Reprezentace, kterou lze pomocí podobnostní transformace převést na blokově
diagonální, je reducibilní (redukovatelná). Každý blok odpovídá jedné ireducibilní (neredukovatelné) re-
prezentaci.

2.2.3 Věty pro neekvivalentní ireducibilní reprezentace

Abychom popsali symetrii grupy, stačí nalézt charaktery všech jejích NIR. Pro ně musí platit určité
zákonitosti, které si nyní popíšeme. Veškeré značení k tomu je shrnuto v obrázku (PO. 2.2: Popis
syntaxe grup symetrie).

Věta 2.2.1 Počet NIR grupy je roven počtu tříd t.

Například grupa C3v má 3 třídy, a proto bude mít i 3 NIR. Tabulka charakterů pro grupu je tedy čtverec
a konkrétně pro grupu C3v má rozměr 3× 3.

Věta 2.2.2 Součet čtverců dimenzí všech NIR dané grupy je roven řádu grupy h.

Jako příklad si vezmeme opět grupu C3v, která má řád h = 6. Je typické, že v tabulce charakterů odpovídá
první sloupec identitě a její charakter je roven dimenzi NIR. Stačí tedy sečíst čtverce čísel v prvním sloupci
a dostaneme řád grupy, 12 + 12 + 22 = 6.

Věta 2.2.3 Součet čtverců absolutních hodnot charakterů χ(R) všech prvků R grupy G v libovolné NIR
je roven řádu grupy h.

∑
R∈G

χ∗(R)χ(R) = h. (2.5)

Věta 2.2.4 Charaktery dvou libovolných NIR i a j splňují podmínku ortogonality.

Obě poslední věty lze zapsat pomocí jednoho matematického vztahu.

∑
R∈G

χ∗
i (R)χj(R) = hδij ,

t∑
k=1

pkχ
∗
i (R)χj(R) = hδij , (2.6)

kde i, j jsou indexu dvou reprezentací a δij je Kroneckerovo delta. Jako příklad si spočítáme skalární
součin dvou reprezentací A1 ·A2 pro grupu C3v. Výsledek je následující: 1 · 1 · 1+2 · 1 · 1+3 · 1 · (−1) = 0.
V tomto výpočtu jsme provedli sumaci přes třídy, které mají shodné charaktery a vynásobili součin
počtem prvků dané třídy pk. Použili jsme tedy zkrácený výpočet podle vztahu uvedeného v rámečku.

Věta 2.2.5 Splňují-li charaktery studované reprezentace podmínku (2.5), pak je tato reprezentace iredu-
cibilní.
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S použitím těchto pěti vět můžeme opustit jakoukoliv multiplikační tabulku, která obsahuje zbytečné
redundantní informace a přejít k tabulce charakterů, která je mnohem menší a obsahuje veškerou po-
třebnou informaci popisující symetrii dané grupy. Jako příklad si proveďte přepis multiplikační tabulky
(tab. 2.1) pro grupu C3v na tabulku charakterů. Výsledek si srovnejte s tab 2.3. Poslední řádek do tabulky
již nepatří, nicméně nám umožňuje spočítat rozklad reducibilní reprezentace Γx do NIR. K tomuto účelu
použijeme poslední větu této sekce, což je věta o rozkladu 2.2.6.

Věta 2.2.6 Kolikrát je konkrétní NIR i v nějaké reducibilní reprezentaci Γ je dané vztahem (2.7).

aiΓ =
1

h

∑
R∈G

χ∗
i (R)χΓ(R), aiΓ =

1

h

t∑
k=1

pkχ
∗
i (R)χΓ(R). (2.7)

Grupová teorie se s použitím známých tabulek charakterů snaží řešit tři stupně úloh:

1. Nalezení všech NIR dané grupy. Toto je možné si vyhledat pro danou G v tabulkách, které již dávno
zpracovali matematici.

2. Rozklad zadané reprezentace D do NIR. To souvisí s G a D. Výpočet se provede podle (2.7).

3. Využití získaného rozkladu k nalezení spektra hamiltoniánu. Neboť hamiltonián je invariantní vůči
operacím symetrie, lze najít řešení Schrödingerovy rovnice s využitím společných funkcí. Zde se již
promítá G, D a hamiltonián H.

2.3 Značení grup symetrie

Všech možných grup popisujících bodové symetrie molekul nebo krystalů je omezený počet. Typicky tyto
grupy dělíme na tři kategorie, kde krystaly mohou být pouze první dvě uvedené kategorie.

Grupy typu I jsou grupy rotací. Příkladem jsou {Cn, Cnv, Cnh, Sn, Dn, Dnd, Dnh}.

Grupy typu II jsou grupy vyšší symetrie. Příkladem uveďme {T, Td, Th, O,Oh, I, Ih}.

Grupy typu III jsou grupy s operací C∞, např. {C∞v, D∞h,Kh}. První dvě odpovídají lineárním mo-
lekulám a poslední je sféricky symetrická koule.

Pro určování bodové grupy symetrie zkoumané molekuly nebo krystalu a nalezení odpovídajícího
označení se používá vývojový diagram uvedený jako úvodní obrázek této kapitoly. Přiřazení jednotlivých
krystalografických soustav ke grupám symetrie s odpovídajícím označením ukazuje tabulka na konci ka-
pitoly: (PO. 2.3: Symetrie krystalografických soustav).

2.3.1 Mullikenova domluva o značení NIR

Robert S. Mulliken byl americký fyzik a chemik, který se věnoval vývoji teorie molekulárních orbitalů a
získal za svou práci Nobelovu cenu za chemii v roce 1966. Pro sjednocení značení různých NIR zavedl
následující pravidla pro volbu písmena a indexů [18]. Uvedený článek je velmi podrobný, ale zajímavý
je i tím, že u něj při tisku omylem zapomněli uvést jméno autora. Jméno bylo doplněno až v Erratu
k tomuto článku. Z Mullikenova názvosloví vybereme jen pět hlavních bodů, což bude pro náš základní
náhled stačit1.

1. Písmeno je podle dimenze reprezentace n,

n 1 2 3 4 5
znak A,B E F, T G H

1http://www.pci.tu-bs.de/aggericke/PC4e/Kap_IV/Mulliken.html
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2. Volba písmena u 1D se provede podle symetrie Cn v ose nejvyššího řádu, která se bere jako svislá
osa,

χ(Cn) =

{
+1, A

−1, B

3. Horní index je podle horizontální roviny σh kolmé na svislou osu, např. pro A,

χ(σh) =

{
+1, A′

−1, A′′

4. První dolní index je podle rotace C2 kolmo na osu nejvyššího řádu. Pokud grupa nemá kolmou
dvojčetnou osu, pak se tento index určí podle σv. Uveďme příklad pro A,

χ(C2) =

{
+1, A1

−1, A2

5. Druhý dolní index je podle charakteru prvku inverze i, např. pro A,

χ(i) =

{
+1, Ag
−1, Au

Značení u, g je podle německých slov gerade/ungeráde ve významu českých slov sudý/lichý. Speciální
postavení má totálně symetrická NIR A1, která má všechny charaktery +1 a odpovídá reprezentaci
invariantní vůči úplně všem operacím symetrie.

2.4 Využití symetrie při práci s vlnovými funkcemi

Pokud chceme využít grupovou teorii pro kvantově-mechanické výpočty vlnových funkcí např. elektronů,
musíme uvedenou teorii aplikovat na vlnové funkce atomárních orbitalů.

Definice: Soubor n lineárně nezávislých funkcí {f(n)} = {f1, . . . , fn}, který se působením operátorů
symetrie příslušné grupy G transformují na lineární kombinaci těchto funkcí, tvoří bázi n-dimenzionální
reprezentace grupy.

Jak je zřejmé, funkce, které tvoří bázi, představují uzavřený systém vůči operacím symetrie. Nechť
R ∈ G a k této operaci symetrie je přiřazen operátor R̂, který působí na bázi funkcí. Potom z definice
můžeme zapsat vztahy pro transformace funkcí {f(n)} takto,

R̂fi =
∑
j

rij(R)fj , (2.8)

kde rij(R) představuje matici koeficientů transformace podle operace R. Dimenze této čtvercové matice
n je shodná s počtem funkcí báze. Je zřejmé, že grupa G je izomorfní s grupou operátorů a matice rij(R)
je reprezentací této grupy. Pokud bychom funkce {f(n)} zamíchali provedením nějaké lineární kombinace
těchto funkcí, vznikla by nám nová báze, která by byla s tou původní bází ekvivalentní. Z pohledu matic
rij(R) by šlo pouze o jejich transformaci, která nezmění výsledek řešeného problému. Můžeme si tedy
bez újmy na obecnosti zvolit takovou bázi, se kterou se nám bude dobře počítat.

Jak bude vypadat působení operací symetrie na vlnové funkce, které jsou řešením Schrödingerovy
rovnice a jsou tedy vlastními stavy energie?

R̂(Ĥψjν) = R̂(Ejψjν) = Ej(R̂ψjν) = Ĥ(R̂ψjν), (2.9)

kde Ej je energetická hladina s degenerací ν a systém funkcí ψjν tvoří úplný systém. Tento zápis říká,
že pokud má být výsledek po použití operace symetrie nerozlišitelný od počátečního stavu, nesmí se
změnit energie. Operátor symetrie tedy můžeme použít přímo na vlnovou funkci, neboť hamiltonián
a operace symetrie komutují, [R̂, Ĥ] = 0. Ke každé energetické hladině Ej je přiřazena sada funkcí
ψj1, . . . , ψjν , která tvoří bázi Γν . Tato báze tvoří NIR pokud není hladina pouze náhodně degenerovaná
překryvem různých hladin. Energetické hladiny se transformují podle grupy symetrie a každá hladina
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musí odpovídat jedné z NIR bodové grupy molekuly. Je proto obvyklé, že se energetické hladiny označují
stejným písmenem které odpovídá příslušné NIR. Jak již víme, dimenze této reprezentace je určena
degenerací této energetické hladiny Ej .

Pro názornost uveďme několik příkladů degenerace energetických hladin. Setkáváme se s tím u grup
s operací Cn. Potom musí platit χ(I) = χ(Cnn ) = ωn = 1. Z toho plyne, že χ(Cn) = eı2π/n. Dále platí,
že každý volný atom má symetrii koule Kh a má ireducibilní reprezentace pouze liché dimenze 1, 3, 5, . . ..
Vzpomeňme, že magnetické kvantové číslo volného atomu má také lichý počet povolených hodnot (2l+1),
viz sekce 1.1.2.

2.4.1 LCAO - MO jako vlnové funkce elektronů

Elektronovou vlnovou funkci molekuly zapíšeme jako lineární kombinaci atomárních orbitalů. Budeme
uvažovat funkci bez spinu a pouze dodáme, že každou tuto hladinu můžeme obsadit dvěma elektrony s opa-
čným spinem. Musíme se ujistit, že naše volba atomárních funkcí souhlasí s grupou symetrie studované
molekuly. Lineární kombinace atomárních orbitalů jako molekulární orbitaly se značí LCAO - MO. Ato-
mární orbitaly použijeme jako bázi {f(n)} a získanou reprezentaci rozložíme do NIR, ΓAO = Γ1⊕· · ·⊕Γm.

Spočítat molekulární vlnové funkce vlastně znamená, že musíme provést symetrizaci atomárních vl-
nových funkcí. Od atomárních orbitalů {f(n)} chceme přejít k symetrizovaným funkcím {g(n)}, které
respektují symetrii dané molekuly. Zvolíme si jednu konkrétní NIR reprezentaci s označením Γk, která
má dimenzi nk. Nyní spočítáme symetrizovanou funkci g ze zvolené funkce f s využitím všech operací
symetrie R grupy G dané molekuly. Výsledek je zapsán v rámečku.

g =
nk
h

∑
R∈G

χ∗
k(R)R̂f, gi =

nk
h

∑
R∈G

χ∗
k(R)rij(R)fj . (2.10)

Pravý vztah je výpočet celé sady symetrizovaných funkcí s využitím matic rij(R). Z jiného pohledu lze
vztah (2.10) chápat tak, že s využitím operací symetrie získám sadu atomárních orbitalů, které jsou
v molekulární funkci zastoupeny s koeficientem daným charakterem zvolené NIR (Γk). Použití tohoto
vztahu si vysvětlíme na příkladu molekuly vody. Výsledkem bude odvození symetrizovaných vlnových
funkcí LCAO - MO pro tuto molekulu H2O.

Obr. 2.2: Molekula vody, která leží v rovině yz. Osa
x vystupuje kolmo z roviny obrázku. Molekula není
lineární, úhel mezi vazbami činí 104.45◦.

y

z

1 2

Př. 2.1: Molekula vody: Molekula H2O nemá všechny atomy na přímce. Proto nemá osu C∞, ale
má symetrii jen C2v, viz obr. 2.2. Zvolíme si minimální soubor atomových vlnových funkcí.

n = 7, {f1, . . . , f7} = {1s1, 1s2, 1s0, 2s0, 2px, 2py, 2pz}.

První a druhá funkce jsou orbitaly na prvním a druhém vodíku. Ostatní orbitaly odpovídají kyslíku. Mo-
lakula H2O má 10 elektronů, a proto 7 zvolených AO by mělo díky spinové degeneraci stačit. Reprezentaci
ΓAO odpovídají čtvercové matice rij(R) velkosti (7× 7) následovně.
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Zápis jsme zjednodušili tak, že jsou uvedeny jen diagonální a nenulové prvky matic. Je jasné že reprezen-
tace založená na těchto maticích rij se při výpočtu charakterů dané operace symetrie ptá na to, který
atomární orbital zůstává při dané operaci na svém původním místě. Zopakujme, že charakter reprezentace
se spočítá jako stopa matice. Výsledek je:

ΓAO I C2(z) σxz σyz
χ 7 1 3 5

Standardním rozkladem reprezentace ΓAO do NIR pro C2v pomocí vztahu (2.7) dostaneme výsledek,
ΓAO = 4A1 ⊕B1 ⊕ 2B2. Molekulární orbitaly vody spočítané podle (2.10) mají následující symetrii:

NIR LCAO - MO
A1 : g1 = 1s0, g2 = 2s0, g3 = 2pz, g4 = (1s1 + 1s2)/2

B1 : g5 = 2px
B2 : g6 = 2py, g7 = (1s1 − 1s2)/2

2.4.2 Interakční diagram molekuly – elektronové hladiny

1s

a1

2s

a1

2p

a1+b1+b2

1a1

2a1

1b1

3a1

1b2

4a1

2b1

1s

a1+b1

AO kyslík MO H2O AO vodíky

Obr. 2.3: Kvalitativní interakční diagram vody. Popis je uveden v textu.

Na základě úvah o symetrii molekuly vody můžeme sestrojit kvalitativní interakční diagram s ener-
getickými hladinami. Protože ze symetrie nemůžeme zjistit velikost dané energie, je tento diagram pouze
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kvalitativní. Hodnoty energie odhadujeme ze zkušenosti. Pro zpřesnění je potřeba vyřešit pro takto určené
molekulární orbitaly Schrödingerovu rovnici. Alternativně je samozřejmě také možné určit energie hladin
měřením.

Obrázek 2.3 je potřeba vysvětlit. Molekulární reprezentace se označují malými písmeny, aby se odlišily
od atomárních, které používají podle Mullikena písmena velká. Nejnižší hladina kyslíku 1a1 se nepodílí
na vazbě. Hladiny 2a1, 1b1 jsou vazebné, protože sdílí atomární funkce kyslíku i vodíků. Toto sdílení je
možné díky shodné symetrii. Dále následují dvě nevazebné hladiny 3a1, 1b2, kde jsou umístěny poslední
dva elektrony molekuly vody. Další dvě hladiny 4a1, 2b1 jsou antivazebné.

Elektrony umístěné do energetického schématu vody na obr. 2.3 jsou na hladinách ve dvojicích s opa-
čným spinem. První excitovaný stav by odpovídal přesunu jednoho elektronu z poslední obsazené hladiny
1b2 na první volnou hladinu 4a1.

2.4.3 Studium vibrací jader

Pokud chceme studovat vibrace jader, musíme vzít do úvahy vzájemné polohy všech N atomů. Jde tedy
o problém 3N proměnných, kterému bude odpovídat reducibilní reprezentace Γ3N . Tuto reprezentaci
je potřeba nalézt, rozložit ji na součet NIR a odečíst reprezentace náležící translaci a rotaci. To co
zbude bude odpovídat symetrii vibračních módů. Každá NIR jednomu povolenému vibračnímu módu.
Pro jednoduchost vezměme opět vodu, která má jen tři atomy.
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Když se spočítá stopa těchto matic, je zřejmé, že charaktery v této reprezentaci je možné stanovit
přímo bez nutnosti sestavovat transformační matice. Charakter získáme jako součin počtu atomů NR,
které se při provedení operace symetrie R nepohnou z místa, a určitého geometrického koeficientu.

χ(Cn) = NR(2 cosα+ 1), χ(Sn) = NR(2 cosα− 1),

χ(I) = 3N, χ(σ) = Nσ, χ(i) = −3Ni.

α = 2π/n, je úhel otočení při použití dané operace symetrie. Druhý řádek lze spočítat jako speciální
případy rotací podle vztahů z prvního řádku. Výsledek výpočtu charakterů pro vodu je:

Γ3N I C2(z) σxz σyz
χ 9 −1 1 3

Tuto reducibilní reprezentaci rozložíme s použitím vztahu (2.7) a dostaneme, Γ3N = 3A1⊕A2⊕2B1⊕3B2.
Tato reprezentace respektuje 3N stupňů volnosti pro danou molekulu. To znamená, že musí platit,

Γ3N = Γtrans + Γrot + Γvib. (2.13)
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Pro získání přehledu o vibračních stupních volnosti je tedy nutné od Γ3N odečíst translaci a rotaci.
Translaci odpovídá reprezentace Γx, kterou jsme již udělali v sekci 2.2.1. Zatímco translace odpovídá
transformaci vektoru x⃗, rotace je transformací pseudovektoru (axiálního vektoru) R⃗. To znamená, že
translace a rotace mají stejné matice pro operace I, Cn. Pro operace Sn, σ, i mají translace a rotace
u matic opačné znaménko. Pro vodu by nám vyšlo, Γtrans = A1 ⊕B1 ⊕B2, Γrot = A2 ⊕B1 ⊕B2.

Prostým odečtením dostaneme symetrii vibračních stavů jako: Γvib = 2A1 ⊕ B2. Pokud si chceme
zjednodušit práci, je možné pro určení Γtrans a Γrot využít toho, co je již napsané na pravé straně
(PO. 2.1: tabulek charakterů). Translace odpovídá složkám vektoru x⃗ a rotace složkám vektoru R⃗.

Získané vibrační stavy vody jsou zakresleny v obr. 2.4. Vlevo jsou totálně symetrické vibrace A1,
vpravo je vibrace se symetrií podle reprezentace B2. Pro vibrace musí platit, že molekula se nesmí
otáčet a při vibracích se nesmí posunovat těžiště. Směr do těžiště je pro jednotlivé atomy molekuly
vody vyznačen tečkovanou čarou. Navíc musí platit, že jednotlivé vibrace jsou navzájem nezávislé, neboli
ortogonální vibrační módy. Z IČ měření a Ramanových spekter vody je známo, že jednotlivým vibracím
náleži frekvence: ν1 = 1.08× 1014 Hz (3601 cm−1), ν2 = 4.83× 1013 Hz (1609 cm−1), ν3 = 1.11× 1014 Hz
(3696 cm−1).

A1: 1

A1: 2

B2: 3

Obr. 2.4: Vibrační módy molekuly vody a jejich symetrie popsaná NIR.

2.4.4 Výběrová pravidla

V předchozím textu jsme si odvodili tři vibrační módy molekuly vody (obr. 2.4). Dva módy mají symetrii
A1 a jeden má symetrii B2. Pro tyto nalezené vibrace popíšeme výběrová pravidla, která určují, který
z těchto módů bude aktivní ve spektrech IČ absorpce a který v Ramanových spektrech.

Věta 2.4.1 Vibrace je aktivní v absorpčním IČ spektru, jestliže patří ke stejné NIR jako složka vektoru
x⃗, který symetrií odpovídá elektrickému dipólovému momentu.

Protože jsou povoleny všechny složky (x, y, z), ma molekula H2O v IČ aktivní všechny tři vibrace.

Věta 2.4.2 Vibrace je aktivní v Ramanově spektru, jestliže patří ke stejné NIR jako složka kvadratické
formy x2, která symetrií odpovídá polarizovatelnosti.

V Ramanově spektru jsou všechny tři módy vibrace vody rovněž aktivní, neboť jsou u nich uvedeny
některé ze složek (x2, y2, z2, xy, xz, yz).

Ve chvíli, kdy je jasná symetrie vibrací, je možné se posunout ke kvantovému řešení. Využije se
známá kinetická a potenciální energie jader, hamiltonián se dosadí do Schrödingerovy rovnice a získáme
kvantovanou energii uloženou ve vibracích. K tomu se propracujeme v následující sekci.

2.5 Využití symetrie při výpočtu integrálů

V kvantové mechanice se pro výpočet střední hodnoty nějaké veličiny používá integrál z vlnové funkce a
operátoru dané veličiny. Do výsledku tohoto výpočtu značnou měrou přispívá symetrie. Nyní si ukážeme,
jak na to. Celé je to založené na jednoduchém tvrzení.
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Věta 2.5.1 Uvažujme funkci fα z báze {f(n)} se symetrií odpovídající reprezentaci Γα. Pokud není Γα
totálně symetrická reprezentace, potom je integrál přes celý prostor z této funkce fα identicky roven nule.

Tvrzení této věty plyne z následující úvahy. Pokud není Γα totálně symetrická reprezentace, mohu na
funkci provést operaci symetrie při které integrál změní znaménko, ale systém popsaný funkcí zůstane
nezměněn. Výsledkem integrace je tedy číslo, které se rovná své záporně vzaté hodnotě, což platí právě
jen pro nulu.

2.5.1 Direktní součin reprezentací

Mějme grupu symetrie v reprezentaci F se souborem bázových funkcí {f1, . . . , fm}. Dále mějme analogicky
pro stejnou grupu reprezentaci G se souborem bázových funkcí {g1, . . . , gn}. Obě reprezentace mohou
mít různou dimenzi (m ̸= n). Transformace funkcí obou bází při působení operátorů prvků symetrie
můžeme vyjádřit pomocí transformačních matic. Pro zvolenou operaci symetrie R je tato matice rF pro
reprezentaci F a rG pro reprezentaci G. Direktní součin obou reprezentací, J = F ⊗ G, definuje novou
reprezentaci J , pro kterou platí:

χJ(R) = χF⊗G(R) = χF (R)χG(R). (2.14)

Přitom platí, že matice reprezentace J lze získat tenzorovým součinem matic, rJ = rF ⊗ rG.

Na základě těchto vztahů je možné spočítat direktní součin reprezentací a výsledou reprezentaci pak
rozepsat na direktní součet zastoupených NIR. F ⊗G = Γ1 ⊕ · · · ⊕ Γm

Věta 2.5.2 Direktní součin dvou ireducibilních reprezentací Γα ⊗ Γβ obsahuje ve svém rozkladu totálně
symetrickou reprezentaci A1 tehdy a jen tehdy, pokud jsou obě reprezentace vůči sobě vzájemně komplexně
sdružené, Γα = Γ∗

β.

Při výpočtu kvantově-mechanických středních hodnot veličin se počítá integrál z operátoru dané
veličiny. Například pro energii je jím hamiltonián. Tento integrál má tvar:∫

V

ψ∗
iαFψjβ dr. (2.15)

Jednotlivé členy integrálu odpovídají symetrií reprezentacím Γα, ΓF a Γβ . Pro výpočet hodnoty integrálu
využijeme symetrii. Součin funkcí dává jako výsledek funkci se symetrií Γ, kterou můžeme rozepsat,

Γ = Γ∗
α ⊗ ΓF ⊗ Γβ = Γ1 ⊕ Γ2 ⊕ . . . .

Pokud v rozkladu reprezentace Γ je i totálně symetrická A1 může (ale nemusí) být výsledný integrál
nenulový. Obráceně, pokud v rozkladu integrované funkce A1 chybí, je naprosto jisté, že výsledný integrál
musí být identicky nulový díky symetrii.

Symetrie nám umožňuje si zjednodušit výpočty kvantově-mechnických integrálů díky tomu, že u něk-
terých rovnou určíme nulový výsledek. U jiných integrálů si alespoň zvolíme správnou minimální bázi
funkcí, která odpovídají symetrii řešeného problému.

2.5.2 Normální vibrace a normální souřadnice

Vibrace se předpokládají v harmonické aproximaci, kdy můžeme využít známého řešení kvantového har-
monického oscilátoru. Řešení je obdobné pro molekuly i pro pevné látky. Energii kmitání na frekvenci
ω je možné zapsat jako En = (n + 1/2)ℏω. Kvantové číslo n určuje obsazení daného vibračního módu.
V kap. 6 zavedeme označení, že v látce máme n fononů s frekvencí ω. Pro toto zavedení bude nutné
znormovat amplitudy vibrací tak, že je vynásobíme odmocninou z hmotnosti daného kmitajícího atomu.
Potom bude příspěvek ke kinetické energii všech atomů záviset pouze na znormované souřadnici. Nakonec
bude ještě nutné provést diagonalizaci hamiltoniánu, aby byly jednotlivé vibrační módy vzájemně nezá-
vislé. Tomuto postupu se říká přechod k normálním souřadnicím. Celkovou kinetickou energii uloženou
v kmitech krystalu je potom možné spočítat jako prostý součet energií všech vibračních módů.

Při výpočtu energie molekuly s N atomy, pracujeme s 3N stupni volnosti. Z nich 3 stupně připadají
na translaci, 3 na rotaci (u lineárních molekul 2). Zbytek 3N − 6 jsou vibrace (respektive 3N − 5). Pro
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translace a rotace by nám vyšly nulové frekvence pohybu. V pevných látkách se stupně volnosti původního
translačního pohybu uplatňují v periodických mezimolekulárních pohybech jako mezimolekulární vibrace.
Jde o vibrace přenášené mezi jednotlivými elementárními buňkami v periodické mřížce. V pevných látkách
máme tím pádem 3N vibračních stupňů volnosti, kde N udává počet atomů v elementární buňce.

Podívejme se nyní na klasický a kvantový popis vibrací. Potenciál V , kterým se ovlivňují dva kmitající
atomy α, β, lze jistě zapsat pomocí harmonické aproximace,

V =
1

2

∑
i,j

kijRiαRjβ .

Je to vlastně první nenulový člen Taylorova rozvoje, neboť konstantu mohu položit rovnou nule a lineární
členy musí být v minimu nulové. Tenzor kij popisuje silové konstanty. Kinetickou energii vybraného atomu
α zapíšeme jako

T =
1

2
Mα

∑
i

Ṙ2
iα.

Provedeme přechod k váženým souřadnicím, ξiα =
√
MαRiα. Tím nám ze zápisu energií zmizí hmot-

nosti. Abychom dostali nezávislé harmonické oscilátory, musíme diagonalizovat hahiltonián s klasickými
souřadnicemi ξi a přejít k souřadnicím kvantovým Qi. Tyto normální souřadnice nám umožňují vyjádřit
hamiltonián celé molekuly jako součet nezávislých harminických oscilátorů, kde jsou pouze kvadráty této
souřadnice v potenciálu a kvadráty derivace v kinetické energii. Protože se nám tam nemotají hmotnosti,
můžeme zaspat součet členů do sumy přes jednotlivé stupně volnosti.

Hvib = −ℏ2

2

3N−6∑
i=1

∂2

∂Q2
i

+
1

2

3N−6∑
i=1

ω2
iQ

2
i .

Klasickým řešením by byly samozřejmě harmonické funkce, ξi = Ai sin(ωit+b), kde Ai a b jsou ampli-
tuda a fáze vibrací v čase t s frekvencí ωi. Kvantově musí pro každý vibrační mód platit Schrödingerova
rovnice, Hiχi = Eiχi. Protože řešení je známé, lze to celkově rovnou zapsat,

Evib =

3N−6∑
i=1

Ei =

3N−6∑
i=1

(ni + 1/2)ℏωi, χvib =

3N−6∏
i=1

χi(Qi).

Kvantová čísla ni určují obsazení jednotlivých vibračních módů.

2.6 Symetrie ve fyzice

Symetrie je ústředním pojmem vědy, který se prolíná fyzikou, matematikou a geometrií. Zkoumaný jev
nebo vlastnost má určitou symetrii, pokud na tento objet mohu použít určitou operaci symetrie, ale na
daném objektu se to neprojeví žádnou pozorovatelnou změnou. Symetrie se projevuje v mikrosvětě, kde
nám umožňuje popsat třeba polohy atomů v krystalické mřížce, ale také vnitřní strukturu částic, kterou
popisuje v kvantové mechanice vlnová funkce. Když se posuneme k makroskopickým objektům, obvykle
vidíme jistý stupeň symetrie mezi levou a pravou stranou lidského těla, nebo v rozložení objektů v naší
Galaxii. Nicméně tato symetrie je pouze částečná daná nějakým základním principem, ale je patrný i
určitý stupeň náhodnosti či chaosu. Symetrie dává pozorovateli tendenci vnímat pozorovaný objekt jako
krásný, ale jistá nedokonalost tento objekt zlidšťuje.

Ve fyzice je zajímavá symetrie vědeckých pojmů a teorií. Pokud má být nějaká teorie, popisující
naší realitu, uvěřitelná, musí mít tato teorie určitou symetrii. Musí být svým způsobem krásná. Lapi-
dárně řečeno, teorie, která platí pouze v pondělí a jindy ne, není dobrá teorie. Symetrie nám tedy často
umožňuje kriticky nahlížet i na důsledky, které nějaká teorie předpovídá a určit omezení její použitelnosti
a správnosti.
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C2 I C2 1D 2D
A 1 1 z;Rz x2, y2, z2, xy

B 1 −1 x, y;Rx, Ry xz, yz

CS I σh 1D 2D
A′ 1 1 x, y;Rz x2, y2, z2, xy

A′′ 1 −1 z;Rx, Ry xz, yz

Ci I i 1D 2D
Ag 1 1 Rx, Ry, Rz x2, y2, z2, xy, xz, yz

Au 1 −1 x, y, z

C2h I C2 i σh 1D 2D
Ag 1 1 1 1 Rz x2, y2, z2, xy

Bg 1 −1 1 −1 Rx, Ry xz, yz

Au 1 1 −1 −1 z

Bu 1 −1 −1 1 x, y

D2 I C2(z) C2(y) C2(x) 1D 2D
C2v I C2 σv(xz) σv(yz) 1D 2D

A/A1 1 1 1 1 z x2, y2, z2

B1/A2 1 1 −1 −1 z;Rz Rz xy

B2/B1 1 −1 1 −1 y;Ry x;Ry xz

B3/B2 1 −1 −1 1 x;Rx y;Rx yz

D3 I 2C3 3C2 1D 2D
C3v I 2C3 3σv 1D 2D
A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 z;Rz Rz
E 2 −1 0 (x, y); (Rx, Ry) (x, y); (Rx, Ry) (x2 − y2, xy); (xz, yz)

D3d I 2C3 3C2 i 2S6 3σd 1D 2D
A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 −1 1 1 −1 Rz
Eg 2 −1 0 2 −1 0 (Rx, Ry) (x2 − y2, xy), (xz, yz)
A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1 z

Eu 2 −1 0 −2 1 0 (x, y)

PO. 2.1: Tabulky charakterů ireducibilních reprezentací některých bodových grup. Dvojitá svislá čára
odděluje na pravé straně uvedené funkce splňující symetrii dané NIR. Symbol x⃗ představuje polární
vektor a symbol R⃗ axiální vektor. Ve 2D je chování radiálních a axiálních tenzorů stejné. Tabulky

dalších grup lze nalézt např. na webu: http://symmetry.jacobs-university.de/
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}{ }
h, řád grupy

G = {
︷ ︸︸ ︷

I, a, b, . . .}

I a, b c, d, etř́ıdy

R, typický prvek grupy

pk

t∑

k=1

pk = h

Γ1

Γ2

Γ3

3 NIR

tot. sym. rep.

t
(i = 1, . . . , t)

t
(k = 1, . . . , t)ni = χi(I)

NIR: Γi {D(I),D(a),D(b), . . .}

řád matice, dimenze (n× n)

i-tá irecucibilńı reprezentace

t∑

i=1

n2

i
= h

χi(R) = TrDi(R)

PO. 2.2: Souhrn syntaxe používaný v této kapitole na příkladu tabulky charakterů.
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PO. 2.3: Rozpis bodových grup symetrie pro jednotlivé krystalografické soustavy. Upraveno z webu
MUNI.cz: http://mineralogie.sci.muni.cz/
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2.7 Příklady

Př. 2.2: Vzájemné vztahy mezi prvky grupy bodové symetrie: Vypočítejte následující mocniny
prvků bodové symetrie: a) Cnn , b) C2

−1, c) σ−1, d) σ2, e) S2, f) S1, g) i−1, h) i2.

Př. 2.3: Multiplikační tabulky malých grup: Sestavte multiplikační tabulky grup do řádu h = 4.
Ukažte, že jsou tyto grupy abelovské neboli komutativní.

Nápověda: Prvky grupy musí začínat identitou I a teprve potom následují další prvky {a, b, . . .}

Př. 2.4: Inverzní prvek: Povšimněte si, že pro matice reprezentace (2.2) platí R−1 = RT . Prověřte
toto tvrzení a odůvodněte, proč to tak musí být.

Př. 2.5: Ortogonalita řádků transformačních matic: Vyberte několik příkladů z matic reprezentace
(2.2) a prověřte vztah ortogonality řádků a sloupců.

Př. 2.6: Symetrie benzenu:∗ Molekula benzenu odpovídá symetrií grupě D6h. Řád této grupy je
24. Najděte všechny prvky symetrie této grupy, určete 12 tříd a sestavte tabulku charakterů s využitím
vlastností symetrie NIR.

Nápověda: Pro h = 24 a t = 12 je jen jediné řešení věty 2.2.2: 24 = 8 · 12 + 4 · 22.

Př. 2.7: Hybridizace uhlíku:

Najděte symetrizované vlnové funkce uhlíku pro případ molekul: A) 1D lineární molekulu CO2, B) 2D
plošné uspořádání vazeb v tuze CH3, C) 3D uspořádání diamantu CH4.

Nápověda: Jde o orbitaly sp hybridizace, sp2 hybridizace a sp3 hybridizace.

Př. 2.8: Direktní součin reprezentací vody: Pro molekulu vody se symetrií C2v najděte součin
reprezentací A2 ⊗B1.

Př. 2.9: Potenciál vibrace vody: Odhadněte, jak by měl vypadat potenciál pro vibrace molekuly
vody A1, ν2 podle obr. 2.4. Uvažujte vibrace, které překračují případ protažení molekuly do lineárního
tvaru.
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Lauegram krystalického vzorku

© Jiří Hybler, Fyzikální ústav AV ČR, Praha. Převzato z webu XRAY:
http://www.xray.cz/kryst/difrakce/hybler/monokrystal.htm

Debyegram nebo difraktogram práškového vzorku

Převzato z webu XRAY: http://www.xray.cz/kurs/

Další užitečné odkazy:
http://www.jcrystal.com/steffenweber/JAVA/jlaue/jlaue.html
http://cst-www.nrl.navy.mil/lattice/

46

http://www.xray.cz/kryst/difrakce/hybler/monokrystal.htm
http://www.xray.cz/kurs/
http://www.jcrystal.com/steffenweber/JAVA/jlaue/jlaue.html
http://cst-www.nrl.navy.mil/lattice/


Kapitola 3

Difrakce na krystalu, reciproká
mřížka
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3.6 Příklady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Pokud na krystal dopadá optické záření ve viditelné oblasti (typicky 5 000 Å), je atomární struktura
materiálu (2–3 Å) pod rozlišovací schopností této vlny. Pro odraženou a prošlou vlnu platí tedy standardní
zákon odrazu a lomu. Prostředí se jeví jako homogenní, popsané daným indexem lomu.

Pokud je použito tvrdé rentgenové záření, které má vlnové délky v rozmezí od 0.2 Å do 2 Å, potom je
vlnová délka menší nebo srovnatelná s mřížkovou konstantou. V tomto případě se šíří difraktované vlny
ve směrech zcela odlišných od směru dopadu.

3.1 Krystalografie pomocí různých svazků

Jaké částice jsou tedy vhodnými kandidáty na studium krystalové struktury? Dualita částic a vlnění
v případě světla znamená, že v závislosti na uspořádání experimentu a na způsobu pozorování můžeme
světlo popisovat buď jako vlnu, nebo jako diskrétní kvanta energie, částice – fotony.

Fotony: rentgenové paprsky interagují s elektrony.

E =
2πℏc
λ

, λ =
2πℏc
eE[eV]

, t.j. λ[Å] =
12.4

E[keV]
.

U těchto vzorců se energie částice zadává v jednotkách elektronvolt, kladně vzatý elementární náboj
elektronu e = 1.602 189 2× 10−19 C.

Neutrony: nemají náboj, interagují s magnetickými momenty elektronů a jsou tedy vhodné pro struk-
turní analýzu magnetických krystalů. V nemagnetických materiálech interagují s jádry. De Broglieova
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vlnová délka1 hmotné částice je daná vztahem p = 2πℏ/λ. Připomeňme hmotnost neutronu, Mn =
1.674 927× 10−27 kg.

E =
p2

2Mn
=

(2πℏ)2

2Mnλ2
, t.j. λ[Å] =

0.285√
E[eV]

.

Elektrony: mají náboj a proto kvůli coulombovské interakci pronikají jen těsně pod povrch studovaného
materiálu. Energie elektronů je daná podobně jako pro neutrony, ale s hmotností o 3 řády menší, m0 =
0.910 953 4× 10−30 kg.

λ[Å] =
12.2√
E[eV]

.

Energetické vztahy jsou pro jednotlivé částice zakresleny v obr. 3.1. Pokud budeme chtít, aby výše
uvedené částice měly vlnovou délku λ = 1 Å, potom budeme potřebovat, aby měly následující energii:

foton neutron elektron
12.4 keV 0.081 eV 149 eV

10
-1

2

5

1

2

5

10

[Å
]

1 2 5 10 2 5 10
2

Energie

foton, energie v keV
neutron, energie v 0.01 eV
elektron, energie v 100 eV

Obr. 3.1: Závislost vlnové délky na energii fotonu, neutronu a elektronu.

3.2 Fourierova analýza

K rozptylu rentgenového záření dochází na elektronech v krystalu. Hustota elektronů v periodickém
krystalu musí být periodickou funkcí s periodou danou translacemi o mřížkové vektory. Matematicky to
lze zapsat tak, že elektronová hustota zůstane stejná při posunu o libovolný vektor mřížkové translace,
n(r⃗ + T⃗ ) = n(r⃗). Periodickou funkci elektronové hustoty lze zapsat pomocí 3D Fourierova rozkladu

n(r⃗) =
∑
G⃗

nG⃗ eıG⃗·r⃗. (3.1)

1Louis de Broglie získal za objev vlnové povahy elektronu Nobelovu cenu za fyziku v roce 1929.
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Všechny vektory G⃗, které vystupují v sumě, lze zapsat jako celočíselnou lineární kombinaci základních
translačních vektorů reciproké mřížky, které jsou definovány takto:

b⃗1 =
2π

Vc
(⃗a2 × a⃗3), kde Vc = |⃗a1 .⃗a2 × a⃗3|, analogicky pro b⃗2, b⃗3. (3.2)

Protože tyto vektory určují díky Fourierově transformaci prostorové frekvence, je jejich jednotkou m−1.
S danou krystalovou strukturou jsou tedy svázány dvě mřížky. Přímá mřížka je definovaná translačními
vektory a⃗1, a⃗2, a⃗3 a popisuje rozložení atomů v krystalu. Reciproká mřížka definovaná translačními
vektory reciproké mříže b⃗1, b⃗2, b⃗3 má stejnou symetrii a velmi úzce souvisí s rentgenovou difrakcí.

Pro vektory přímé a reciproké mřížky platí některé užitečné identity:

a⃗i · b⃗j = 2πδij ,

exp[ıT⃗ · G⃗] = 1,

pro libovolný vektor T⃗ přímé mřížky a libovolný vektor G⃗ reciproké mřížky.

Nyní nás bude zajímat amplituda pružného rozptylu rentgenového fotonu. Vektor změny směru vl-
nového vektoru tohoto fotonu můžeme zapsat jako ∆k⃗ = k⃗′ − k⃗. Vlnový vektor dopadajícího záření
označujeme k⃗ a difraktovaného záření k⃗′. Amplitudu rozptylu A zapíšeme jako integrál přes objem krys-
talu s tím, že intenzita rozptylu je v každém místě úměrná hustotě elektronů a jednotlivé příspěvky
z různých míst se musí sčítat s odpovídajícím fázovým faktorem. S využitím (3.1) dostaneme

A(∆k⃗) =
∫

dV n(r) e−ı∆k⃗·r⃗ =
∑
G⃗

nG⃗

∫
dV eı(G⃗−∆k⃗)·r⃗. (3.3)

Integrál v sumě odpovídá delta funkci δ(G⃗ −∆k⃗). Vztah (3.3) lze tedy interpretovat tak, že v ideálním
krystalu je možný pružný rozptyl rentgenového záření pouze pod podmínkou, že změna vlnového vek-
toru dopadajícího fotonu je rovna nějakému vektoru reciproké mřížky G⃗. Amplituda rozptylu v tomto
konkrétním směru je pak úměrná složce Fourierova rozkladu elektronové hustoty, AG⃗ = VcknG⃗. V tomto
vztahu Vck označuje objem celého krystalu. Podmínka pro směry difrakce má v tomto případě tvar

∆k⃗ = k⃗′ − k⃗ = G⃗. (3.4)

Tuto podmínku můžeme řešit efektivní geometrickou konstrukcí, která se podle jejího autora označuje
jako Ewaldova konstrukce.

3.3 Zákony rozptylu, difrakční podmínky

3.3.1 Braggův zákon

Uvažujeme odraz na rovinách krystalu, které jsou umístěné pod sebou ve vzdálenosti d. Ke konstruk-
tivní interferenci odrazů z jednotlivých rovin dojde, pokud se budou jednotlivé odrazy k sobě přičítat
konstruktivně ve fázi, t.j. pokud budou vzájemně zpožděné o celočíselný násobek vlnové délky λ. Tuto
geometrickou podmínku lze zapsat ve tvaru Braggova zákona2:
(PO. 3.1: Geometrie Braggova zákona)

2d sin θ = nλ, n = 1, 2, . . . , (3.5)

kde θ označuje úhel dopadu a d je vzdálenost krystalových rovin. Vzdálenost sousedních rovin (hkl) lze
spočítat z velikosti odpovídajícího vektoru G⃗ v reciprokém prostoru,

d(hkl) =
2π

|G⃗|
, kde G⃗ = h⃗b1 + k⃗b2 + l⃗b3. (3.6)

Důkaz tohoto vztahu je řešen v př. 3.2 na konci této kapitoly.

2Sir William Henry Bragg a jeho syn William Lawrence Bragg získali za tuto metodu určování krystalové struktury
pomocí rentgenového záření Nobelovu cenu za fyziku v roce 1915.
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3.3.2 Brillouinův zákon

Uvažujeme-li, že dopadající foton s vlnovým vektorem k⃗ se odrazí pružně, potom bude mít jeho vlnový
vektor stále stejnou velikost, ale odlišný směr. Platí tedy |⃗k′| = |⃗k|. Dosadíme-li do této rovnosti podmínku
difrakce k⃗′ = k⃗ − G⃗, dostaneme3:

k2 − 2k⃗.G⃗+G2 = k2 ⇒ 2k⃗.G⃗ = G2.

Odtud dostaneme Brillouinův zákon

k⃗.
G⃗

2
=

(
G

2

)2

. (3.7)

Vlnové vektory dopadajících fotonů k⃗, které splňují tuto podmínku, představují hranici tzv. Brillouinovy
zóny (BZ) v reciprokém prostoru. Tuto BZ můžeme sestrojit tak, že v polovině každého vektoru reciproké
mřížky G⃗ sestrojíme kolmou rovinu. První Brillouinova zóna (1.BZ) je takto definována jako Wignerova-
Seitzova buňka v reciprokém prostoru a je proto jednoznačná. Brillouinovo vyjádření zákona rozptylu lze
převést na Braggovo s využití rovnosti (3.6).
(PO. 3.2: Brillouinovy zóny čtvercové mříže),
(PO. 3.3: Zaplnění reciprokého prostoru 1.BZ),
(PO. 3.4: Model první Brillouinovy zóny FCC mřížky).

3.3.3 Laueho podmínky pro rozptyl

Poslední vyjádření téhož zákona rozptylu je možné zapsat pomocí Laueho rovnic4. Tyto rovnice odvodíme
tak, že vektorovou rovnost (3.4) vynásobíme skalárně bázovými vektory mřížky.

a⃗1 ·∆k⃗ = 2πh,

a⃗2 ·∆k⃗ = 2πk,

a⃗3 ·∆k⃗ = 2πl.

(3.8)

Řešení difrakce pak odpovídá splnění všech tří uvedených podmínek současně.

3.4 Experimentální difrakční metody

K difrakci může docházet pouze, pokud je polovina vlnové délky menší než vzdálenost rovin v krystalu,
λ/2 ≤ d. Záznamy typického lauegramu a debyegramu, které jsou diskutovány v této sekci, byly uvedeny
na úvodním obrázku k této kapitole.
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Obr. 3.2: Schéma Laueho difrakčního uspořádání. Krystal (zelený) je umístěn na goniometrickém držáku
s náklony. Rentgenový svazek se spojitým spektrem je označen červeně. Modře zobrazené fotografické
desky umožňují získat lauegram na průchod nebo na odraz.

3Volba znaménka je opačná proti (3.4). Znaménko si můžeme zvolit, neboť pokud je G⃗ vektor reciproké mřížky, tak −G⃗
je také vektor reciproké mřížky.
4Max von Laue získal za tento výzkum Nobelovu cenu za fyziku v roce 1914.
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3.4.1 Laueho metoda

Touto metodou se zkoumá monokrystalický vzorek pomocí dopadu kolimovaného svazku se spojitým spek-
trem v oblasti 0.2 Å až 2 Å. Lze sledovat průchod i odraz na rovinném záznamovém médiu, viz obr. 3.2.
Krystal vybírá směry (odraz na rovinách symetrie) a vlnové délky, pro které je splněna difrakční pod-
mínka. Tato metoda se používá pro přesnou orientaci krystalů. Teoreticky se dá předpovědět rozmístění
difrakčních maxim v lauegramu geometrickou metodou (PO. 3.5: Ewaldova konstrukce lauegramu).

3.4.2 Metoda rotujícího krystalu

Při této metodě se používá monokrystalický vzorek a monochromatický svazek s jednou vlnovou délkou
λ. Vzorkem se otáčí kolem pevné osy kolmo na směr paprsků. Svazek je difraktován, pokud dojde při
otáčení ke splnění Braggovy rovnice. Geometrické uspořádání je schematicky znázorněno v obr. 3.3.
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Obr. 3.3: Schéma uspořádání měření difrakce s rotujícím krystalem. Krystal (zelený) je umístěn na rotují-
cím držáku v ose válce, na kterém je zevnitř rozložen záznamový film (zobrazen modře). Monochromatický
rentgenový svazek je označen červeně.

3.4.3 Debyeova-Scherrerova prášková metoda

Tato poslední metoda používá práškový vzorek5 a monochromatický svazek. Práškovým vzorkem se může
navíc ještě rotovat. Splnění Braggovy podmínky pro jednu vlnovou délku a zcela náhodný směr orientace
krystalu odpovídá difrakci ve směru kuželových ploch s úhlem odklonu 2θ od osy svazku.

In
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ita

0 1 2 3

[A]

Obr. 3.4: Schéma uspořádání měření difrakce Debyeovou-Scherrerovou práškovou metodou. Prášek krys-
talu je umístěn v tenkostěnné kapiláře (zelená). Záznamový proužek filmu (zobrazen modře) je umístěn
na stěně válce. Zaznamenaný debyegram je složen z difrakčních kružnic s poloměry danými geometrií
uspořádání. Směr průchodu monochromatického rentgenového svazku je označen červeně.

5Práškovou metodu difrakce vypracovali Peter Debye a jeho doktorand Paul Scherrer. Za tento výzkum získal P. Debye
v roce 1936 Nobelovu cenu za chemii.
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3.5 Fourierova analýza báze a strukturní faktory

Je-li splněna difrakční podmínka ∆k⃗ = G⃗ pro nějaký konkrétní vektor G⃗, je amplituda rozptylu podle
(3.3) daná

AG⃗ = N

∫
buka

dV n(r⃗) e−ıG⃗·r⃗ = N SG⃗ (3.9)

Rozptyl na krystalu složeného z N buněk je N násobkem strukturního faktoru SG⃗, což je příspěvek od
jedné elementární buňky. Pokud každá elementární buňka obsahuje s atomů báze, můžeme elektronovou
hustotu v buňce zapsat jako sumu příspěvků od jednotlivých atomů na pozicích r⃗j takto,

n(r⃗) =

s∑
j=1

nj(r⃗ − r⃗j).

Strukturní faktor daného krystalu pak můžeme spočítat z geometrie uspořádání jednotlivých atomů
báze jako

SG⃗ =

s∑
j=1

fj e
−ıG⃗·r⃗j , kde fj =

∫
dV nj(ρ⃗) e

−ıG⃗·ρ⃗ (3.10)

je atomový rozptylový faktor a při jeho výpočtu se integruje přes elementární buňku v relativních sou-
řadnicích ρ⃗ s počátkem v tomto j-tém atomu. Atomový rozptylový faktor je fakticky charakteristikou
daného atomu a v prvním přiblížení odpovídá počtu elektronů daného atomu. Často je výhodné zapsat
strukturní faktor SG⃗ pomocí relativních souřadnic atomů báze r⃗j = (ξa⃗1 + ηa⃗2 + ζa⃗3) a danou krystalo-
vou reflexi zapsat pomocí indexů příslušné krystalové roviny (hkl). Výraz (3.10) se potom zredukuje na
geometrickou sumu v bezrozměrných jednotkách

S(hkl) =
s∑
j=1

fj e
−ı 2π(ξh+ηk+ζl). (3.11)

3.5.1 Strukturní faktory kubických mřížek

Výsledkem studia strukturních faktorů dané mřížky se dají odvodit výběrová pravidla, popisující, která
difrakční maxima jsou u složitější elementární buňky potlačena. Dá se obecně říci, že přidáváním dalších
atomů do báze krystalické struktury dojde ke zhášení některých difrakčních směrů.

Jako exemplární příklad se dá vyčíslit strukturní faktor pro elementární mřížku BCC. V tomto případě
má elementární buňka dva atomy (s = 2). První leží v počátku (ξ = η = ζ = 0) a druhý ve středu krychle
(ξ = η = ζ = 1/2). Rozptylový faktor obou atomů je identický (f = f1 = f2), a proto se vztah (3.11)
zjednoduší na

S(hkl) = f
{
1 + e−ıπ(h+k+l)

}
.

Pro mřížku BCC je tedy S = 0 pro (h+ k + l) liché a S = 2f pro (h+ k + l) sudé číslo.

Obdobně se dá postupovat i pro mřížku FCC. Tady vyjde, že nenulové difrakční řády jsou pouze
případy, kdy jsou {h, k, l} buď všechny liché, nebo všechny sudé.

Pro diamantovou mřížku je to ještě složitější. Buď jsou indexy {h, k, l} všechny liché, nebo jsou
všechny sudé, ale musí současně platit i to, že jejich součet je dělitelný čtyřmi.

Chování difrakce různých mřížek si lze prohlédnout např. pomocí programu WinWulff nebo WinLaue
z webu: http://www.jcrystal.com/.
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PO. 3.1: Braggův zákon rozptylu na krystalu. Černé tečky označují polohy atomů v mřížce.
Rentgenový svazek se odchyluje od původního směru o úhel 2θ.
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1.BZ 2.BZ 3.BZ 4.BZ 5.BZ

PO. 3.2: Sestrojení Brillouinových zón čtvercové 2D mřížky. Mřížkové body reciproké mřížky jsou
označeny červenými tečkami. Hranice BZ leží na kolmici v polovině spojnice dvou mřížkových bodů

reciproké mřížky.
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PO. 3.3: Zaplnění prostoru pomocí opakování první Brillouinovy zóny kubické struktury FCC.
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PO. 3.4: Nákresy Brillouinových zón pro kubocné mřížky BCC a FCC (nehoře). Model 3D
Brillouinovy zóny ke kubické struktuře FCC si lze poskládat z vystřihovánky dole.
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PO. 3.5: Metoda konstrukce směrů difrakčních maxim lauegramu podle P.P. Ewalda. Body značí
reciprokou mřížku a jejich vzdálenost odpovídá translačním vektorům reciproké mřížky. Rentgenový
svazek je při Laueho difrakci širokospektrální, ale kolimovaný. Vlnový vektor k⃗ vychází daným směrem
ze zvoleného bodu A. Pro nejkratší vlnovou délkou je zobrazen modře a pro nejdelší vlnovou délku

červeně. Po difrakci musí výsledný vlnový vektor k⃗′ ležet ve žlutě podbarvené oblasti mezi kružnicemi a
musí začínat v některém bodě reciproké mřížky, např. v bodě B. Body A a B jsou takto spojeny
vektorem reciproké mřížkové translace G⃗. Úhel odklonu rentgenového svazku při difrakci je 2θ.
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3.6 Příklady

Př. 3.1: Inverze Fourierovy řady: (a) Ukažte, že koeficienty rozvoje np periodické funkce n(x) v 1D
splňují vztah

n(x) =

∞∑
p=−∞

np e
ı 2π x

a p, np =
1

a

a∫
0

dxn(x) e−ı 2π
x
a p.

(b) Ukažte, že ve 3D přejde tento vztah na analogii trojrozměrné Fourierovy transformace

n(r⃗) =
∑
G⃗

nG⃗ eıG⃗·r⃗, nG⃗ =
1

Vc

∫
buka

dV n(r⃗) e−ıG⃗·r⃗.

Kittel, str. 81, př. 1

Nápověda: Použijte následující dvě identity, které lze odvodit přímou integrací nebo z definičních vztahů:

a∫
0

dx eı 2π
x
a (p−p′) = δ(

p− p′

a
) = aδ(p− p′),

a⃗i · b⃗j = 2πδij .

Př. 3.2: Krystalové roviny: Uvažujeme rovinu (hkl) krystalové mřížky. Ukažte, že
a) vektor reciproké mřížky G⃗ = h⃗b1 + k⃗b2 + l⃗b3 je kolmý na rovinu (hkl);
b) vzdálenost sousedních rovin d(hkl) = 2π/|G⃗|;
c) pro SC mřížku je d2 = a2/(h2 + k2 + l2).
Kittel, str. 82, př. 2

Nápověda:

h
k

l

Obr. 3.5: Vektor kolmý k rovině lze získat jako vektorový součin dvou vektorů, které leží v této rovině.

Př. 3.3: Vztah přímé a reciproké mřížky:

b⃗1 =
2π

Vc
a⃗2 × a⃗3, Vc = |⃗a1 · a⃗2 × a⃗3|.

Dokažte, že vektory reciproké k vektorům b⃗ jsou právě vektory a⃗.

Nápověda: Použijte vektorovou identitu: a⃗× (⃗b× c⃗) = b⃗(⃗a · c⃗)− c⃗(⃗a · b⃗).
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Př. 3.4: Objem 1. Brillouinovy zóny:
(a) Jaký je objem primitivní reciproké buňky (1.BZ)? Kittel, str. 83, př. 5 (b) Proč je 1.BZ k primitivní
buňce krystalu větší, než když si zvolíme pro popis neprimitivní elementární buňku? (c) S ohledem na
(b), jak se dá vysvětlit nezávislost difrakčních maxim na výběru elementární buňky daného krystalu?

Nápověda:

Ω = |⃗b1 · b⃗2 × b⃗3| =
(2π)3

Vc

Př. 3.5: Reciproká mřížka k variantám kubické mřížky: Nalezněte vektory reciproké mřížky pro
primitivní buňky různých variant kubické mřížky (SC, BCC, FCC)

SC, a⃗1 = a(1, 0, 0), a⃗2 = a(0, 1, 0), a⃗3 = a(0, 0, 1);
BCC, a⃗1 = a

2 (1, 1,−1), a⃗2 = a
2 (−1, 1, 1), a⃗3 = a

2 (1,−1, 1);
FCC, a⃗1 = a

2 (1, 1, 0), a⃗2 = a
2 (0, 1, 1), a⃗3 = a

2 (1, 0, 1).

Řešení:

SC, b⃗1 = 2π
a (1, 0, 0), b⃗2 = 2π

a (0, 1, 0), b⃗3 = 2π
a (0, 0, 1);

BCC, b⃗1 = 2π
a (1, 1, 0), b⃗2 = 2π

a (0, 1, 1), b⃗3 = 2π
a (1, 0, 1);

FCC, b⃗1 = 2π
a (1, 1,−1), b⃗2 = 2π

a (−1, 1, 1), b⃗3 = 2π
a (1,−1, 1).

Př. 3.6: Nejbližší sousedi: Reciproká mřížka k FCC je BCC. Určete počet a polohu nejbližších bodů
Γ v sousedních BZ. Najděte hranici BZ v daném směru. S tím souvisí tvar 1.BZ ve 3D, který je zobrazen
na (PO. 3.3: Zaplnění reciprokého prostoru 1.BZ).

Řešení: 8 bodů v tělesových úhlopříčkách G⃗ = 2π
a (±1,±1,±1), ΓL = 1

2 |G⃗| =
π
a

√
3.

Dalších 6 bodů v osách, např. G⃗ = b⃗1 + b⃗2 = 2π
a (2, 0, 0), ΓX = 1

2 |G⃗| =
2π
a .

Př. 3.7: Rozptyl na vodíku: Základní stav atomu vodíku je daný 1s funkcí atomárního orbitalu (1.4).
Hustota elektronů je daná kvadrátem této funkce:

n(r) = |ψ1s(r)|2 = (πa3B)
−1 exp(−2r/aB),

kde aB je Bohrův poloměr. Odvoďte vztah pro atomový rozptylový faktor fG. Kittel, str. 84, př. 9

Řešení:

fG =

∫
dV

1

πa3B
e−2r/aB e−ıG⃗·r⃗ =

2π

πa3B

∞∫
0

dr r2 e−2r/aB

π∫
0

dα sinα e−ıGr cosα

=
2

a3B

∞∫
0

dr r2 e−2r/aB

1∫
−1

dξ e−ıGrξ =
4

Ga3B

∞∫
0

dr r e−2r/aB sin(Gr)

=
4

Ga3B

4Ga3B
(4 +G2a2B)

2
=

16

(4 +G2a2B)
2
.

Pro malé vektory G⃗ je rozptylový faktor blízký jedné, neboť vodík má jeden elektron. S rostoucím vek-
torem G⃗ rozptylový faktor klesá, fG ∝ G−4

Př. 3.8: Krystalografie práškového india: Pomocí rentgenového záření s λ = 2 Å zkoumáme prášek
india (tetragonální prostorově centrovaná mřížka, a = 3.244 Å, c = 4.938 Å). Spočítejte úhly, pod kterými
se odklánějí kužely difraktovaného záření (2θ).

Nápověda:

elementární, (a, 0, 0), (0, a, 0), (0, 0, c);
primitivní, a⃗1 = (a2 ,

a
2 ,−

c
2 ), a⃗2 = (−a2 ,

a
2 ,

c
2 ), a⃗2 = (a2 ,−

a
2 ,

c
2 );

reciproká, b⃗1 = 2π
ac (c, c, 0), b⃗1 = 2π

ac (0, c, a), b⃗1 = 2π
ac (c, 0, a),.

Objem elementární buňky Vc = 1
2a

2c. Rozptylový zákon sin θ = λ
4π |G⃗|.

Pro směr [100], G⃗ = b⃗1 dostaneme θ = 25.8◦.
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Pro směr [010], G⃗ = b⃗2 dostaneme θ = 21.6◦.

Obecně pro G⃗ = h⃗b1 + k⃗b2 + l⃗b3 vyjde úhel sin θ = λ
2

√
(h+l)2

a2 + (h+k)2

a2 + (k+l)2

c2 .

Pro další roviny s vyššími indexy dostaneme ještě větší úhly difrakce (viz obr. 3.6):
θ(110) = 45.9◦, θ(020) = 47.5◦, θ(200) = 60.7◦, θ(111) = 74.0◦.

(100) (010)

(111) (110)

Roviny krystalu india

Obr. 3.6: Krystalová struktura india: elementární buňka je čtverečná prostorově centrovaná, vektory
primitivní mřížky jsou značeny modře. Indexy krystalových rovin jsou vztaženy k primitivní buňce.
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Fyzikální a strukturní vlastnosti čtyř krystalových vazeba.

Vlastnost Iontová vazba Kovalentní vazba
strukturní Přesné uspořádání Směrové vazby s malým počtem sou-

sedů, malá hustotou krystalu
mechanické Silná vazba, tvrdé krystaly Silná vazba, tvrdé krystaly
tepelné Velmi vysoký bod tání, malý koefi-

cient teplotní roztažnosti, v tavenině
jsou ionty

Vysoký bod tání, malý koeficient
teplotní roztažnosti, v tavenině jsou
molekuly

elektrické Izolátory, vodivost mohou způsobo-
vat ionty v tavenině nebo roztoku

Dobré izolátory v pevném skupen-
ství a jako tavenina

optické Absorpce a další vlastnosti jako
mají samotné ionty

Velký index lomu, v pevném skupen-
ství je jiná absorpce než u taveniny

Vlastnost Kovová vazba Van der Waalsova vazba
strukturní Těsné uspořádání s velkým počtem

sousedů
Těsné uspořádání s velkým počtem
sousedů

mechanické Různá síla vazby, může se při napí-
nání bez přetržení protahovat

Velmi slabá vazba, měkké krystaly

tepelné Různý bod tání různých kovů, ši-
roký teplotní interval kapalné fáze

Nízký bod tání, velký koeficient tep-
lotní roztažnosti

elektrické Vodivé díky vodivostním elek-
tronům

Izolátory

optické Neprůhledný, kovově lesklý Stejné vlastnosti jako mají molekuly

aR.C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press,
2nd edition 1964, Re-issued 2011.
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Kapitola 4

Krystalová vazba

Obsah kapitoly
4.1 Přehled krystalových vazeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Krystaly inertních plynů . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Přitažlivá van der Waalsova interakce . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Odpudivá interakce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Rovnovážné mřížkové konstanty . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Iontové krystaly solí . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Přitažlivá elektrostatická neboli Madelungova energie . . . . . . . . . . . . . . 67

4.3.2 Podmínka rovnováhy solí . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Kovalentní krystaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Kovové krystaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Krystaly s vodíkovou vazbou . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Příklady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Za stabilitu (soudržnost) krystalů musí být zodpovědná přitažlivá elektrostatická interakce mezi zá-
pornými náboji elektronů a kladnými náboji jader. Magnetické síly mají jen slabý vliv, gravitační síla je
zanedbatelná a jaderné interakce mají dosah pouze na vzdálenosti odpovídající velikosti jádra. Porovná-
vat stabilitu jednotlivých krystalů je možné pomocí kohezní energie. Ta se definuje jako energie potřebná
k roztrhání krystalu na jednotlivé atomy a normuje se na jeden atom. Krystal je stabilní, pokud je tato
kohezní energie kladná, t.j. Ekoh > 0.

4.1 Přehled krystalových vazeb

Vazby, které se podílejí na soudržnosti krystalů, dělíme na čtyři typy:
Vazba inertních plynů: typické příklady Ne, Ar, Kr. Protože inertní plyny mají uzavřené elektronové
slupky, vytváří krystaly s nejtěsnějším uspořádáním koulí díky van der Waalsově interakci.
Iontová vazba: typickým příkladem jsou soli jako NaCl, LiF. Krystal vzniká pravidelným střídáním
kladných kationtů a záporných aniontů, které se elektrostaticky přitahují.
Kovalentní vazba: typickým příkladem jsou krystaly prvků ze IV. skupiny prvků periodické tabulky
jako C (v krystalu diamantu), Si, Ge. Tyto prvky mají čtyři valenční elektrony, které vytvářejí kovalentní
vazby maximálně se čtyřmi sousedními atomy. Tyto vazby jsou uspořádány geometricky do tetraedru.
Kovová vazba: většina prvků periodické tabulky vytváří kovové krystaly – alkalické kovy (Na), kovy
alkalických zemin (Ca), přechodové kovy (Fe, Pt, Cu, Au) a kovy pod diagonálou (Al, Pb). Krystal je
tvořen modifikací elektronové struktury, kdy se z atomárních hladin tvoří vodivostní pásy. Rozdělení kovů
do skupin je znázorněno na obr. 4.1.
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Obr. 4.1: Rozdělení kovů a nekovů do skupin je znázorněno barvou polí jednotlivých prvků v periodické
tabulce. Dole je uvedena barevná legenda.

4.2 Krystaly inertních plynů

Jako příklad si můžeme vzít např. argon, viz (PO. 4.1: Periodická tabulka). Z tabulky můžeme
vyčíst, že argon krystalizuje ve struktuře s nejtěsnějším uspořádáním FCC s teplotou tání 84 K. Kohezní
energie krystalu na jeden atom argonu je 0.08 eV, naproti tomu ionizační energie, nutná pro odtržení
jednoho elektronu, je 15.76 eV. Elektronové slupky jsou zcela zaplněny a rozložení náboje elektronů
volného atomu je zcela kulově symetrické. Při vytváření krystalu se rozložení elektronů příliš nezmění a
atomy si sednou do nejtěsnějšího uspořádání koulí. Velmi malá distorze rozložení náboje elektronů vede
k van der Waalsově interakci1 neboli indukované dipól-dipólové interakci. Její vznik si popíšeme pomocí
nejjednoduššího modelu.

4.2.1 Přitažlivá van der Waalsova interakce

R x1

x2 Obr. 4.2: Značení souřadnic dvou váza-
ných oscilátorů.

Uvažujme dva atomy ve vzdálenosti R s jedním elektronem na atom, zavedeme značení podle obr. 4.2.
Zapíšeme nejprve hamiltonián dvou stejných neinteragujících oscilátorů

H0 =
p21
2m

+
1

2
mω2

0 x
2
1 +

p22
2m

+
1

2
mω2

0 x
2
2. (4.1)

Nezávislé oscilátory mají vlastní frekvenci ω0 a m označuje hmotnost elektronu. Poruchou k tomuto ha-
miltoniánu je vzájemná coulombovská interakce mezi dvěma nabitými částicemi vlevo a dvěma částicemi
vpravo,

H1 =
e2

4πε0

[
1

R
+

1

R+ x1 − x2
− 1

R+ x1
− 1

R− x2

]
. (4.2)

Pro malé výchylky x1, x2 ve srovnání se vzdáleností R lze omezit rozvoj jmenovatelů pouze do třetího
řádu:

1

R+ x
∼=

1

R
− x

R2
+
x2

R3
,

1

R− x
∼=

1

R
+

x

R2
+
x2

R3
. (4.3)

S použitím těchto rozvojů získáme interakční hamiltonián ve tvaru

H1
∼=

e2

4πε0

[
1

R
+

1

R
− (x1 − x2)

R2
+

(x1 − x2)2

R3
−
(
1

R
− x1
R2

+
x21
R3

)
−
(
1

R
+
x2
R2

+
x22
R3

)]
, (4.4)

1Johannes Diderik van der Waals je nositelem Nobelovy ceny za fyziku z roku 1910.
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kde se většina roznásobených členů odečte, první nenulový člen je řádu 1/R3. Interakční hamiltonián se
takto zjednoduší na

H1
∼= −

2e2x1x2
4πε0R3

. (4.5)

Po dosazení bude celkový hamiltonián dvou oscilátorů s interakcí obsahovat křížový člen

H = H0 +H1 =
p21
2m

+
1

2
mω2

0 x
2
1 +

p22
2m

+
1

2
mω2

0 x
2
2 −

2e2x1x2
4πε0R3

. (4.6)

Soustavu dvou nezávislých harmonických oscilátorů lze získat zpět standardním přechodem k normálním
souřadnicím xS , xA a sdruženým hybnostem pS , pA. Přechod se provede pomocí transformace

x1 =
1√
2
(xS + xA), x2 =

1√
2
(xS − xA),

p1 =
1√
2
(pS + pA), p2 =

1√
2
(pS − pA). (4.7)

V těchto normálních souřadnicích má hamiltonián tvar

H =

[
p2S
2m

+

(
mω2

0

2
− e2

4πε0R3

)
x2S

]
+

[
p2A
2m

+

(
mω2

0

2
+

e2

4πε0R3

)
x2A

]
. (4.8)

To odpovídá dvěma lineárním harmonickým oscilátorům na posunuté frekvenci vlastních kmitů:

ωS,A =

√
ω2
0 ∓

e2

2mπε0R3
∼= ω0

[
1∓ 1

2

(
e2

2mω2
0πε0R

3

)
− 1

8

(
e2

2mω2
0πε0R

3

)2

+ · · ·

]
. (4.9)

Energie základního stavu je tedy snížená o posun energie nulových kmitů

∆U =

[
ℏ
2
(ωS + ωA)

]
−
[
ℏ
2
(ω0 + ω0)

]
= ℏω0

[
−1

8

(
e2

2mω2
0πε0R

3

)2
]
= − A

R6
. (4.10)

Výsledný posun energie je záporný, vzájemnou interakcí obou dipólů dojde ke snížení energie základního
stavu. Protože ∆U je energie získaná při vzniku vazby, je kohezní energie Ekoh ∝ −∆U . Navíc se nám
podařilo ukázat, že tato přitažlivá interakce je nepřímo úměrná šesté mocnině vzdálenosti dipólů R.

4.2.2 Odpudivá interakce

Interakce mezi dvěma atomy snižuje energii základního stavu (stavu nulových kmitů) se závislostí ∆U =
−A/R6. Pokud má nastat rovnováha na nějaké vzdálenosti, musí existovat odpudivá interakce, která bude
působit proti dalšímu přibližování. Při přibližování dvou atomů se začnou postupně překrývat rozložení
nábojů. Díky Pauliho vylučovacímu principu nemohou dva elektrony obsazovat stejný kvantový stav.
Proto se elektron musí posunout do vyššího excitovaného stavu, jak ukazuje obr. 4.3.

R a

R a

Obr. 4.3: Odpudivá interakce vzniká
překryvem elektronových vlnových
funkcí. Nahoře jsou dva dostatečně
vzdálené atomy bez interakce. Dole
jsou atomy natolik blízko, že se jejich
prostorové rozložení elektronů překrývá
ve žlutě zvýrazněné oblasti.

Teoretický výpočet by byl komplikovaný, nicméně experimentální hodnoty lze dobře popsat em-
pirickým potenciálem ∆U = B/R12. Celkově lze zapsat odpudivou i přitažlivou interakci do jednoho
potenciálu, který se nazývá Lennard-Jonesův potenciál

U(R) = 4ε

[( σ
R

)12
−
( σ
R

)6]
, (4.11)
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kde ε a σ jsou empirické parametry, které lze získat z měření na atomech inertních plynů v plynném
skupenství. Typické hodnoty jsou uvedeny v tab. 4.1. Rovnovážná poloha R0 se nalezne jako minimum
potenciálu. Derivace potenciálu nám dává působící sílu, takže rovnováha je samozřejmě daná podmín-
kou, že v rovnovážném bodě je výsledná síla nulová. Takto dostaneme teoretickou rovnovážnou vzdálenost
atomů Rth

0 = 6
√
2σ = 1.122 462σ. Pro srovnání jsou v tab. 4.1 uvedeny i experimentální hodnoty Rex

0 .

Tab. 4.1: Parametry Lennard-Jonesova potenciálu (4.11) inertních plynů. Rovnovážné vzdá-
lenosti R0 odpovídají dvojci atomů. Hodnoty jsou extrapolovány k nulové teplotě (0 K) a
nulovému tlaku. Data v této a následujících tabulkách této kapitoly byla převzata z [2].

Prvek ε [10−23 J] σ [Å] Rth
0 [Å] Rex

0 [Å]
He 14 2.56
Ne 50 2.74 3.08 3.13
Ar 167 3.40 3.82 3.76
Kr 225 3.65 4.10 4.01
Xe 320 3.98 4.47 4.35

4.2.3 Rovnovážné mřížkové konstanty

Pokud zanedbáme kinetickou energii, je kohezní energie krystalu inertního plynu daná součtem potenciálu
(4.11) přes všechny páry atomů v krystalu. Pro N atomů je celková energie

Utot =
1

2
N 4ε

 ′∑
j

(
σ

pijR

)12

−
′∑
j

(
σ

pijR

)6
 = 2Nε

 ′∑
j

p−12
ij

( σ
R

)12
−

′∑
j

p−6
ij

( σ
R

)6 , (4.12)

kde pij je relativní vzdálenost atomu j od referenčního atomu i v jednotkách vzdálenosti nejbližších
sousedů R. Sumací přes index i referenčního atomu získáme celkový počet atomů N a numerický faktor
1
2 eliminuje započítávání dvojic (i, j) dvakrát. Mřížkové sumy

∑′
j p

−?
ij jsou určené pouze geometrií dané

mřížky, takže je lze napočítat jednou pro vždy pro všechny krystaly se shodnou krystalovou strukturou
najednou, viz tab. 4.2. Interakce v Lennard-Jonesově potenciálu jsou pouze krátkodosahové a do mřížkové
sumy nejvíce přispívají nejbližší sousedi, kterých je v mřížkách s nejtěsnějším uspořádáním 12.

Tab. 4.2: Mřížkové sumy pro krystaly inertních plynů.

Struktura
∑′
j p

−12
ij

∑′
j p

−6
ij

FCC 12.131 88 14.453 92
HCP 12.132 29 14.454 89
BCC 9.114 18 12.253 3

Z podmínky nulovosti derivace dUtot/dR = 0 získáme pro dvě nejtěsnější konfigurace (FCC a HCP)
prakticky stejnou rovnovážnou vzdálenost R0 = 1.09σ. Kohezní energie na jeden atom potom vychází

Ekoh = −Utot(R0)/N = 8.6ε. (4.13)

Tvar odpovídajícího potenciálu je zakreslen v obr. 4.4a).

4.3 Iontové krystaly solí

Krystaly solí jsou složeny z kladných kationtů a záporných aniontů, které se v mřížce střídají tak, aby
nejbližší sousedi jednoho iontu byly ionty opačně nabité. Za stabilitu krystalu je zodpovědná elektrosta-
tická coulombovská interakce. Typické příklady krystalů solí (NaCl, CsCl, GaAs a ZnS) byly popsány
v (PO. 1.9: Krystaly solí). Budeme předpokládat nejjednodušší soli, kde se střídají pouze dva ionty,
kationt s nábojem (+Q) a aniont s nábojem (−Q). Hodnota Q je celočíselný násobek elementárního
náboje daný oxidačním číslem iontů v soli. Pro NaCl je Q = e.
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Obr. 4.4: Závislost energie na meziatomární vzdálenosti v krystalu a) inertního plynu b) soli KCl.

Kohezní energii krystalu NaCl lze odvodit z energetické bilance pro jednu molekulu následovně:

Na + 5.14 eV ⇒ Na+ + e−

e− + Cl ⇒ Cl− + 3.61 eV
Na+ + Cl− ⇒ Na+Cl− + 7.9 eV

Celkově dostaneme kohezní energii na jednu molekulu, Ekoh = (7.9 + 3.6− 5.1) eV = 6.4 eV.

4.3.1 Přitažlivá elektrostatická neboli Madelungova energie

Coulombovská interakce dosahuje dále než jen k nejbližším sousedům a navíc se střídají přitažlivé a od-
pudivé síly. Interakce i-tého atomu s okolními atomy lze zapsat jako Ui =

∑′
j Uij . Protože pro atomy solí

nemáme empirické parametry jako u vzácných plynů, budeme předpokládat odpudivou interakci v expo-
nenciálním tvaru λ e−r/ρ, kde sílu interakce λ a dosah ρ bereme jako konstanty, určené z pozorovaných
hodnot mřížkových konstant a stlačitelností. Příspěvek energie od jednoho atomu má tvar

Uij = λ e−rij/ρ ± 1

4πε0

Q2

rij
=

{
λ e−R/ρ − 1

4πε0

Q2

R (nejbližš́ı sousedé)

± 1
4πε0

Q2

pijR
(ostatńı)

. (4.14)

Součet Ui nezávisí na tom, zda je referenční atom aniont nebo kationt. Celý krystal obsahuje N
molekul nebo 2N iontů, protože ale nechceme počítat příspěvky od párů atomů dvakrát, je celková
energie

Utot = NUi = N

(
zλ e−R/ρ − 1

4πε0

αQ2

R

)
, (4.15)

kde z je počet nejbližších sousedů každého atomu a α je Madelungova konstanta definovaná vztahem

α ≡
′∑
j

(±)
pij

. (4.16)

Protože znaménko elektrostatické interakce se u aniontů a kationtů střídá, je třeba toto zohlednit při
výpočtu sumy. Díky tomu, že se výpočet Madelungovy konstanty provádí v relativních souřadnicích, je
její velikost daná opět pouze geometrií uspořádání krystalu a nikoliv velikostí mřížkové konstanty. Pro
typické soli je výsledek uveden v tab. 4.3.
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Tab. 4.3: Madelungova konstanta α typických kubických solí.

Sůl Struktura z α

NaCl chlorid sodný 6 1.747 565
CsCl chlorid cesný 8 1.762 675
GaAs kubický sfalerit 4 1.638 1

4.3.2 Podmínka rovnováhy solí

V rovnováze musí platit podmínka minima celkové energie. Toto minimum získáme z nulovosti derivace
dUtot/dR = 0. Takto získáme vztah pro rovnovážnou vzdálenost nejbližších sousedů

R2
0 e

−R0/ρ =
ραQ2

4πε0zλ
. (4.17)

Celkovou energii krystalu složeného z 2N iontů v rovnováze dostaneme dosazením R0 do (4.15)

Utot =N

(
zλ e−R0/ρ − 1

4πε0

αQ2

R0

)
= N

(
ρ

4πε0

αQ2

R2
0

− 1

4πε0

αQ2

R0

)
,

Utot =−
NαQ2

4πε0R0

(
1− ρ

R0

)
. (4.18)

Poměr dosahu odpudivé interakce a délky vazby ρ/R0 ≈ 0.1. Hodnota závorky je blízká jedné a velikost
celkové energie, která je označovaná jakoMadelungova energie, je prakticky rovna konstantě před závorkou
ve výrazu (4.18). Tvar odpovídajícího potenciálu je pro sůl KCl zakreslen v obr. 4.4 b).

IV
Si 0.00
Ge 0.00

IV-IV SiC 0.18

III-V

InP 0.42
InAs 0.36
InSb 0.32
GaAs 0.31

II-VI

MgO 0.84
MgS 0.79
MgSe 0.79
CdS 0.69
CdTe 0.67
ZnO 0.62
ZnS 0.62

I-VII

RbF 0.96
NaCl 0.94
LiF 0.92
AgCl 0.86
AgBr 0.85
AgI 0.77

Obr. 4.5: Podíl iontové a kovalentní vazby u typických krystalů. Krystaly jsou rozdělené do skupin podle
sloupců periodické tabulky obsažených prvků. Číslo ve třetím sloupci představuje zastoupení iontového
charakteru ve vazbě u dané soli, červený vodorovný proužek ukazuje tuto hodnotu na škále od nuly do
jedné. Typický kovalentní krystal jako křemík má hodnotu iontovosti nula. Data převzata z [2].
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4.4 Kovalentní krystaly

Typickým příkladem kovalentního krystalu je třeba křemík nebo uhlík ve formě diamantu. Tyto prvky
vytvářejí krystal vazbou valenčních elektronů mezi sousedními atomy. Tyto atomy mají 4 valenční elek-
trony a vytvářejí tedy tetraedrické směrové vazby se čtyřmi nejbližšími sousedy. Síla kovalentní vazby
v diamantu je 7.3 eV, což je srovnatelné se sílou iontových vazeb solí. Dva elektrony, které se podílejí
na vazbě, jsou převážně lokalizovány v oblasti mezi atomy, mezi kterými vytvářejí vazbu. Spiny obou
elektronů jsou orientovány antiparalelně.

Význam kovalentní vazby je značný, uhlíkové vazby jsou základním prvkem organické chemie a bi-
ologie. Na křemíku zase stojí značná část mineralogie a majoritní část polovodičových technologií. Nej-
jednodušší model kovalentní vazby můžeme studovat u molekuly vodíku H2. Díky Pauliho vylučovacímu
principu se modifikuje rozložení náboje různě pro souhlasné a opačné orientace spinů. Tato spinově závislá
coulombovská energie se označuje jako výměnná interakce.

Pokud se vrátíme ještě jednou k diamantu, uhlík v základním stavu má elektronovou strukturu
1s22s22p2. Aby mohl vytvořit sp3 tetraedrické vazby musí přejít do excitovaného stavu 1s22s12p3, na což
potřebuje 4 eV. Po vytvoření vazby ale získá mnohem více energie, což způsobí vznik stabilního krystalu
s kohezní energií 7.3 eV.

Je třeba podotknout, že čistě kovalentní vazba je pouze u krystalů ze IV. skupiny, ale i u krystalů
solí se na kohezní energii podílí částečně. Podíl iontové vazby roste s tím, jak se dva odpovídající prvky
soli od sebe vzdalují v periodické tabulce, viz obr. 4.5.

4.5 Kovové krystaly

Kovy jsou charakteristické vysokou vodivostí. Velké množství elektronů se může pohybovat volně v celém
krystalu kovu, typicky jeden nebo dva elektrony na atom. Tyto elektrony označujeme jako vodivostní
elektrony. Krystal alkalických kovů je stabilní díky snížení energie elektronů v pásech vůči energii na
hladině v izolovaném atomu. U přechodových kovů k vazebné energii přispívají i kovalentní vazby, které
se vytvářejí mezi vnitřními stavy d-slupek atomů. Podrobný výklad bude následovat v samostatné kapitole
kovy (kap. 7).

K vytváření vodivostních pásů je třeba dostatečný překryv elektronových stavů sousedních atomů,
proto kovové krystaly preferují těsné uspořádání FCC, HCP, BCC, jak to ukazuje (PO. 4.1: Periodická
tabulka).

4.6 Krystaly s vodíkovou vazbou

Atom vodíku má pouze jeden elektron a logicky by měl tvořit pouze jedinou vazbu. Je ale známo, že vodík
může vytvářet vodíkové můstky mezi dvěma atomy s vazebnou energií ≈ 0.1 eV. V této vazbě je vodík
ionizován, elektron se přesouvá na některý z propojovaných atomů a vazbu tvoří kladně nabitý proton
mezi dvěma atomy spojenými můstkem. Vodíkové můstky jsou důležité pro popis neobvyklých fyzikálních
vlastností, které jsou typické pro vodu. Jsou důležité také pro formování biologických sloučenin jako je
DNA.
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PO. 4.1: Periodická tabulka ukazuje pod názvem prvku krystalovou strukturu, kohezní energii a
ionizační energii v elektronvoltech. Větší kohezní energie je znázorněna podbarvením sytější červenou,
větší ionizační energie sytější zelenou. Prvky krystalů, u nichž je větší kohezní energie, jsou podbarveny
šedivě. Tam, kde jsou obě energie srovnatelné, jsou značky prvku podbarveny žlutě. Data převzata z [2].
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4.7 Příklady

Př. 4.1: Madelungova konstanta v 1D: Dokažte, že pro 1D řetízek soli, kde se střídají ionty s
nábojem +e a −e, vyjde Madelungova konstanta α = 2 ln(2) ≈ 1.386 294.

Nápověda: Z definice dostaneme pro 1D řetízek

α = 2

[
1− 1

2
+

1

3
− 1

4
+ · · ·

]
.

Porovnejte s Taylorovým rozvojem funkce logaritmus v okolí hodnoty 1,

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · .

Př. 4.2: Kohezní energie neonu se strukturou FCC a BCC:
Porovnejte rovnovážné mřížkové konstanty a kohezní energie neonu ve dvou konfiguracích FCC a BCC.
Použijte zápis Lennard-Jonesova potenciálu podle (4.12) a mřížkové sumy podle tab. 4.2.
Kittel, str. 115, př. 2

Nápověda: Pozor, rovnovážná vzdálenost R0 se pro obě varianty mřížky liší.

Řešení: Podíl kohezní energie vyjde 0.9566.

Př. 4.3: Krystalický molekulární vodík:
Z měření plynného vodíku H2 jsou známy parametry potenciálu (4.12): ε = 5 × 10−22 J, σ = 2.96 Å.
Považujte krystalický vodík za FCC strukturu nejtěsnějšího uspořádání koulí molekul H2. Najděte kohezní
energii v jednotkách kJ/mol. Srovnáním s mnohem menší experimentální hodnotou 0.751 kJ/mol můžeme
usoudit, že kvantové opravy musí být velmi důležité. Kittel, str. 115, př. 3

Nápověda: Pro FCC strukturu můžeme použít obecný výsledek odvozený v rovnici (4.13).

Řešení: ε = 3.12 meV, Ekoh = 2.59 kJ/mol.

Př. 4.4: Kohezní energie dvou konfigurací soli KCl:
Parametry potenciálu (4.15) pro sůl KCl jsou ve struktuře NaCl: zλ = 2.05 × 10−15 J, R0 = 3.147 Å,
ρ = 0.326 Å. S využitím Madelungovy konstanty podle tab. 4.3 spočítejte kohezní energii KCl: 1) v kubické
struktuře sfaleritu, 2) v kubické struktuře soli NaCl. Výsledné energie komentujte. Kterou krystalovou
strukturu bude sůl KCl při krystalizaci preferovat?

Kittel, str. 116, př. 6

Nápověda: Pro obě struktury se liší parametry z a α.

Řešení: 1) Pro sfaleritovou strukturu vyjde kohezní energie 7.002 eV (R0 = 3.003 Å), 2) pro uspořádání
ve struktuře NaCl vyjde kohezní energie 7.174 eV.

Př. 4.5: Kvantové opravy pro krystaly inertních plynů:
Použijte parametry inertních plynů uvedené v tab. 4.1 a spočítejte teoretickou hodnotu kohezní energie
pro neon, argon a krypton. Porovnejte výsledky s experimentálními hodnotami kohezní energie pro tyto
krystaly inertních plynů ((PO. 4.1: Periodická tabulka)).

Nápověda: Stačí dosadit do (4.13).

Př. 4.6: Určete kohezní energii kovového sodíku jako krystalu soli Na+Na−:
Uvažujte krystal sodíku jako iontový krystal soli ve struktuře NaCl. Použijte parametry z výpočtu uve-
dené v sekci 4.3. Elektronová afinita, t.j. energie potřebná na vytvoření iontu Na−, je 0.78 eV. Mezia-
tomární vzdálenosti (vzdálenost nejbližších sousedů) spočítejte z krystalové struktury kovového sodíku
((PO. 1.1: Periodická tabulka)). Výsledek porovnejte s experimentální hodnotou pro kovový krystal
sodíku: 1.113 eV. Kittel, str. 115, př. 4

Řešení: Ekoh = 1
2 (6.88 + 0.78− 5.14) eV = 1.26 eV.
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Kapitola 5

Fonony I - kmity mřížky

Obsah kapitoly
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5.1 Popis dynamiky mřížky v harmonické aproximaci

z

x y

R10

R20

Obr. 5.1: Rovnovážné polohy atomů v mřížce soli CsCl. Červený atom chlóru má index k = 1 a modrý
atom cesia má index k = 2.

Pro popis kmitů mřížky musíme zavést vhodné značení. Jednotlivé primitivní buňky krystalu budeme
číslovat indexem l. Jednotlivé atomy v buňce budeme značit indexem k. Protože rozmístění atomů je stejné
v každé primitivní buňce, stačí nám pro zápis hmotností všech atomů v krystalu Mk pouze jeden index.
Pro popis poloh atomárních jader v mřížce zavedeme rovnovážné polohy jader, které budeme označovat
vektorem s indexem nula R⃗0, viz obr 5.1. Tyto polohy jsme probírali v kapitole 1. Aktuální pozici atomu
pak můžeme psát pomocí výchylky z rovnovážné pozice jako

R⃗ = R⃗0 + u⃗,

kde vektor u⃗ označuje výchylku z rovnovážné polohy. Pro ionty můžeme napsat celkový hamiltonián jako
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součet kinetické energie a potenciálu pro ionty V. Tento potenciál můžeme rozepsat jako

V = V0(R⃗0,kl, . . .) + V ′(u⃗kl, . . .).

První člen odpovídá energii mřížky s atomy v rovnovážných polohách a je konstantní, pro řešení dynamiky
mřížky ho nemusíme uvažovat. Tím si pouze zvolíme nulovou hodnotu na energetické škále. Protože
vektory R⃗0 popisují rovnovážné polohy atomů, nemůže záviset V ′ na výchylkách z rovnováhy lineárně.
Pro minimum potenciálu musí být první derivace podle výchylek nulová. První netriviální přiblížení je
tedy kvadratický rozvoj ve výchylkách u⃗kl. K celkové energii přispívá jeden konkrétní iont k v cele l svou
kinetickou energií a kvadratickým neboli harmonickým potenciálem následovně

H ′(u⃗kl) =
1

2
Mk

(
du⃗kl
dt

)2

+
1

2

∑
k′l′

u⃗klΦ(kl, k
′l′)u⃗k′l′ . (5.1)

První člen je kinetická energie, kde Mk značí hmotnost atomu. Druhý člen určuje změnu energie způso-
benou výchylkou iontu s indexy (kl) zatímco ostatní atomy jsou ponechány na místě. Silové konstanty
jsou dané derivací potenciálu jader1

Φ(kl, k′l′) =
∂2V

∂u⃗kl∂u⃗k′l′
.

Z definice přímo vyplývají některé vlastnosti silových konstant Φ(kl, k′l′):

1. jsou reálné: Φ(kl, k′l′) = Φ∗(kl, k′l′);

2. jsou symetrické: Φ(kl, k′l′) = Φ(k′l′, kl);

3. závisí na indexech jen přes vzdálenost primitivních buněk: |R⃗l − R⃗l′ |;

4. celková suma silových konstant je nulová:
∑
k′l′ Φ(kl, k

′l′) = 0 (odpovídá posunu celého krystalu);

5. sílu působící na jeden atom je možné zapsat pomocí výchylek ostatních atomů:

F⃗kl = −
dV
du⃗kl

= −
∑
k′l′

Φ(kl, k′l′)u⃗k′l′

Silové konstanty zahrnují dvě interakce: a) přímou coulombovskou interakci jader, která je odpudivá;
b) nepřímou interakci zprostředkovanou elektrony. Pohyb iontu vede ke změně rozložení hustoty elektronů,
což dává vzniknout síle působící na okolní ionty.

Řešení dynamiky mřížky popsané hamiltoniánem (5.1) se dá provést klasicky, kdy se řeší klasické
pohybové rovnice. Při klasickém popisu je celková energie součtem energie jednotlivých atomů konajících
malé oscilace kolem rovnovážné polohy. Tento problém mnoha vázaných oscilátorů lze zjednodušit pře-
chodem do normálních souřadnic. Normální souřadnice mají tu vlastnost, že jednotlivé oscilátory jsou
v soustavě těchto souřadnic nezávislé, tyto kmity se označují jako normální módy. V druhém kroku se
energie těchto normálních módů kvantují. Energie systému popsaného pomocí normálních módů se může
zvětšovat pouze přechodem některého normálního harmonického oscilátoru na vyšší energetickou hladinu.
Tyto hladiny jsou, jak známo, ekvidistantní [11]. Přechod na vyšší energetickou hladinu je tedy dopro-
vázen zvýšením energie o jedno kvantum mřížkových vibrací. Toto kvantum energie se nazývá fonon.

Z translační symetrie silových konstant Φ(kl, k′l′) vyplývá, že vlastní funkce řešeného problému vý-
chylek iontů jsou rovinné vlny. Výchylku k-tého iontu v l-té primitivní buňce lze vztáhnout k výchylce
odpovídajícího iontu v primitivní buňce v počátku souřadného systému (l = 0) podle

u⃗kl(q⃗, ω) = u⃗k0 e
ı(q⃗·R⃗l−ωt), (5.2)

kde q⃗ je vlnový vektor a ω je frekvence šířící se vlny. Kvazičástici fonon charakterizujeme pomocí stejných
parametrů q⃗ a ω. Díky diskrétnosti rozložení iontů v látce stačí pro popis všech vibračních módů vybrat
vlnový vektor q⃗ pouze z 1.BZ. Substitucí (5.2) do (5.1) dostaneme pohybovou rovnici pro jeden vybraný

1Obecně jsou silové konstanty Φ(kl, k′l′) tenzor druhého řádu.
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atom. Řešení můžeme provést také tak, že si přímo zapíšeme Newtonovu pohybovou rovnici pro iont k
v nulté primitivní buňce: (hmotnost)×(zrychlení)=(síla)

Mkω
2u⃗k0 =

∑
k′l′

Φ(k0, k′l′) e−ıq⃗·R⃗l′ u⃗k′0. (5.3)

Za zrychlení jsme dosadili druhou derivaci u⃗kl podle času.

Nyní provedeme 3D Fourierovu transformaci silových konstant s modifikací na hmotnost podle

Dkk′(q⃗) =
∑
l′

Φ(k0, k′l′) e−ıq⃗·R⃗l′ /
√
MkMk′ .

Silové konstanty jsou funkcí polohových vektorů všech atomů mřížky, naproti tomu dynamická matice
Dkk′(q⃗) je funkcí vlnového vektoru rovinné deformační vlny, která se šíří v krystalu. Tímto přechodem
k frekvencím zjednodušíme rovnici (5.3) na

3s∑
k′=1

[Dkk′(q⃗)− ω2δkk′ ]u⃗k′0 = 0. (5.4)

Hledání vlastních fononových módů v krystalu tímto způsobem vede na řešení soustavy lineárních
rovnic s nulovou pravou stranou. Vlastní číslo této soustavy je ω. Nenulové řešení této soustavy rovnic
je podmíněno nulovostí determinantu této soustavy. Podmínku pro vlastní hodnotu ω tedy přepíšeme
následovně

det
∣∣Dkk′(q⃗)− ω2δkk′

∣∣ = 0. (5.5)

Připomeňme si, že index k čísluje atomy v primitivní buňce. Pokud primitivní buňka krystalu obsahuje
s atomů, potom má tato soustava pro 3D krystal 3s řešení.

Při kvantovém popisu dostaneme energii kvantového vibračního módu ω rovnou (n + 1
2 )ℏω, kde

kvantové číslo n označuje obsazení vibračního módu. Analogií s řešením harmonického oscilátoru, což je
typický příklad úlohy ze základů kvantové mechaniky, můžeme pro přechody mezi energetickými stavy
obsazení módu použít kreační a anihilační operátory a zavést fonony. Kvantové číslo n pak označuje počet
fononů s frekvencí ω.

5.2 Kmity mřížky stejných atomů

Uvažujme pružné kmity mřížky s jedním atomem v primitivní buňce. Pro popis vlnění v krystalu po-
třebujeme znát jeho vlnový vektor q⃗ a směr výchylek u⃗. Jsou-li tyto vektory paralelní (resp. kolmé),
hovoříme o podélném (resp. příčném) vlnění. Někdy se užívají termíny podélná (longitudální), resp.
příčná (transverzální) polarizace vlnění. Z obrázku 2D vlnění v úvodu této kapitoly je dobře patrné, že
v případě podélného vlnění dochází k lokálnímu zhušťování a zřeďování atomů, kdežto u příčného vlnění
se vzájemně posouvají atomární roviny nad sebou, ale hustota se nemění. Pokud se vlnění šíří podél osy
symetrie např. [100], [110], [111], dá se řešení i pro 3D krystal hledat jako jednorozměrná úloha ve směru
šíření.

x

M

s-2 s-1 s s+1 s+2a

Obr. 5.2: 1D řetízek stejných atomů.

Elastické pnutí v materiálu se popisuje pomocí Hookova zákona, který vyjadřuje vztah mezi působící
silou a deformací předmětu. Protože deformace je obecně tenzorová veličina, obecně se tento zákon za-
pisuje v tenzorovém tvaru (viz dodatek A). Nejjednodušším způsobem se dá Hookův zákon zapsat jako:
(napětí)=(tuhost)×(deformace). To umožňuje zapsat sílu působící na atom s v obr. 5.2 pomocí změny
vzdálenosti vůči všem ostatním atomům

Fs =

′∑
p

Cp(us+p − us), (5.6)

75



kde Cp jsou silové konstanty vztažené na jeden atom. Známe-li sílu působící na atom s, můžeme řešit
jeho pohybovou rovnici ve tvaru: (hmotnost)×(zrychlení)=(síla),

M
d2us
dt2

=

′∑
p

Cp(us+p − us). (5.7)

Sumu můžeme zjednodušit tím, že sečteme symetrické členy s indexem ±p . Řešení budeme předpokládat
ve tvaru rovinné vlny ve tvaru

us+p = u eı(s+p)qa e−ıωt, (5.8)

kde q označuje vlnový vektor (v 1D by se měl správně nazývat vlnové číslo).

Obecné řešení, které získáme, se nazývá disperzní zákon, t.j. závislost frekvence na vlnovém vektoru:

ω2 =
2

M

∑
p>0

Cp(1− cos(pqa)). (5.9)

Tento zákon se zjednoduší v přiblížení interakce pouze nejbližších sousedů, (Cp = 0 pro p > 1, C1 = α)

ω2 =
2α

M
(1− cos(qa)) ⇒ ω =

√
4α

M

∣∣∣sin(qa
2

)∣∣∣ . (5.10)

Pro popis vlnění zavádíme tři různé rychlosti:

Limita dlouhých vln (rychlost zvuku v látce)

v0 ≡ lim
q→0+

ω

q
= a

√
α

M
. (5.11)

Fázová rychlost (rychlost šíření vlnoplochy)

vf ≡
ω

q
= v0

∣∣∣∣ sin( qa2 )
qa
2

∣∣∣∣ .
Grupová rychlost (rychlost toku energie)

vg ≡
dω

dq
= v0 cos

(qa
2

)
.

Všechny výše zavedené rychlosti spolu s disperzním zákonem (5.10) jsou graficky znázorněny v
obr. 5.3. Je důležité si uvědomit, že rovinné vlny (5.8) popisují vlnění atomů, které jsou v prostoru
diskrétně rozmístěné. Proto mají smysl pouze vlnové vektory fononových módů z 1.BZ. Vyšší prostoro-
vou frekvenci nemohou diskrétní atomy přenášet.
(PO. 5.1: Podélné 1D fononové módy),
(PO. 5.2: Příčné 1D fononové módy).
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Obr. 5.3: a) Disperzní zákon (5.10) pro řetízek identických atomů, b) fázová a grupová rychlost fononových
módů s daným vlnovým vektorem q.
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5.3 Dvouatomární řetízek

Nyní budeme uvažovat složitější případ lineárního řetízku. Může být např. složen z více druhů atomů,
které se pravidelně střídají, nebo se mohou lišit silové konstanty jednotlivých vazeb. Vybereme si jako
příklad situaci, kdy se v 1D řetízku střídají dva atomy v uspořádání podle obr. 5.4. Jako v předešlé sekci
bude se i zde hledat řešení v přiblížení interakce omezené pouze na nejbližší sousedy. Hmotnosti atomů
označíme mnemotechnicky podle velikosti, M > m. Rovnovážnou vzdálenost atomů označíme a.

x

M m

2n-2

2n-1

2n

2n+1

2n+2a a

Obr. 5.4: 1D řetízek ze dvou atomů,
mřížková konstanta je zde 2a.

V tomto případě musíme řešit dvě pohybové rovnice, pro každý druh atomů jednu. Při započítání
pouze interakce nejbližších sousedů se silovou konstantou C1 = α dostaneme pro atomy 2n a 2n+ 1 tyto
rovnice

Mü2n = α(u2n−1 + u2n+1 − 2u2n),

mü2n+1 = α(u2n + u2n+2 − 2u2n+1). (5.12)

Tečka nad funkcí značí časovou derivaci, ü = d2u/dt2.

Řešení budeme hledat ve formě rovinných vln, kde ale mohou mít různé atomy různé amplitudy
výchylky, takže

u2n = A e−ıωt eı2nqa, u2n+1 = B e−ıωt eı(2n+1)qa. (5.13)

Dosazením do (5.12) získáme sadu dvou algebraických rovnic

B (2α cos(qa)) +A(Mω2 − 2α) = 0,

B(mω2 − 2α) +A (2α cos(qa)) = 0. (5.14)

Soustava homogenních lineárních rovnic má netriviální (nenulové) řešení pouze tehdy, když jsou obě
rovnice závislé. Což je právě tehdy, pokud je determinant soustavy dvou rovnic roven nule. Tato podmínka
nám dá dvě řešení pro ω2. Řešení se záporným znaménkem je ale pouze vlna s opačným směrem šíření.
Máme tedy dvě disperzní závislosti: akustickou (−) a optickou (+), které jsou dané výrazem

ω2
±(q) = α


(

1

M
+

1

m

)
±

√(
1

M
+

1

m

)2

− 4 sin2(qa)

Mm

 . (5.15)

Obecně můžeme říci, že pokud primitivní buňka krystalu obsahuje s atomů a krystal je složen z N
elementárních buňek, potom má tato soustava 3Ns stupňů volnosti. Vlnový vektor fononových módů q⃗
nabývá v 1.BZ N různých hodnot. Fononové spektrum obsahuje 3 akustické větve (jedna podélná LA a
dvě příčné TA) a (3s− 3) optické větve (z toho třetina podélných LO a dvě třetiny příčných TO). Tyto
závislosti ukazuje obr. 5.5.
(PO. 5.3: Obrázek různých fononových módů dvouatomárního řetízku).
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Obr. 5.5: a) Disperzní zákony (5.15) pro řetízek střídajících se atomů Ga a As, tečkovaně je zobrazen fit
parabolou. b) Fononové disperzní závislosti ve směru [111] pro Ge při teplotě 80 K, převzato z [2].
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5.4 Experimentální určování silových konstant kovů

V kovech mohou být síly mezi ionty dalekodosahové, byly pozorovány jevy, kde se ukázalo působení až
na vzdálenost dvacet krystalových rovin. Máme-li k dispozici měřenou disperzní závislost, můžeme získat
silové konstanty z teoretické závislosti (5.9) Fourierovou transformací. Obě strany rovnice vynásobíme
cos(rqa), kde r je celé číslo, a přeintegrujeme přes oblast 1.BZ

M

π/a∫
−π/a

ω2
q cos(rqa)dq = 2

∑
p>0

Cp

π/a∫
−π/a

[
1− cos(pqa)

]
cos(rqa)dq = −2πCr

a
.

Integrál na pravé straně je nenulový pouze pro r = p, kdy se rovná −π/a. Takto dostaneme pro silovou
konstantu p−té atomové roviny integrální vztah pomocí Fourierovy kosinové transformace funkce ω2

Cp = −
Ma

2π

π/a∫
−π/a

ω2
q cos(pqa)dq.

Je třeba zmínit, že tento vztah platí pouze pro mřížky s jedním atomem v primitivní buňce.

5.5 Kvantování kmitů mřížky

Správný popis elektromagnetického záření absolutně černého tělesa byl možný až po zavedení kvantování
elektromagnetického pole. Tato kvanta tepelně excitovaného záření zavedl M. Planck2 a dnes je nazýváme
foton. Kvantování energie elastických tepelných kmitů mřížky krystalu vede k popisu založeném na tepelně
excitovaných kvazičásticích nazývaných fonony. Název této kvazičástice byl odvozen od názvu fotonu, ale
je třeba si uvědomit podstatnou odlišnost. Fonon je pouze kvazičástice, popisuje excitace systému atomů
v krystalové mřížce, mimo krystalovou mřížku se proto nemůže vyskytovat.

Energie fononového modu s frekvencí ω je E = (n+ 1
2 )ℏω, kde

1
2ℏω udává energii nulových kmitů a

obsazení modu n je při dané teplotě dané Boseho-Einsteinovým rozdělením (viz dodatek B)

nq =
1

eℏωq/kBT − 1
.

V harmonické aproximaci (analogie s harmonickým oscilátorem) nese mód polovinu energie v kinetické a
polovinu v potenciální energii. Hustota kinetické energie je 1

2ρu̇
2. Časová střední hodnota vyjde 1

2ρ
1
2ω

2u20.
Pro celý krystal o objemu V tedy získáme porovnáním vztahů pro výpočet klasické a kvantové energie
následující vztah

1

4
ρV ω2u20 =

1

2

(
n+

1

2

)
ℏω.

Střední kvadratickou výchylku kmitů atomů v mřížce můžeme tedy získáme jako

u20 =
2(n+ 1

2 )ℏ
ρV ω

.

Je to zajímavý vztah, který nám dává možnost spočítat klasickou veličinu (výchylku) z fyzikálních kon-
stant a veličin popisujících kvantový objekt (kvantové číslo obsazení fononového módu n).

5.6 Kvazihybnost fononů, nepružný rozptyl neutronů

Fonony popisují výchylky atomů z rovnovážné polohy v mřížce. Celková hybnost je nulová, t.j. krystal se
jako celek nikam nepohybuje. Avšak v různých rozptylových experimentech se kvazičástice fonon chová
tak, jako by nesla hybnost ℏq⃗.

Budeme uvažovat případ nepružného rozptylu neutronu na krystalové mřížce podle obr. 5.6. Při
tomto rozptylu se předává část kinetické energie neutronu mřížce nebo naopak. Zákony zachování při

2Max Planck získal za objev kvantování elektromagnetického pole Nobelovu cenu za fyziku v roce 1918.
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nepružném rozptylu neutronu na fononech v krystalu můžeme zapsat tak, že (+) znamená zánik fononu,
(−) znamená vznik fononu.

qx

qy

k
G

q

k’
Obr. 5.6: Schématické znázornění nepružného neutronového
rozptylu ve čtvercové mřížce. Žlutý čtverec značí 1.BZ.
Modře jsou znázorněny vlnové vektory neutronu, zeleně je
zakreslen vektor reciproké mřížky G⃗ = −(2π/a, 0) a červeně
fonon splňující současně zákon zachování energie a vlnového
vektoru.

Zákon zachování energie:
ℏ2k′2

2Mn
=

ℏ2k2

2Mn
± ℏω,

kde Mn označuje hmotnost neutronu, Mn = 1.675× 10−27 kg. Neutron má na počátku vlnový vektor k⃗
a po nepružném rozptylu je jeho vlnový vektor k⃗′.

Zákon zachování hybnosti:
k⃗′ = k⃗ + G⃗± q⃗,

kde bereme vztah pro hybnost neutronu před rozptylem p⃗ = ℏk⃗ a analogicky po rozptylu. Vektor reciproké
mřížky G⃗ se vybere právě tak, aby vlnový vektor q⃗ fononu, který vstupuje do interakce, ležel v 1.BZ.

Experimentální disperzní zákon pro fonony v daném krystalu se získá měřením změny energie ne-
utronu jako funkce směru šíření rozptýleného neutronu. Ve čtyřicátých letech dvacátého století rozvinuli
techniku neutronové difrakce E. Wollan a C. Shull3. Jako zdroj neutronů používali reaktor, viz obr. 5.7.

Obr. 5.7: Fotografie ukazuje Clifforda Shulla s neutronovým difraktometrem.
Převzato z webu OAK RIDGE ASSOCIATED UNIVERSITIES:

http://www.orau.org/ptp/museumdirectory.htm

3Clifford Shull (1915 - 2001) získal za rozvoj techniky difrakce neutronů Nobelovu cenu za fyziku v roce 1994. Ernest
Wollan (1902 - 1984) se této slávy nedožil.
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PO. 5.1: Ukázka podélných módů vlnění pro vybrané vlnové vektory q. Pro tento vlnový vektor je
označen odpovídající bod v závislosti frekvence a v závislostech rychlostí. Všechny zobrazené veličiny
jsou znormované: q je v jednotkách [π/a] a 1.BZ odpovídá intervalu (−1, 1). Rychlost v je v jednotkách

[v0] a ω je v [2
√
α/M ].

80



q = -0.9

0

1

-1 0 1
0

1

v f
,v

g

0 1q = 0.0

0

1

-1 0 1
0

1

v f
,v

g

0 1q = 0.1

0

1

-1 0 1
0

1

v f
,v

g

0 1q = 0.2

0

1

-1 0 1
0

1

v f
,v

g

0 1q = 0.4

0

1

-1 0 1
0

1

v f
,v

g

0 1q = 0.8

0

1

-1 0 1
0

1

v f
,v

g
0 1q = 0.9

0

1

-1 0 1
0

1

v f
,v

g

0 1q = 1.0

0

1

-1 0 1
0

1

v f
,v

g

0 1q = 1.1

0

1

-1 0 1
0

1

v f
,v

g

0 1

PO. 5.2: Ukázka příčných módů vlnění pro vybrané vlnové vektory q. Pro tento vlnový vektor je
označen odpovídající bod v závislosti frekvence a v závislostech rychlostí. Všechny zobrazené veličiny
jsou znormované: q je v jednotkách [π/a] a 1.BZ odpovídá intervalu (−1, 1). Rychlost v je v jednotkách

[v0] a ω je v [2
√
α/M ].
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PO. 5.3: Ukázka příčných módů vlnění dvouatomárního řetízku pro vybrané vlnové vektory q.
Srovnáním s předchozím obrázkem je patrný vznik optického fononového módu, který je značen modře.
Akustický mód je zeleně. V případě optických módů kmitají lehké a těžké atomy proti sobě. Všechny

zobrazené veličiny jsou opět znormované.
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5.7 Příklady

Př. 5.1: Podélné vlnění v tyči: Odvoďte vztah pro rychlost šíření zvuku v kovové tyči. Použijte vztah
pro rychlost zvuku v0 =

√
E/ρ, kde E je Youngův modul pružnosti a ρ je hustota.

Nápověda: Použijte vztah pro definici Youngova modulu podle: E=(napětí)/(relativní prodloužení) a pro
hustotu: ρ = m/a3.

Př. 5.2: Příčné kmity čtvercové mřížky:
Postupujte analogicky s řešeným 1D atomárního řetízku a odvoďte vztahy pro příčné vlnění 2D čtvercové
mřížky. Hmotnost každého atomu jeM , silová konstanta mezi nejbližšími atomy je C. Výchylka zvoleného
atomu v l−tém sloupci am−tém řádku je kolmá na rovinu atomů a značí se ul,m. Odvoďte disperzní zákon
ve směru osy x̂, ve směru diagonály čtverce a dále odvoďte limitu dlouhých vln. Kittel, str. 134, př. 1

Nápověda: Postupujte následovně: a) pohybová rovnice

Mül,m = C[(ul+1,m + ul−1,m − 2ul,m) + (ul,m+1 + ul,m−1 − 2ul,m)],

b) předpokládané řešení
ul,m = u eılqxa eımqya e−ıωt,

b) disperzní zákon

ω2 =
2C

M
(2− cos(qxa)− cos(qya)).

Disperzní zákon je zobrazen v obr. 5.8.
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Obr. 5.8: Disperzní zákon příčného vlnění pro čtvercovou mřížku. Studovaná závislost je zobrazená v 1.BZ
a) pomocí plošného barevného topologického zobrazení, b) pomocí 3D grafu.

Př. 5.3: Energie atomárního řetízku:
Uvažujte nejjednodušší atomární řetízek řešený v sekci 5.2 v přiblížení interakce pouze nejbližších sousedů,
viz obr. 5.2 a disperzní závislost (5.10). Kittel, str. 134, př. 2 Po dosazení harmonické vlny,

us = u eısqa e−ıωt,

ukažte že: a) Celková energie vlny je

E =
1

2
M
∑
s

(u̇s)
2 +

1

2
α
∑
s

(us − us+1)
2,

kde index s probíhá přes všechny atomy. b) Časová střední hodnota energie připadající na jeden atom je

⟨E1⟩ =
1

4
Mω2u2 +

1

2
α[1− cos(qa)]u2 =

1

2
Mω2u2.
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Př. 5.4: Vlnová rovnice ve spojitém prostředí:
Ukažte, že v limitě dlouhých vlnových délek (λ≫ a) je možné převést pohybovou rovnici

Müs = α(us+1 − us)− α(us − us−1)

na vlnovou rovnici pro spojité prostředí:

üs = v20
∂2u

∂x2
,

kde v0 označuje rychlost zvuku. Kittel, str. 135, př. 3

Př. 5.5: Dvouatomární řetízek:
Pro dvouatomární řetízek byl odvozen disperzní zákon ve tvaru (5.15). Namalujte tyto závislosti ω±(q)
a doplňte frekvence ω v limitních bodech BZ (qmin = 0 a qmax = π/2a). S využitím (5.13) najděte
pro optickou i akustickou větev poměr amplitud výchylek A/B pro q = qmin. Ukažte, že pro q = qmax se
chovají obě skupiny atomů jako nezávislé mřížky, t.j. jedna kmitá a druhá je v klidu. Kittel, str. 135, př. 4

Př. 5.6: Řetízek molekuly H2:
Uvažujte řetízek stejných atomů, kde se ale střídají silové konstanty α = C a β = 10C, viz obr. 5.9.
Klidová vzdálenost atomů a je vždy stejná. Tato úloha simuluje krystal z dvouatomárních molekul.
Pro tento krystal odvoďte a načrtněte disperzní zákon a dopočítejte frekvence ω v limitních bodech
BZ (qmin = 0 a qmax = π/2a). Ukažte, že poměr amplitud výchylek A/B pro q = qmin je roven ±1.
Kittel, str. 135, př. 6

x

M C 10C

2n-2

2n-1

2n

2n+1

2n+2a a

Obr. 5.9: 1D řetízek molekul H2.

Řešení:

ω2
±(q) =

1

M

{
(α+ β)±

√
(α+ β)

2 − 4αβ sin2(qa)

}
. (5.16)

Př. 5.7: Experimentální fononové závislosti:
A) Obrázek 5.5 b) fononové disperzní závislosti pro germanium. Namalujte si v tomto grafu vodorovnou
čáru odpovídají frekvenci fononů s energií 10meV.
B) Odhadněte počet fononů n pro jeden gram atomárního vzorku s amplitudou výchylek u0 = 0.1 Å.
Použijte vztah odvozený v sekci 5.5. Dále předpokládejte kmity pouze na frekvenci ω0 odpovídající
energii 10meV (Einsteinův model).

Řešení: A) ν =2.418THz, B) 7.2× 1021.

Př. 5.8: Kmity atomů v kovu sodíku:∗

Uvažujme následující hrubý model jednoduchého kovu (s jedním vodivostním elektronem) jako je sodík
23
11Na. Bodové ionty o hmotnosti M a náboji e jsou ponořeny do homogenního kontinua vodivostních
elektronů. Představme si, že ionty jsou ve stabilní rovnováze v mřížkových bodech. Je-li některý atom vy-
chýlen z rovnováhy o malou vzdálenost u⃗, je tlačen zpět silou, která je vyvolána homogenním rozložením
elektrického náboje vodivostního elektronu uvnitř koule o poloměru právě |u⃗| a se středem v rovnovážné
poloze. Jinými slovy, síla působící na iont je vyvolaná elektronovou hustotou v kouli o poloměru rovném
výchylce iontu, viz obr. 5.10. Hustotu vodivostních elektronů můžeme zapsat jako 3/4πR3, čímž je defi-
nováno R jako poloměr koule s právě jedním elektronem. Kittel, str. 135, př. 7
a) Odvoďte vztah pro vlastní frekvenci oscilací iontů,

ω =

√
1

4πε0

√
e2

MR3
.

b) Kolik vychází tato hodnota pro sodík?
c) Pomocí výše uvedeného odhadněte řádově rychlost zvuku v kovu.
Typická hodnota pro kovy je 2–5×103 m/s.

Nápověda:

a) Převeďte vztah pro potenciál do tvaru obvyklého pro harmonický oscilátor: U = 1
2Mω2x2.

b) Parametry sodíku najdete diskutovány v kap. 7.
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c) Pro výpočet řádového odhadu rychlosti zvuku použijte vlnový vektor daný typickou vzdáleností v kovu,
t.j. q = π/R. Pro sodík dostaneme 1.7×103 m/s.

F

u

F

u R
koule

s jedním
elektronem

Obr. 5.10: Iont vychýlený z rovnovážné polohy o u⃗ je tlačen zpět silou F⃗ , která vzniká coulombovskou
interakcí kladně nabitého iontu s homogenním rozložením elektrického náboje vodivostního elektronu
v kouli o poloměru rovném výchylce (tmavě žlutá oblast). Hustota náboje vodivostního elektronu je daná
podmínkou, že v kouli o poloměru R je právě jeden elektron.

Př. 5.9: Kohnova anomálie:∗

V kovech lze předpokládat působení mezi vzdálenějšími atomovými rovinami, přiblížení interakce nej-
bližších sousedů není dostačující. Předpokládejte, že silové konstanty ve vztahu (5.9) mají tvar, který
předpověděl W. Kohn v roce 19594,

Cp = A
sin(pq0a)

pa
.

Parametry A a q0 jsou konstanty a index p nabývá všech celých kladných čísel. Nalezněte disperzní
závislost ω2(q), ukažte, že má tato závislost pro q = q0 svislou tečnu (zlom, nekonečnou derivaci).
Kittel, str. 135, př. 5

x

f(x)

Obr. 5.11: Tvar pilové funkce f(x) uvedené ve vztazích (5.17).

Nápověda: Použijte identitu: 2 sin(α) cos(β) = sin(α+ β) + sin(α− β).
Dále použijte Fourierovu řadu pilové funkce podle obr. 5.11, kterou lze zapsat jako:

f(x) = π − 2

∞∑
n=1

sin(nx)

n
⇒

∞∑
n=1

sin(nx)

n
=
π − f(x)

2
. (5.17)

4W. Kohn, „Image of the Fermi surface in the vibration spectrum of a metalÿ, Phys. Rev. Lett. 2, 393 (1959).
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Přístroj pro experimentální ověřování tepelné kapacity vody, který se běžně používá všude.
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Kapitola 6

Fonony II - tepelné vlastnosti mřížky

Obsah kapitoly
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6.5.3 Tepelný odpor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.4 Nedokonalé krystaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Příklady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Popis tepelných kapacit

Základní vztah pro měrné teplo materiálu CV známý z termodynamiky udává měrné teplo při konstantním
objemu

CV ≡
(
∂U

∂T

)
V

, (6.1)

kde U označuje celkovou energii.

Naproti tomu měření se obvykle provádí při konstantním tlaku. Rozdíl obou hodnot je sice malý, ale
není nulový. Zopakujme důležité konstanty, které budeme v této kapitole potřebovat. Látkové množství
1 mol je definované tak, že obsahuje počet částic rovný Avogadrově konstantě, jejíž velikost je NA =
6.022 141× 1023 mol−1. Boltzmannova konstanta zase dává do poměru energii a absolutní teplotu, kB =
1.380 662 × 10−23 J K−1. Tepelné kapacity jsou často uváděny znormované na jeden mol látkového
množství, což se označuje použitím malého písmene cV .

Z experimentů jsou fenomenologicky známa následující fakta:

1. Při pokojové teplotě platí Dulongův-Petitův zákon: cV = 3NAkB ≈ 25 J mol−1 K−1.
(Někdy se jako jednotka energie používá kalorie, 1 cal = 4.1868 J.)

2. Za nízkých teplot platí pro izolátory: lim
T→0

cV ∼ T 3.

3. Za nízkých teplot platí pro kovy: lim
T→0

cV ∼ T .
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4. V magnetických pevných látkách přibude k tepelné kapacitě cV příspěvek v oblasti teplot, kdy
dochází k uspořádávání magnetických momentů.

Z výše uvedeného se dá usuzovat, že tepelná kapacita mřížky má teplotní závislost za nízkých teplot
úměrnou T 3. U kovů je tepelná kapacita mřížky zastíněná dominantním příspěvkem od vodivostních
elektronů, který má ale jinou teplotní závislost. V následující části této kapitoly se budeme věnovat
charakterizaci tepelných vlastností mřížky, které souvisí s popisem vibrací pomocí fononů. Energii všech
vibračních módů v (6.1) můžeme obecně zapsat jako sumu

U =
∑
p

∑
q⃗

Upq⃗ =
∑
p

∑
q⃗

ℏωpq⃗⟨npq⃗⟩, (6.2)

kde se sčítá přes všechny vibrační módy p a všechny vlnové vektory q⃗ v 1.BZ. Obsazení vibračních módů
při dané teplotě npq⃗ je dané Boseho-Einsteinovým rozdělením (viz dodatek B). Ve vztahu pro energii
nezapočítáváme kvantový člen 1/2, který odpovídá vakuovým fluktuacím. Při derivování podle (6.1)
tento konstantní člen stejně vypadne.

6.2 Hustota módů

Při výpočtu energie (6.2) se pro započítání všech normálních módů obvykle přechází od sumace přes q⃗
k integrálu přes frekvence ω. K tomu je třeba zavést novou veličinu, která se nazývá hustota módů/stavů,
D. Veličina D(ω)dω udává počet vibračních módů v intervalu (ω, ω+dω) pro daný krystal. Energie všech
vibrací mřížky je potom daná výrazem

U =

∫
dωD(ω)n(ω, T )ℏω =

∫
dωD(ω) ℏω

eℏω/kBT − 1
. (6.3)

Pro výpočet měrného tepla musíme provést derivaci celkové energie podle teploty. Je dobré si uvědomit,
že jediné, co v tomto vztahu závisí na teplotě, je obsazení módu n(ω, T ). Naším úkolem je nyní najít
tvar spektrální závislosti D(ω). Nejprve musíme odvodit, jaké jsou dovolené hodnoty vlnového vektoru q⃗.
Potom se určí frekvence vibračních módů pro všechny tyto dovolené vlnové vektory. A nakonec spočítáme
histogram, t.j. kolikrát jsme dostali hodnotu z intervalu (ω, ω + dω).

6.2.1 Fixní okrajové podmínky

Jako obvykle nám kvantování nějaké veličiny, která je klasicky spojitá, vyplývá přímo z řešení okrajových
podmínek. Podíváme se na jednoduchý 1D případ (N + 1) atomů. U atomárního řetízku můžeme poža-
dovat, aby koncové atomy řetízku byly fixní. Všechny možné normální vibrační módy lze potom zapsat
ve formě stojatých vln pro s-tý atom

us = u sin(sqa) e−ıωt.

Jak to ukazuje obr. 6.1, podmínka fixního prvního atomu je automaticky splněna výběrem funkce
sinus a podmínka fixního posledního atomu omezuje dovolené hodnoty vlnového vektoru q,

sin(qL) = 0 ⇒ qL = nπ, n = 1, 2, . . . , N − 1.

Dovolené hodnoty q jsou ekvidistantně rozmístěné v intervalu (0, π/a), těchto hodnot je (N − 1) a vzdá-
lenost sousedních dovolených hodnot je: ∆q = π/L.

x

L = 6a
a

5 pohyblivých atomů

q0 /a

1 2 3 4 5

5 frekvencí
q = /L

Obr. 6.1: Řetízek sedmi atomů s fixními okrajovými podmínkami.
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6.2.2 Periodické okrajové podmínky

Nevýhodou fixních okrajových podmínek je to, že popisují pouze stojaté vlny. Samozřejmě volba okra-
jových podmínek nemůže ovlivnit výsledné vlastnosti objemového vzorku. Pro zjednodušení výpočtů je
často vhodnější volit periodické okrajové podmínky. Všechny možné normální vibrační módy lze potom
zapsat ve formě rovinných vln pro s-tý atom

us = u eı sqa e−ıωt.

Zde jsou dovolené hodnoty vlnového vektoru omezeny periodickou podmínkou (Bornovy-von Karmanovy
okrajové podmínky1)

u(sa) = u(sa+ L).

Požadujeme, aby řešení nalezené v libovolném bodě krystalu se po vzdálenosti L přesně zopakovalo.
Jako bychom ke krystalu délky L připojili další krystal se stejným řešením a požadovali, aby vše plynule
navazovalo. V 1D případě řetízku N atomů si to můžeme představit tak, že atomy uzavřeme do spojitého
kroužku. Dovolené hodnoty q jsou omezeny na 1.BZ, t.j. interval (−π/a, π/a). Dovolených hodnot je N
a jejich vzdálenost je ∆q = 2π/L, jak ukazuje obr. 6.2.

x

6 pohyblivých atomů

q- /a 0 /a

1-1 2-2 3-3

6 frekvencí
q = 2 /L

Obr. 6.2: Řetízek šesti atomů s periodickými okrajovými podmínkami.

6.2.3 3D periodické okrajové podmínky

5

10

15

20

5 10 15 200 qx

qy

q

dq
qx

qy

Obr. 6.3: Dvoudimenzionální k-prostor, ve kterém
jsou stavy (qx, qy) povolené okrajovými podmín-
kami znázorněny jako průsečíky zelených přímek.
Červeně označené stavy leží ve zvoleném intervalu
energií, což odpovídá vyznačenému mezikruží.

Pro nás je nejdůležitější velikost elementu k-prostoru připadající na jeden vibrační mód daný vlnovým
vektorem q⃗ ve 3D. Z výše uvedeného je zřejmé, že pro periodické okrajové podmínky dostaneme velikost

1Max Born získal za statistickou interpretaci vlnové funkce Nobelovu cenu za fyziku v roce 1954.
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tohoto elementu ve tvaru

(∆q)3 = (2π/L)3 = (2π)3/Vck, (6.4)

kde Vck je objem celého krystalu. Tuto hodnotu budeme vždy používat při přechodu od sumace k integrálu
v k-prostoru. K tomuto tématu se vztahuje př. 6.1 na konci této kapitoly a obr. 6.3.

6.2.4 Výpočet hustoty stavů

Vraťme se zpět k výpočtu hustoty módů. Budeme uvažovat nejjednodušší 1D řetízek atomů podle obr. 6.2.
Disperzní závislost ωp(q) budeme předpokládat v přiblížení interakce nejbližších sousedů (5.10). Obrá-
zek 6.4 ukazuje v levém panelu a) tuto disperzní závislost a v pravém panelu b) histogram počtu existu-
jících stavů v intervalu frekvencí ∆ω. Pro zobrazený případ tisíce atomů musí být i součet všech dvaceti
sloupečků histogramu roven N = 1000. Symbolem N označujeme počet elementárních buněk, ale v pří-
padě jednoatomárního řetízku je N rovno i počtu atomů. Teoretická závislost hustoty stavů zobrazená
červenou čarou se počítá v př. 6.3 na konci této kapitoly a vychází

D(ω) = 2N

π

1√
ω2
m − ω2

, (6.5)

kde maximální frekvence ωm = 2
√
α/M , M značí hmotnost atomů a α je silová konstanta.
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0.2

0.4

0.6

0.8

1.0
/

m
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D( )

N = 1000
= 20

a) b)

Obr. 6.4: Výpočet hustoty stavů pro jednoatomární řetízek N atomů: a) disperzní závislost; b) odpoví-
dající histogram. Energetický interval je rozdělen na ∆ = 20 dílků.

Pro 3D krystal s s atomy v primitivní buňce existuje 3s fononových závislostí ωp(q), fononových
větví. Obecná hustota módů ve 3D pro p-tou větev fononů ωp(q⃗) se počítá jako počet stavů ve slupce
k-prostoru s frekvencí v intervalu (ω, ω + dω). Pro výpočet je tedy potřeba znát tvar ekvienergetických
ploch v k-prostoru

Dp(ω)dω ≡
Vck
(2π)3

∫
slupka

d3q (6.6)

=
Vck
(2π)3

∫
plocha

dSωdq⊥ =
Vck
(2π)3

∫
plocha

dSω
|∇qω|

dω =
Vck
(2π)3

∫
plocha

dSω
vg

dω,

kde složky grupové rychlosti (v⃗g = ∇qω) se ve 3D spočítají jako derivace ω podle složek vlnového vektoru
q⃗. Hustota módů pro p-tou větev fononů s frekvencí ω se tedy spočítá jako plošný integrál v k-prostoru
podle

Dp(ω) =
Vck
(2π)3

∫
plocha

dSω
vg

. (6.7)

Při tomto výpočtu mají zvláštní význam body s nulovou grupovou rychlostí vg = 0. Tyto body
způsobují singularity při výpočtu hustoty stavů a jejich příspěvek je tedy dominantní. Tyto tzv. sedlové
body disperzní závislosti se označují jako van Hoveovy singularity.
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6.3 Einsteinův model

Tento model uvažuje pouze jednu frekvenci fononů ω0. Obsazení fononů při dané teplotě je dané Boseho-
Einsteinovým rozdělením (viz dodatek B). 3s určuje počet stupňů volnosti pro s atomů v primitivní buňce
mřížky. Počet stavů vlnového vektoru je N , potom

U =

3s∑
r=1

N∑
q⃗

ℏω0(nrq⃗ +
1

2
) = 3Ns ℏω0(n+

1

2
).

Derivací energie podle teploty dostaneme tepelnou kapacitu. Je dobré si opět povšimnout, že jediné, co ve
vztahu pro energii závisí na teplotě, je rozdělovací funkce nq⃗. Pro vysoké teploty dostaneme pro Einsteinův
model správný klasický výsledek CV = 3NskB. Pro nízké teploty T → 0 jde CV k nule ale exponenciálně.
To je způsobené tím, že Einsteinův model zanedbává disperzi fononů. Přestože jde o přiblížení, dá se
tento model použít pro popis dlouhovlnných optických fononů.

6.4 Debyeův model

Tento model předpokládá pouze akustickou větev se závislostí ω = v0q, kde v0 je konstantní rychlost
zvuku. Předpokládáme, že všechny povolené stavy vektoru q⃗ vyplní kouli v k-prostoru. Počet módů
s q < qmax je

N =
4
3πq

3
max

(2π)3

Vck

=
Vckω

3
max

6π2v30
. (6.8)

Hustota módů pro jednu akustickou větev je pak daná

D(ω) = dN

dω
=
Vckω

2

2π2v30
.

Počet stavů v kouli v k-prostoru má být roven N , t.j. počtu elementárních buněk ve vzorku. Tato pod-
mínka definuje mezní frekvenci (mezní vlnový vektor), která se označuje jako Debyeova frekvence:

ω3
D =

6π2v30
Vc

, q3D =
6π2

Vc
, kde Vc =

Vck
N
.

V tomto modelu musí platit lineární disperzní závislost pro akustickou větev i pro Debyeovu frekvenci,
ωD = v0 qD.

Počet módů s q < qmax vyčerpá počet stupňů volnosti v mřížce s jedním atomem v primitivní buňce.
Efektivně jsme takto nahradili 1.BZ koulí o poloměru qD.

Od teď budeme uvažovat 3 akustické větve. Odvodíme hustotu módů ze znalosti Debyeovy frekvence.
V kouli o poloměru qD je 3N stavů, a proto

D(ω)dω =
3N
4
3πq

3
D

· 4πq2dq = 9N
q2dq

q3D
= 9N

ω2dω

ω3
D

.

Celková energie fononů vyjde

U =

∫
dω D(ω) n(ω, T ) ℏω =

9Nℏ
ω3
D

ωD∫
0

ω3dω

eℏω/kBT − 1
.

Derivací podle teploty dostaneme měrné teplo mřížky ve tvaru

CV = 9NkB

(
T

Θ

)3
Θ/T∫
0

dx
exx4

[ ex − 1]2
, x =

ℏω
kBT

, Θ =
ℏωD

kB
.

Při tomto odvozování bylo výhodné zavést tzv. Debyeovu teplotu Θ. Je třeba si zapamatovat, že
Debyeova teplota je mez, která určuje, zda můžeme při dané teplotě mřížky T použít aproximaci nízké,
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či vysoké teploty. V těchto limitách můžeme výraz pro tepelnou kapacitu výrazně zjednodušit.
Vysoké teploty: T ≫ Θ, x≪ 1 ⇒ ex ≈ 1 + x,

CV ≈ 3NkB. (6.9)

Nízké teploty: Θ/T →∞ ⇒
∫∞
0

[. . .]dx = 4π4/15,

CV ∼ (T/Θ)3. (6.10)

(PO. 6.1: Debyeovy teploty pro krystaly solí).

6.5 Anharmonické efekty

V rámci harmonické aproximace dostáváme některé nesprávné výsledky jako:

■ Fonony vzájemně neinteragují, nemohou se s časem vyvíjet nebo se samy rozpadat.

■ Neexistuje tepelná roztažnost.

■ Elastické konstanty nezávisí na teplotě ani na tlaku.

■ Tepelná kapacita je konstantní při vysokých teplotách (T > Θ).

Tyto tzv. anharmonické efekty lze řešit pouze v rámci přesnějšího popisu krystalu.

6.5.1 Tepelná roztažnost

R

R

Obr. 6.5: Pokud použijeme Taylorův
rozvoj potenciálu pro sůl KCl podle
obr 4.4, získáme pro rozvoj do čtvr-
tého řádu lepší shodu, než pro har-
monickou aproximaci. Rozvoj po-
tenciálu má tvar [−7.215+3.348x2−
4.281x3 +3.637x4] eV, kde výchylka
z rovnováhy x se dosazuje v angstro-
mech.

Anharmonické efekty je nutné započítat zvláště při vyšších teplotách. Při větších výchylkách kmitů
atomů je potřeba uvažovat vyšší řád rozvoje potenciální energie typicky až do čtvrtého řádu, viz obr. 6.5.

U(R0 + x) = U0(R0) + U(x) = U0(R0) + cx2 − gx3 − fx4,

je rozvoj 1D potenciálu do čtvrté mocniny souřadnice x, která popisuje délku vazby. Konstanty c, g a f
jsou koeficienty rozvoje do druhého, třetího, resp. čtvrtého řádu.

Tepelnou roztažnost získáme z teplotní závislosti střední hodnoty výchylky x. Pro výpočet použijeme
Boltzmanovo rozdělení následovně

⟨x⟩ =
∫∞
−∞ dxx exp[−U(x)/kBT ]∫∞
−∞ dx exp[−U(x)/kBT ]

=
3g

4c2
kBT. (6.11)

Dostali jsme, že tepelná roztažnost je daná poměrem g/c2 konstant rozvoje potenciálu do vyšších řádů.
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6.5.2 Tepelná vodivost

Budeme sledovat tok energie podél dlouhé tyče, jak to ukazuje obr 6.6. Pokud se na tepelné vodivosti
podílí pouze mřížka, můžeme přenos energie popsat energií přenášenou fonony. Proti klasické kinetické
teorii ideálního plynu fonony nepřenášejí hmotu, ale pouze energii. Nicméně na tok tepla (tepelné energie)
se můžeme dívat z klasického pohledu termodynamiky pohybu částic v teplotním gradientu podle

jU = −λdT
dx

. (6.12)

jU označuje tok tepelné energie jednotkovou plochou za jednotku času. Konečná tepelná vodivost λ
vyžaduje, aby fonony vzájemně interagovaly. K přenosu energie tedy nedochází balisticky z jednoho
konce na druhý, ale difuzí provázenou mnoha srážkami, které se řídí statistikou. Jinak by byla teplotní
vodivost nekonečná a konce uvažované tyče by musely mít vždy stejnou teplotu.

V klasické kinetické teorii se odvozuje následující vztah pro tepelnou vodivost

λ =
1

3
Cvl. (6.13)

Nyní musíme správně interpretovat jednotlivé členy pro fonony, jak to poprvé provedl Debye: C značí
tepelnou kapacitu vztaženou na jednotku objemu, v označuje střední rychlost fononů a l střední volnou
dráhu mezi následujícími srážkami.

L

T+ T T

x

Obr. 6.6: Tok energie v tyči, jejíž konce
mají teplotní rozdíl ∆T . Pro ustálení
lokální tepelné rovnováhy s teplotním
gradientem podél osy x̂ jsou zapotřebí
pro rozptyl fononů U-procesy.

Odvození vztahu (6.13) z klasické kinetické teorie je ilustrativní a jak platilo pro molekuly, tak bude
platit za stejných předpokladů i pro fonony. Mějme částici s tepelnou kapacitou c, která se pohybuje
v prostředí s gradientem teploty ve směru osy x̂, přitom přenese energii c∆T . Tok částic v kladném
směru osy x̂ je 1

2n⟨|vx|⟩. Částice se při srážkách termalizuje, takže tepelnou energii přenáší mezi srážkami.
Energii přenáší stejným dílem částice, které se pohybují v obou směrech osy x̂. Rozdíl teploty v místech
následujících srážek je

∆T =
dT

dx
l =

dT

dx
vxτ,

kde τ značí čas mezi následujícími srážkami. Tok energie při započtení pohybu částic oběma směry nám
vyjde

jU = −nvxc∆T = −ncdT
dx
⟨v2x⟩τ = −1

3
nc⟨v2⟩τ dT

dx
. (6.14)

Pro fonony, které mají konstantní rychlost v, můžeme tuto rovnici převést na (6.12) a odvodit (6.13)
s využitím znalosti l ≡ vτ a C ≡ nc.

6.5.3 Tepelný odpor

Teorie anharmonických efektů předvídá závislost střední volné dráhy l nepřímo úměrnou teplotě T , což je
v souladu s řadou experimentů. Toto tvrzení je intuitivní, neboť celkový počet fononů, na kterých může
dojít k rozptylu, je úměrný teplotě T . Můžeme říci, že pokud se teplota zvýší dvojnásobně, počet fononů
vzroste na dvojnásobek, pravděpodobnost srážky fononu za jednotku času bude dvojnásobná a střední
volná dráha fononu bude tedy poloviční.

Pro konečný tepelný odpor musí ale ještě existovat mechanismus, který vede k ustálení lokální tepelné
rovnováhy. Jak ukazuje obr. 6.7a), při normálních procesech rozptylu fononů (N-procesy) se zachovává
celková hybnost souboru fononů

J⃗ =
∑
q⃗

nq⃗ℏq⃗.

Pokud je na jednom konci tyče nenulový tok rozdělení horkých fononů s J⃗ ̸= 0, pak se toto rozdělení
v tyči šíří s nezměněnou hodnotou J⃗ . Problém ustálení lokální tepelné rovnováhy podél tyče vyřešil v roce
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Obr. 6.7: Schématické znázornění fononových rozptylových procesů ve čtvercové mřížce: a) normální N-
proces, q⃗1+ q⃗2 = q⃗3, b) překlápěcí U-proces, q⃗1+ q⃗2−G⃗ = q⃗3. Žlutý čtverec značí 1.BZ. Při srážce zanikají
dva modré fonony a vzniká červený fonon splňující současně zákon zachování vlnového vektoru a zákon
zachování energie ω1 + ω2 = ω3. V případě b) vznikl fonon mimo 1.BZ, a proto je ho třeba vrátit zpět
do 1.BZ odečtením vektoru reciproké mřížky G⃗ = (2π/a, 0).

1929 R. Peierls. Jak ukázal, díky tomu, že fonony v mřížce mohou mít vlnový vektor pouze v 1.BZ, jsou
možné tzv. překlápěcí U-procesy2. U těchto procesů se překlápí směr vlnového vektoru díky započítání
vektoru reciproké mřížky G⃗. To umožňuje vytvoření lokální rovnováhy s různou teplotou každého místa
podél tyče. Takto může vzniknout gradient teploty podél celé délky tyče.

Aby mohl proběhnout U-proces, musí mít oba fonony vlnový vektor větší než 1
2 G⃗. Tuto podmínku

splňují fonony s energií větší než 1
2kBΘ. Při nízkých teplotách lze očekávat, že počet fononů s dostatečně

velkým vlnovým vektorem se bude měnit podle Boltzmannova rozdělení úměrně exp(−Θ/2T ). Tato ex-
ponenciální závislost je ve shodě s experimentálním pozorováním.

Z předchozích úvah můžeme dedukovat, že fononová střední volná dráha, která vystupuje ve vztahu
pro tepelnou vodivost (6.13), je určená právě a pouze U-procesy, které vedou k ustálení lokální rovnováhy
s lokální teplotou každého místa.

6.5.4 Nedokonalé krystaly

Doposud jsme uvažovali pouze dokonalý nekonečný krystal. K omezení střední volné dráhy fononů ale
přispívají i geometrické efekty. Samozřejmě, pokud by střední volná dráha vycházela větší než šířka
krystalu, bude rozhodující rozptyl na hranicích krystalu. Tepelná vodivost se proto za nízkých teplot
může stát funkcí rozměrů vzorku. Další omezení tepelné vodivosti je dané nedokonalostmi krystalu, které
porušují přesnou translační symetrii. Jsou to buď příměsi jiných prvků (nečistoty), nebo všechny možné
poruchy v krystalickém uspořádání.

2Sir Rudolf Ernst Peierls se věnoval popisu tepelné a elektrické vodivosti polovodičů s využitím konceptu kladných
kvazičástic, děr. Zóny v k-prostoru používal ještě před L. Brillouinem a s využitím těchto zón formuloval Umklapp procesy
důležité pro popis srážek fononů.
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PO. 6.1: Periodická tabulka ukazuje pod názvem prvku Debyeovu teplotu mřížky Θ. Pokud je hodnota
Θ nižší než pokojová teplota je prvek podbarven modře. Pokud je vyšší, tak je podbarven červeně, viz
vykreslená škála. Pro zeleně podbarvené prvky není Debyeova teplota známa. Data převzata z [2].
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6.6 Příklady

Př. 6.1: Počet stavů v Brillouinově zóně:
Bornovy-von Karmanovy periodické okrajové podmínky určují počet povolených stavů vlnového vektoru
q⃗ v 1.BZ. Ukažte že:
a) Pokud platí periodické okrajové podmínky pro jakoukoliv obecnou vlnovou funkci ve tvaru

ψ(r⃗) = ψ(r⃗ +Nia⃗i),

pak je počet povolených stavů vektoru q⃗ v 1.BZ velikosti ( 2πa1 ,
2π
a2
, 2πa3 ), roven N = N1N2N3.

b) Vzdálenost sousedních vlnových vektorů je ∆qi = 2π
Niai

= 2π
Li
.

c) Velikost objemu k-prostoru odpovídající jednomu stavu vektoru q⃗ je (2π)3

Vck
, kde Vck je objem celého

krystalu.

Př. 6.2: Odhad řádu silové konstanty pro křemík:
V křemíku se zvuk šíří rychlostí 2.2×103 m/s. Odhadněte řádově velikost silové konstanty α v přiblížení
interakce nejbližších sousedů. Mřížková konstanta křemíku a = 5.43 Å.

Nápověda: Využijte vztah (5.11), kde atomová hmotnost křemíku je 28 a délka vazby z geometrie dia-
mantového krystalu křemíku je (

√
3/4)a.

Řešení: [≈ 4 N/m]

Př. 6.3: Výpočet hustoty módů:
a) Uvažujte 1D lineární řetízek N stejných atomů s interakcí nejbližších sousedů. Pro tento model odvoďte
vztah (6.5) pro hustotu stavů.
b) Předpokládejte, že optickou fononovou větev můžete aproximovat parabolou podle ω(q) = ωm −Aq2.
Ukažte, že ve 3D je

D(ω) = Vck
(2π)3

2π

A3/2

√
ωm − ω,

pro ω < ωm. Pro ω > ωm je D(ω) = 0. Hustota optických módů je pro vybraný kubický krystal zobrazená
v obr. 6.8. Zlomy závislosti odpovídají symetrickým bodům Brillouinovy zóny. Kittel, str. 161, př. 1

Nápověda: viz obr. 6.8.

D
(

)

0.0 0.05 0.1 0.15 0.2 0.25
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2D [110]

3D [111]
[000]

Obr. 6.8: Výpočet hustoty stavů pro optickou větev fononů.

Př. 6.4: Hustota módů pro čtvercovou mřížku:
V předchozí kapitole se v př. 5.2 získala disperzní závislost pro 2D čtvercovou mřížku ve tvaru

ω2 =
2C

M
(2− cos(qxa)− cos(qya)).

Spočítejte pro tuto čtvercovou mřížku hustotu stavů D(ω). Úlohu řešte numericky tak, že 1.BZ rozdělíte
na rovnoměrnou sít (např. 1000×1000) a hodnoty ω vynesete v histogramu. Kittel, str. 162, př. 6
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Nápověda: viz obr. 6.9.

-1.0

-0.5

0.0

0.5

1.0

q y
(

/a
)

-1.0 -0.5 0.0 0.5 1.0

qx ( /a)

1.41.4

1.21.2

1.21.2

1.41.4

1.21.2

1.41.41.21.2

1.41.4

1.01.0

0.80.8

0.60.6

0.40.4

0.20.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
(

)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1D [10]
2D [11]a) b)

Obr. 6.9: a) Disperzní závislost pro 2D čtvercovou mřížku. b) Hustoty stavů pro akustickou větev fononů
ve 2D.

Př. 6.5: Tepelná vodivost:
a) Ukažte, že při vysokých teplotách je celkový počet vybuzených fononů úměrný teplotě.
b) Odvoďte tepelnou závislost tepelné vodivosti pro případ nízkých a vysokých teplot. Tuto závislost
zhruba načrtněte.

Nápověda: Využijte vztah (6.13) a závislosti na teplotě jednotlivých členů: tepelné kapacity a střední
volné dráhy. Použijte také závislost odvozenou v bodu a). Výsledek se musí shodovat s experimentem
podle obr. 6.10.

Obr. 6.10: Tepelná vodivost velmi čistého krys-
talu NaF. Převzato z [2], původně z článku H.E.
Jackson, C.T. Walker, T.F. McNelly, Phys. Rev.
Lett. 25, 26 (1970).
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Kovy jako velmi výhodný konstrukční materiál: 49◦35’16.525”N, 17◦15’50.967”E.
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Kapitola 7

Kovy - Fermiho plyn volných
elektronů

Obsah kapitoly
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7.9 Pohyb v magnetickém poli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.9.1 Hallův jev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.10 Wiedemannův-Franzův zákon . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.11 Příklady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1 Úvod

Většina prvků periodické tabulky (prvky od alkalických kovů až po diagonálu, viz obr. 4.1) vytváří kovové
krystaly. Kovy tvoří specifické krystaly s typickými vlastnostmi. Kovy jsou sice tvrdé, ale lze je tavit a
zpracovávat do požadovaných tvarů. Proto se kovy začaly využívat člověkem již před tisíci let a umožnily
rozvoj civilizace až k dnešnímu stavu, což ukazuje úvodní obrázek této kapitoly.

První teorii, která byla schopná objasnit typické vlastnosti kovů, vypracoval P. Drude. V roce 1900,
tedy tři roky po objevení elektronu J.J. Thomsonem, použil Drude kinetickou teorii plynů na popis pohybu
vodivostních elektronů v celém objemu kovu. V této kapitole postupně odvodíme několik jednoduchých
vztahů pro parametry kovů.

Vysoká vodivost kovů je způsobená tím, že vodivostní elektrony se mohou v celém objemu krystalu
kovu volně pohybovat. Celkovou energii vodivostních elektronů můžeme tedy brát pouze jako kinetickou
energii. Potenciální energii, která je pro vodivostní elektrony prakticky konstantní, můžeme položit rovnou
nule. Protože vodivostní elektrony nejsou lokalizované, t.j. jejich vlnová funkce je teoreticky nenulová
v celém objemu krystalu, musí Fermiho plyn1 vodivostních elektronů splňovat Pauliho vylučovací princip.

Nejjednoduššími kovy jsou alkalické kovy. Jako typický příklad vezměme například sodík. Krystal
sodíku je složen z iontů Na+ s 10 elektrony v uzavřených slupkách 1s22s22p6, které zabírají pouze 15 %

1Enrico Fermi je nositelem Nobelovy ceny za fyziku z roku 1938.
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objemu krystalu. Každý atom sodíku přispívá do vodivostního pásu jedním elektronem, který by byl u
volného atomu ve stavu 3s1.

Hustotu elektronů můžeme odvodit z parametrů krystalové mřížky. Sodík má v kubické struktuře
BCC dva atomy na elementární buňku s mřížkovou konstantou a = 4.225 Å. Každý atom přispívá
jedním vodivostním elektronem, valence Z∗ = 1. Hustotu vodivostních elektronů spočítáme jako: nBCC =
2Z∗/a3. Pro sodík takto dostaneme n = 2.65 × 1022 cm−3. Správnou hodnotu hustoty můžeme získat
i druhou metodou, a to bez znalosti struktury kovu. Stačí podělit hustotu kovu atomární hmotností a
vynásobit Z∗. Pro hustotu elektronů se zavádí ještě jedna míra. Wignerův poloměr rs je poloměr koule,
která obsahuje právě jeden elektron, tedy

1

n
=

4

3
πr3s . (7.1)

Wignerův poloměr se často udává v jednotkách Bohrova poloměru (a0 = 0.529 Å). Pro sodík dostaneme
rs = 2.08 Å = 3.93 a0.

Analogicky s výpočtem pro sodík můžeme nyní odvodit hustotu elektronů např. pro měď. Ta má ve
struktuře FCC mřížkovou konstantu a = 3.61 Å a valenci jedna. Pozorný čtenář si nyní jistě snadno
dopočítá Wignerův poloměr mědi: rs = 1.41 Å = 2.67 a0.

7.2 Drudeho model

Použití kinetické teorie plynů na popis vodivostních elektronů vyžaduje provést některé aproximace. Ty
potom limitují přesnost a použitelnost získaných výsledků.

1. Kinetická teorie předpokládá neinteragující částice. To znamená, že elektrony se mezi srážkami
pohybují přímočaře. Pouze pokud je kov ve vnějším elektrickém nebo magnetickém poli, působí na
elektrony Lorentzova síla, což vede ke změně přímočarého pohybu podle Newtonova zákona. Zavedli
jsme tedy aproximaci nezávislých elektronů (mezi srážkami nepůsobí žádná elektron-elektronová
interakce) a aproximaci volných elektronů (mezi srážkami se elektron-iontová interakce neprojevuje).

2. Srážky jsou okamžité, mění okamžitě rychlost elektronu. Oproti kinetické teorii plynů, kde se sráží
volné částice mezi sebou, zde jsou nejvýznamnější srážky elektronů s vázanými ionty.

3. Pravděpodobnost, že dojde během infinitezimálního časového intervalu dt ke srážce, je daná výrazem
dt/τ . Časová konstanta τ se označuje jako relaxační doba nebo také volná doba života a hraje
fundamentální roli v teorii vodivosti kovů. Z teorie pravděpodobnosti vyplývá, že pokud zvolíme
náhodně nějaký elektron, pak nejpravděpodobněji poputuje volně právě čas τ před tím, než dojde
k další srážce. Předpokládáme, že τ nezávisí na poloze ani na rychlosti elektronu, což ve většině
případů platí.

4. Předpokládáme, že elektrony dosáhnou termální rovnováhy se svým okolím výhradně a pouze pro-
střednictvím srážek. Rychlost elektronu po srážce nesouvisí s původní rychlostí, ale elektron má
náhodný směr a velikost rychlosti právě tak, aby to odpovídalo distribuci pro teplotní rovnováhu
v daném místě.

7.3 Nekonečná potenciálová jáma

Nyní musíme použít kvantovou teorii, abychom mohli spočítat energii elektronových stavů a mohli na
nerozlišitelné elektrony použít Pauliho vylučovací princip. Mějme krystal složený z N atomů, kde každý
atom přispívá jedním vodivostním elektronem. Musíme tedy nalézt N elektronových hladin tvořících
vodivostní pás, které budou v základním stavu obsazeny elektrony. Hamiltonián ve Schrödingerově rovnici
je dán pouze kinetickou energií elektronu s hmotností m

Hψn = − ℏ2

2m

d2ψn
dx2

= Enψn, (7.2)

kde En označuje energii elektronu v jednoelektronovém stavu popsaném vlnovou funkcí ψn.
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Obr. 7.1: První čtyři energetické hla-
diny a jim příslušné vlnové funkce
pro elektrony v nekonečné potenciálové
jámě. Kvantové číslo n udává počet půl-
vln vlnové funkce na šířku kvantové
jámy L.

Nekonečná potenciálová jáma šířky L je standardní úloha z kvantové mechaniky [11], viz obr. 7.1.
Řešením je vlnová funkce ve tvaru ψn = A sin(kx), která dosazením do Schrödingerovy rovnice dává
vlastní energii En = ℏ2k2/2m. Kvantování, t.j. diskretizace energetického spektra, je dané okrajovými
podmínkami: ψn(0) = 0, ψn(L) = 0. První podmínka je splněna automaticky volbou funkce sinus. Druhá
udává to, že funkce ψn má na délce L právě n půlvln,

kL = nπ ⇒ k =
π

L
n ⇒ En =

ℏ2π2

2mL2
n2. (7.3)

Nyní použijeme Pauliho princip, který říká, že na každé hladině En smí být pouze dva elektrony, které
se liší opačnou orientací spinu, spinové kvantové číslo elektronu je ms = ±1/2. Každý elektron má tedy
unikátní kombinaci kvantových čísel (n,ms).

V tomto 1D případě je nejvyšší energetická hladina, která je v základním stavu obsazená, daná
výrazem

EF =
ℏ2π2

2mL2

(
N

2

)2

. (7.4)

Tato energie se označuje jako Fermiho energie. Jinými slovy řečeno, jde o poslední obsazenou hladinu při
teplotě absolutní nuly (T = 0 K).

7.4 Fermiho-Diracovo rozdělení

Odpověď na otázku, co se děje s obsazením energetických hladin elektrony při zvyšování teploty, nám
dává Fermiho-Diracovo rozdělení2 (viz dodatek B). To nám udává pro ideální plyn volných elektronů
v tepelné rovnováze na teplotě T pravděpodobnost, s jakou bude obsazen stav s energií E,

fFD(E) =
1

e(E−µ)/kBT + 1
. (7.5)

V tomto vztahu je nově zavedená veličina µ, která se označuje jako chemický potenciál. Hodnota této
veličiny je funkcí teploty a je daná normovací podmínkou: „Při změně teploty se nemění celkový počet
elektronů ve vzorku.ÿ Pro T = 0 K je z definice µ = EF. Dále platí, že při jakékoliv nenulové teplotě musí
být fFD(µ) = 1/2. Tvar Fermiho-Diracovy distribuční funkce pro zvyšující se teploty ukazuje obr. 7.2.

2Paul Dirac je nositelem Nobelovy ceny za fyziku z roku 1933.
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Obr. 7.2: Fermiho-Diracova distribuční
funkce (7.5) pro různé teploty s typickou
Fermiho teplotou pro kovy TF = EF/kB =
5× 104 K.

Někdy je výhodné pro energie dostatečně vysoko nad chemickým potenciálem (E−µ≫ kBT ) provést
limitu a zanedbat jedničku ve jmenovateli (7.5). Fermiho-Diracovo rozdělení nám tak přejde na klasické
statistické Maxwellovo-Boltzmannovo rozdělení, fB(E) = e−(E−µ)/kBT .

7.5 3D elektronový plyn

Uvažujme nyní krystal jako 3D potenciálovou jámu. Schrödingerova rovnice bude mít tvar

− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψk⃗(r⃗) = Ek⃗ψk⃗(r⃗). (7.6)

V tomto případě je vhodnější zavést periodické (Bornovy-von Karmanovy) okrajové podmínky na hledané
vlnové funkce, které můžeme zapsat ve směru osy x̂ jako: ψk(x + L, y, z) = ψk(x, y, z). Vlnové funkce,
které řeší Schrödingerovu rovnici a vyhovují těmto okrajovým podmínkám, jsou rovinné vlny, které mohou
popisovat pohybující se elektrony. Nulové okrajové podmínky by naproti tomu umožňovaly popsat pouze
stojaté vlny. Řešení Schrödingerovy rovnice lze potom zapsat jako:

ψk⃗(r⃗) = eık⃗·r⃗, Ek⃗ =
ℏ2k2

2m
. (7.7)

Komponenty vlnového vektoru k⃗ představují nová kvantová čísla řešeného problému. Z okrajových podmí-
nek plyne, že každá složka vlnového vektoru musí být celočíselným násobkem 2π/L, např. kx = nx(2π/L).
Okrajové podmínky nám zase způsobují kvantování, konkrétně v tomto případě kvantování vlnového
vektoru. Ten již nemůže nabývat všech hodnot, ale pouze diskrétních hodnot. Každému vlastnímu stavu
vektoru k⃗ pak v k-prostoru odpovídá objem (2π)3/Vck, kde Vck je objem celého krystalu. Tento výsledek
jsme již dostali při řešení př. 6.1.

Hybnost elektronu v daném stavu k⃗ můžeme spočítat použitím operátoru hybnosti na odpovídající
vlnovou funkci ψk⃗

pψk⃗(r⃗) = −iℏ∇ψk⃗(r⃗) = ℏk⃗ψk⃗(r⃗). (7.8)

Vektorový operátor gradient znamená derivace ∇ = (d/dx, d/dy, d/dz). Jak je vidět, vlnová funkce ψk⃗(r⃗)

je tedy vlastní funkcí operátoru hybnosti s vlastní hodnotou ℏk⃗. Vlastní hodnota rychlosti je potom
jednoduše v⃗ = ℏk⃗/m. Protože můžeme interpretovat vektor k⃗ jako vlnový vektor rovinné vlny, dostaneme
také vlnovou délku elektronu

λ =
2π

k
, (7.9)

která odpovídá de Broglieově vlnové délce elektronu jakožto hmotné částice.

V základním stavu systému N volných elektronů bude obsazeno N elektronových stavů s nejnižší
energií. Díky kvadratické závislosti energie podle (7.7), budou tyto stavy vyplňovat kouli v k-prostoru,
jak je to znázorněno na obr. 7.3.
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Obr. 7.3: Řez Fermiho koulí obsazených stavů
volných elektronů v základním stavu. Stavy
s nejvyšší energií (Fermiho energií EF) leží na
povrchu této koule a odpovídá jim vlnový vek-
tor o velikosti kF.

Velikost vlnového vektoru kF určíme z normovací podmínky, kdy požadujeme, aby Fermiho koule
obsahovala pro elektrony právě N stavů. Při odvozování musíme opět uvažovat, že každý stav popsaný
vektorem k⃗ může být obsazen dvěma elektrony s opačnou orientací spinu

N = 2
4
3πk

3
F

( 2πL )3
=
Vck
3π2

k3F, ⇒ kF = 3

√
3π2

N

Vck
, (7.10)

EF =
ℏ2k2F
2m

. (7.11)

Z těchto vztahů je zřejmé, že Fermiho energie ani Fermiho vlnový vektor nejsou funkcí velikosti vzorku,
ale závisí pouze na koncentraci vodivostních elektronů: n = N/Vck. K výše uvedeným veličinám se obvykle
zavádí navíc ještě Fermiho rychlost v⃗F (rychlost elektronů na Fermiho ploše) a Fermiho teplota TF podle

v⃗F ∥ k⃗F, vF =
ℏkF
m

=
ℏ
m

3

√
3π2

N

Vck
, TF =

EF

kB
. (7.12)

Zde je třeba zdůraznit, že Fermiho teplota je konstanta nezávislá na teplotě. Tato teplota označuje mez,
podle níž lze rozhodnout, zda můžeme při konkrétní teplotě T použít nízkoteplotní, nebo vysokoteplotní
přiblížení.

Nyní využijme Wignerův poloměr rs definovaný vztahem (7.1) a jako jednoduché cvičení si pomocí
něho vyjádříme všechny výše zmiňované Fermiho veličiny. Výsledek je zapsán v tab. 7.1. Parametry dvou
typických kovů se počítají v př. 7.2 na konci této kapitoly.

Tab. 7.1: Fermiho parametry kovů, které lze spočítat z Wignerova poloměru.

Popis n kF vF EF [eV] TF

v SI 0.239/r3s 1.92/rs 2.22× 10−4/rs 1.40× 10−19/r2s 1.63× 10−15/r2s

v CGS 23.9/r3s 1.92/rs 2.22/rs 14.0/r2s 16.3/r2s

[rs v Å] ×1022 cm−3 ×108 cm−1 ×108 cm/s × eV ×104 K

7.5.1 Hustota stavů

Nyní nalezneme výraz pro počet stavů v daném intervalu energií. Tuto veličinu, analogicky jako v kapitole
o fononech, budeme označovat jako hustotu stavů. D(E)dE udává počet elektronových stavů v intervalu
energie (E,E + dE). Dosazením za kF do (7.10) z (7.11) získáme výraz, který udává počet stavů pro
elektrony s energií ≤ E. Tyto stavy tvoří kouli v k-prostoru podobné té na obr. 7.3. Hustotu stavů pak
získáme jako derivaci této závislosti:

D(E) =
dN

dE
=
Vck
2π2

(
2m

ℏ2

)3/2√
E. (7.13)
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Protože počet stavů v kouli s maximální energií E závisí na energii s úměrností N ∝ E3/2, můžeme
zapsat hustotu stavů také jako

D(E) =
3

2

N

E
. (7.14)

7.6 Měrné teplo elektronového plynu

Drudeho model volných elektronů s klasickým Maxwellovým-Boltzmannovým rozdělením kinetické ener-
gie by nám dal rozložení energií, které by odpovídalo fononům. To by způsobilo závislost měrného tepla na
teplotě odpovídající fononům. My ale víme, že pro kovy je nízkoteplotní závislost měrného tepla na teplotě
lineární. Navíc je známo, že pokud by k měrnému teplu přispívaly všechny vodivostní elektrony, bylo by
za pokojové teploty CV rovno 3/2NkB. Pozorované hodnoty pro kovy jsou ale asi 100-krát menší. Pro od-
vození správné závislosti je potřeba použít kvantovou teorii, která respektuje Pauliho vylučovací princip,
a vede na Fermiho-Diracovo rozdělení (7.5). Při zahřívání vzorku kovu mohou získávat vyšší energii pouze
stavy blízké Fermiho energii (viz obr. 7.2). Při excitaci mohou přejít do vyšších energetických stavů, které
nejsou obsazené. Doplnění Drudeho modelu o Fermiho-Diracovu statistiku provedl německý fyzik Arnold
Sommerfeld, proto se tento model elektronů v kovech někdy označuje jako Drudeho-Sommerfeldův model.

Odvození měrného tepla provedeme pro nízké teploty, T ≪ TF. To je i případ pokojové teploty, neboť
Fermiho teplota typických kovů je řádově 104 K. Nejdříve spočítáme změnu energie vzorku kovu při
zahřátí z nuly na teplotu T

U =

∞∫
0

dE ED(E) fFD(E) −
EF∫
0

dE ED(E). (7.15)

Zde jsme využili toho, že při nulové teplotě je fFD(E) schodová funkce. Při dalším výpočtu použijeme
normovací podmínku

N =

∞∫
0

dE D(E) fFD(E). (7.16)

Tepelnou kapacitu elektronů dostaneme derivací3. Navíc použijeme faktu, že derivace konstanty EFN je
nulová a můžeme ji tedy libovolně odečíst

Cel =
∂U

∂T
=

∞∫
0

dE ED(E)
∂f

∂T
, (7.17)

0 = EF
∂N

∂T
=

∞∫
0

dE EFD(E)
∂f

∂T
.

Odečtením obou řádků dostaneme měrné teplo elektronů ve tvaru

Cel =

∞∫
0

dE (E − EF)D(E)
∂f

∂T
. (7.18)

Z obr. 7.4 je patrné, že derivace ∂f/∂T je nenulová pouze pro energie blízko Fermiho meze. Vztah
pro měrné teplo pak přepíšeme tak, že vytkneme pomalu se měnící funkci D(E) před integrál

Cel = D(EF)

∞∫
0

dE (E − EF)
∂f

∂T
. (7.19)

Pokud dosadíme derivaci Fermiho-Diracovy rozdělovací funkce, která jediná závisí na teplotě, získáme
finální vztah

Cel =
1

3
π2D(EF) k

2
BT. (7.20)

3Porovnejte s (6.1) pro fonony.
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Na tomto místě je výhodné dosadit za hustotu stavů vztah (7.14). Tak můžeme získat pro měrné teplo
alternativní výraz daný vynásobením několika konstant

Cel =
1

2
π2Nk

2
BT

EF
=

1

2
π2NkB

T

TF
. (7.21)
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Obr. 7.4: Černá čára představuje hustotu
stavů 3D plynu volných elektronů jako
funkci energie. Žlutá oblast představuje za-
plněné stavy při absolutní nule s typickou
Fermiho teplotou pro kovy TF = 5×104 K.
Červená a modrá čára ukazují obsazení
stavů pro dvě zvolené teploty T ≪ TF.
Šířka oblasti ±kBT je zobrazena barevnou
šipkou. Při zvyšování teploty se elektrony
excitují z oblasti 1 do oblasti 2.

7.6.1 Experimentální měrné teplo kovů

Je jasné, že i u kovů se bude v měřeném teple projevovat vliv mřížky. Pokud bude teplota pod Debye-
ovou teplotou, bude určitě i pod Fermiho teplotou, která bývá o řád vyšší (viz (PO. 6.1: Debyeova
teplota)). V této oblasti můžeme sečíst příspěvky od elektronů (7.21) a od mřížky (6.10). Experimen-
tální měrné teplo pro tři alkalické kovy publikovali W.H. Lien a N.E. Phillips4 v roce 1963, viz obr. 7.5.
Ukázali, že je zde vhodné graficky vykreslit funkci C/T v závislosti na T 2:

C

T
= γ +AT 2. (7.22)

Tato lineární funkce má směrnici A a na ose hodnot vytíná úsek rovný γ.

Obr. 7.5: Experimentální měrné teplo draslíku za teplot blízko absolutní nuly.

4W.H. Lien a N.E. Phillips, „Low-temperature heat capacities of potassium, rubidium, and cesiumÿ, Phys. Rew. 133,
A1370 (1963).
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Dosazením Fermiho teploty do (7.21) můžeme odvodit teoretický vztah pro koeficient γ. Pro kov
s valencí Z∗ tak dostaneme

γ =
1

2
π2Z

∗R

TF
= 2.52× 10−4 Z∗ r2s Jmol−1K−2 [pro rs v Å],

kde univerzální plynová konstanta R = kBNA = 8.314 Jmol−1K−1. Například pro draslík s rs = 2.57 Å
dostaneme γ = 1.66 mJmol−1K−2.

Experimentálně získaná data funkce (7.22) jsou skutečně body na přímce. Přesnost kvantitativní
shody je daná tím, do jaké míry platí aproximace volných elektronů. Korekce k této aproximaci vedou
k zavedení efektivní hmotnosti elektronů mth. Podle vztahu (7.11) je γ ∝ mth. Pomocí této efektivní
hmotnosti lze korigovat tři nejvýznamnější efekty, které jsme zatím zanedbávali:

1. Interakce vodivostních elektronů se statickou periodickou mřížkou. Elektrony se pohybují ve vodi-
vostním energetickém pásu kovu a ne v potenciálové krabici s nulovým potenciálem.

2. Interakce vodivostních elektronů s fonony. Elektron svou přítomností polarizuje/deformuje perio-
dickou mřížku a takto interaguje s kmity mřížky.

3. Vzájemná interakce mezi vodivostními elektrony.

7.7 Tepelná vodivost kovů

V kapitole 6 jsme z klasické teorie odvodili vztah pro tepelnou vodivost částic s rychlostí v, měrným
teplem na jednotkový objem C a se střední volnou dráhou l ve tvaru K = 1

3Cvl. Pro elektrony využijeme
měrné teplo podle (7.21) a Fermiho energii podle EF = 1

2mv
2
F. Za rychlost dosadíme vF a pro střední

volnou dráhu použijeme l = vFτ , kde časová konstanta τ je relaxační doba. Takto dostaneme tepelnou
vodivost

Kel =
1

3

[
1

2
π2n

k2BT
1
2mv

2
F

]
vF vFτ =

π2nk2BTτ

3m
. (7.23)

Při pokojové teplotě mají kovy o jeden až o dva řády vyšší tepelnou vodivost než dielektrika, takže
za těchto podmínek přenášejí elektrony téměř celý tepelný proud.

Střední volná dráha může pro čistý krystal za nízkých teplot dosahovat řádově centimetrů. Pro čistý
krystal mědi byly zjištěny hodnoty

l(300 K) ≈ 3 µm, l(4 K) ≈ 3 mm.

Pokud vezmeme na zřetel, že při srážkách mohou interagovat pouze elektrony blízko Fermiho meze,
můžeme odhadnout nízkoteplotní relaxační dobu tohoto vzorku mědi: τ = l/vF ≈ 2 ns.

7.8 Elektrická vodivost a Ohmův zákon

Pokud je na vzorek kovu přiloženo elektrické pole v čase t = 0, bude na jednotlivé elektrony působit silou
F⃗ . Tato síla vyvolá podle Newtonova pohybového zákona časovou změnu hybnosti, kterou můžeme pro
elektron zapsat jako p⃗ = mv⃗ = ℏk⃗

F⃗ = −eE⃗ = ℏ
dk⃗

dt
. (7.24)

Představuje-li systém obsazených elektronových hladin v čase t = 0 Fermiho kouli se středem v centru
k-prostoru, bude se tato koule s časem posouvat podle vztahu, který dostaneme integrací (7.24)

k⃗(t)− k⃗(0) = −eE⃗t
ℏ
. (7.25)

V souladu s Drudeho modelem předpokládáme, že posun Fermiho koule je ve stacionárním stavu omezen
relaxační dobou τ (střední doba mezi srážkami). Celkově tedy můžeme říci, že vlivem vnějšího elektrického
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pole se Fermiho koule posune o δk⃗, což odpovídá tomu, že vodivostní elektrony budou mít střední rychlost
(driftovou rychlost) v⃗ danou vztahem

δk⃗ = −eE⃗τ
ℏ

⇒ v⃗ = −eE⃗τ
m

. (7.26)

Známe-li střední rychlost elektronů, můžeme snadno dopočítat elektrický proud. Pokud je hustota
elektronů n, bude mít hustota proudu tvar

j⃗ = n(−e)v⃗ =
ne2τ

m
E⃗. (7.27)

Pokud si vezmeme standardní tvar Ohmova zákona, j⃗ = σE⃗, hned získáme vztah pro měrnou elektrickou
vodivost

σ =
ne2τ

m
. (7.28)

Měrný elektrický odpor je převrácenou hodnotou vodivosti, ρ = 1/σ.
(PO. 7.1: Periodická tabulka s hodnotami měrné vodivosti a odporu prvků.)

7.8.1 Experimentální měrný odpor kovů

Experimentální zkušenost ukazuje, že v kovech můžeme odlišit dva relaxační procesy. Při pokojové teplotě
převažují srážky vodivostních elektronů s fonony, což charakterizuje relaxační doba (τL). Kmity mřížky
způsobují neperiodičnost krystalové mřížky. Při teplotách kapalného helia je ale obsazení fononů zaned-
batelné a dominantní relaxační proces je rozptyl na nečistotách a poruchách mřížky (τi). Protože oba
zmiňované procesy jsou ve většině případů nezávislé (Matthiessenovo pravidlo), sčítají se pravděpodob-
nosti obou procesů. Výsledná relaxační doba je potom daná

1

τ
=

1

τL
+

1

τi
.

Měrný elektrický odpor můžeme získat jako obdobný součet dvou příspěvků ρ = ρL + ρi. Měření
měrného odporu v závislosti na teplotě nám napomáhá k zjištění čistoty vzorku kovu. Protože teplotně
závislá část je daná rozptylem na fononech, je charakteristická teplota této závislosti často blízká Debyeově
teplotě.

7.9 Pohyb v magnetickém poli

Rovnici (7.24) popisující elektron, na který působí vnější síla, můžeme přepsat na pohybovou rovnici pro
posuv Fermiho koule δk⃗

ℏ
(

d

dt
+

1

τ

)
δk⃗ = F⃗ = −e(E⃗ + v⃗ × B⃗). (7.29)

Jako vnější sílu jsme použili Lorentzovu sílu5. Vztah pro hybnost (mv⃗ = ℏ δk⃗) nám umožní přejít od
vlnového vektoru k rychlosti v reálném prostoru

m

(
d

dt
+

1

τ

)
v⃗ = −e(E⃗ + v⃗ × B⃗). (7.30)

Tuto vektorovou rovnici je vhodné zapsat pro jednotlivé složky za podmínky, že si zvolíme souřadni-
cový systém s orientací magnetického pole v ose ẑ, B⃗ = (0, 0, B). Pohybovou rovnici zapíšeme pro všechny
tři složky

m

(
d

dt
+

1

τ

)
vx =−e(Ex + vyB),

m

(
d

dt
+

1

τ

)
vy =−e(Ey − vxB), (7.31)

m

(
d

dt
+

1

τ

)
vz =−eEz.

5Hendrik Antoon Lorentz je nositelem Nobelovy ceny za fyziku z roku 1902.
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V obecném případě nemůžeme jednoduše zanedbat časové derivace, neboť vlivem vnějších polí se
bude měnit velikost a směr rychlosti elektronu. Formální zanedbání časových derivací, které používá ve
své knize C. Kittel [1, 2] sice vede ke správnému výsledku, ale je těžko obhajitelné. Správné odvození
je založené na podmínce rovnováhy sil. Budeme uvažovat případ, kdy působí pouze magnetické pole. V
tomto případě je Lorentzova síla vždy kolmá na rychlost pohybu elektronu, elektron se neurychluje, pouze
se mění směr jeho pohybu. Vlivem statického magnetického pole se bude elektron pohybovat po kružnici,
jejíž poloměr je dán podmínkou, že Lorentzova síla má stejnou velikost jako odstředivá síla

m
v2

r
= evB.

Z této podmínky můžeme určit úhlovou frekvenci kruhového pohybu, která se označuje cyklotronová
frekvence

ωc =
v

r
=
eB

m
.

7.9.1 Hallův jev

jx

Ex

vx

B

Ey

x y

z

Obr. 7.6: Schéma standardního uspořádání měření Hallova jevu.

Pokud necháme procházet proud vzorkem pod vlivem magnetického pole, budou elektrony vedoucí
proud vychylovány z původního směru. Protože ale vzorkem nemůže téct proud v příčném směru, na
bocích se vytvoří napětí, které bude kompenzovat vliv magnetického pole. Tento jev pozoroval jako první
americký fyzik Edwin Hall v roce 1879 na vzorku zlata. Uvažujme geometrii uspořádání experimentu
podle obr. 7.6, kdy dojde k ustálení stacionárního režimu. V tomto případě jsou skutečně všechny časové
derivace v (7.31) nulové. Řešení třetího řádku je triviální vz = 0. S využitím stacionární podmínky vy = 0
získáme z prvního řádku (7.31)

vx = −eτ
m
Ex.

To dosadíme do druhého řádku (7.31) a dostaneme výraz

Ey = vxB = −eτ
m
ExB. (7.32)

Nyní si definujme Hallův koeficient

RH ≡
Ey
jxB

=
Ey

σExB
. (7.33)

Do čitatele dosadíme vztah (7.32) a do jmenovatele (7.28). Většina parametrů se pokrátí a získáme tak
velmi důležitý vztah

RH = − 1

ne
. (7.34)

Díky jednoduchosti tohoto výsledku je měření Hallova koeficientu velmi efektivní experimentální metodou
určení koncentrace nosičů proudu. Navíc Hallův koeficient pro obecné částice s nábojem q̃ by vyšel
RH = 1/q̃n. V následujících kapitolách budeme probírat polovodiče, u nichž jsou majoritní nosiče díry
s nábojem q̃ = +e. Pro tyto materiály, ale i pro některé kovy (hliník, indium), je Hallův koeficient kladný.
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7.10 Wiedemannův-Franzův zákon

Na závěr této kapitoly zmíníme ještě vztah mezi tepelnou a elektrickou vodivostí kovů. Protože přenos
energie i elektrického náboje obstarávají v kovech elektrony, měly by být tyto veličiny v korelaci. To platí
pro teploty, pro něž jsou relaxační doby pro oba zmíněné procesy shodné. To bývá splněno obvykle při
teplotách dostatečně vzdálených od absolutní nuly.

Použijeme vztahy (7.23) a (7.28) odvozené v předešlých odstavcích a vyjádříme si podíl obou vodivostí

K

σ
=
π2nk2BTτ/3m

ne2τ/m
=
π2

3

(
kB
e

)2

T = LT. (7.35)

Konstanta L se označuje jako Lorentzovo číslo podle holandského fyzika H.A. Lorentze. Tato konstanta je
daná pouze fundamentálními konstantami a nezávisí na materiálu daného kovu. Její teoretická hodnota
je

L = 2.44× 10−8 WΩK−2.

Experimentálně získané hodnoty L při teplotě 0◦C jsou velmi blízké této teoretické hodnotě, jak ukazuje
tab. 7.2. Tuto shodu experimentu s teoretickou předpovědí považoval Lorentz za potvrzení použitelnosti
teorie volných elektronů pro popis základních vlastností kovů.

Tab. 7.2: Experimentálně měřené Lorentzovo číslo některých kovů
při teplotě 0◦C. Data byla převzata z [2].

Prvek L [10−8 WΩK−2]

Ag 2.31
Au 2.35
Cd 2.42
Cu 2.23
Pb 2.47
Pt 2.51
W 3.04
Zn 2.31
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PO. 7.1: Periodická tabulka ukazuje pod názvem prvku měrnou elektrickou vodivost a měrný
elektrický odpor v uvedených jednotkách. Větší vodivost je znázorněna podbarvením sytější červenou

barvou podle zakreslené stupnice. Data převzata z [2].
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7.11 Příklady

Př. 7.1: Vliv dimenze na hustotu stavů:
V této kapitole byl odvozen vztah (7.13) pro hustotu elektronových stavů v 3D vzorku. Odvoďte analo-
gicky z geometrie dané dimenze hustotu stavů pro 2D případ (kvantová jáma), který odpovídá vzorku,
kde se mohou elektrony pohybovat pouze v tenké vrstvě. Dále odvoďte hustotu stavů i pro 1D případ
(kvantový drát). Výsledky porovnejte.

Nápověda: viz obr. 7.7.

0

1

2

3
g(

E
)

/
N

S

0 1 2 3 4 5 6 7 8 9 10 11 12 13
E / E1

3D
2D
1D

Obr. 7.7: Výpočet hustoty stavů elektronů pro různé dimenze.

Řešení:

3D : g3D =
D3D

Vck
=

1

2π2

(
2m

ℏ2

)3/2√
E;

2D : g2D =
D2D

S
=

m

πℏ2
= Ns;

1D : g1D =
D1D

L
=

√
2m

π2ℏ2
1√
E
.

Př. 7.2: Fermiho parametry kovů:
S využitím tabulky 7.1 a vztahu (7.1) vypočítejte parametry krystalů kovu sodíku a mědi (n, kF, vF, EF, TF).

Př. 7.3: Převody Hallova koeficientu:
Hallův koeficient se v soustavě SI vypočítá podle vztahu RSI

H = −1/ne. V některých pracích se používají
jednotky CGS, v nichž se ale Hallův koeficient spočítá podle vztahu RCGS

H = −1/nec. Ukažte, že poměr
obou hodnot pro daný materiál musí splňovat rovnost: RSI

H /R
CGS
H = 9.0× 1013.

Nápověda: Pozor, v jednotkách CGS je náboj elektronu roven e = 4.803× 10−10 esu.

Př. 7.4: Kinetická energie elektronového plynu:
Ukažte, že kinetická energie 3D elektronového plynu N volných elektronů při teplotě 0 K je U0 = 3

5NEF,
neboli střední kinetická energie jednoho elektronu je rovna 3

5EF. Kittel, str. 186, př. 1

Nápověda:

U0 =

kF∫
0

(
ℏ2k2

2m

)
2(4πk2)

(2π/L)3
dk.
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Př. 7.5: Tlak elektronového plynu:
Ukažte že závislost tlaku na objemu elektronového plynu z předešlé úlohy lze zapsat jako p = 2

3U0/Vck.
Kittel, str. 186, př. 2

Nápověda: Pracujte s objemem obsahujícím jeden elektron V1 = z3 = Vck/N . Tato podmínka definuje
hranu krychle z právě s jedním elektronem. Spočítejte tlak na stěnu této krychle jako

p =
(zmna hybnosti)

(as)(plocha)
.

Př. 7.6: Chemický potenciál v 2D případě:
Odvoďte vztah pro tepelnou závislost chemického potenciálu pro 2D Fermiho plyn volných elektronů

µ(T ) = kBT ln( eEF/kBT − 1).

Využijte konstantní hustotu stavů pro 2D případ z příkladu 7.1. Kittel, str. 186, př. 3

Př. 7.7: Frekvenční závislost elektrické vodivosti:
Využijte vztah pro driftovou rychlost m(dv/dt+v/τ) = −eE a ukažte, že vodivost při frekvenci budícího
elektrického pole ω je

σ(ω) = σ(0)

(
1− iωτ
1 + (ωτ)2

)
.

Statická vodivost je daná výrazem σ(0) = ne2τ/m. Kittel, str. 186, př. 6

Př. 7.8: Kohezní energie Fermiho plynu volných elektronů:*

Spočítejte kohezní energii kovu s jedním vodivostním elektronem na atom. Použijte bezrozměrné jednotky:
Wignerův poloměr rs v jednotkách Bohrova poloměru aB a energii v jednotkách Rydberg [Ry]

aB = 4πε0
ℏ2

me2
, Ry =

1

(4πε0)2
me4

2ℏ2
.

Postupujte podle schématu na obr. 7.8 následovně, ukažte, že:
(a) Průměrná kinetická energie jednoho elektronu je EK ≈ 2.21Ry/r2s .
(b) Coulombovská energie jádra reprezentovaného bodovým nábojem +e ve středu koule s poloměrem rs
s homogenním rozložením náboje elektronu v této kouli je EJ = −3Ry/rs.

EK

E

rs

(x,y,z)

rs

(x,y,z)

(x’,y’,z’)

EK rs
2 EJ rs E rs

E

rs / a

Obr. 7.8: Výpočet kohezní energie: a) kinetická energie elektronu z parametrů Fermiho koule, b) coulom-
bovská interakce elektron-jádro, c) coulombovská interakce elektronu se sebou samým, d) celková energie
jako funkce Wignerova poloměru.
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(c) Vlastní coulombovská energie interakce elektronu s homogenním rozložením náboje v kouli o poloměru
rs (interakce elektronu se sebou samým) je Eel = (6/5)Ry/rs.
(d) Celková energie E = EK + EJ + Eel. Ukažte, že tato závislost energie umožňuje vznik stabilnímu
krystalu kovu s minimální energií pro rs = 2.45 aB.
Kittel, str. 187, př. 8

Řešení: E(rs = 2.45) ≈ 4.98 eV

Př. 7.9: Maximální povrchový odpor:
Uvažujme čtverec kovu o straně L a tloušťce (d≪ L) s elektrickým měrným odporem ρ. Odpor měřený
mezi protilehlými stranami čtverce se označuje jako povrchový odpor: R□ = ρL/Ld = ρ/d. Tento odpor
nezávisí na velikosti strany čtverce L. Použijte vztah pro vodivost (7.28), předpokládejte, že relaxační doba
je daná srážkami na tloušťce vzorku τ ≈ d/vF. Uvažujeme co nejužší (jednoatomární) vrstvu s tloušťkou
odpovídající d = rs. Spočítejte maximální povrchový odpor R□.

Řešení: Po dosazení vyjde R□ ≈ ℏ/e2 = 4.1 kΩ.
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Pásová struktura zeber na pozici: 50◦25’52.798”N, 15◦47’51.410”E.
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Energetické pásy
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V předchozí kapitole jsme probrali model volných elektronů, který dokáže vysvětlit mnoho vlastností
kovů. Tento naivní model ovšem neumožňuje objasnit některé složitější jevy jako:

1. rozdíl mezi kovy, polovodiči a izolátory;

2. původ kladné hodnoty Hallova koeficientu pro některé látky;

3. vztah mezi vodivostními elektrony v kovu a valenčními elektrony ve volných atomech.

Stojí za povšimnutí, že měrný odpor je veličina, která má u pevných látek největší rozptyl (až 32
řádů). Při nízkých teplotách dosahuje pro čisté kovy 10−10 Ωcm a pro dobré izolátory 1022 Ωcm. Pro

izolátor kov polokov polovodič

en
er

gi
e

Obr. 8.1: Schéma typické pásové struktury látek.
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Obr. 8.2: Typický příklad krystalického potenciálu podél 1D řetízku deseti atomových jader zobrazených
modrými kolečky podél osy x̂. Světle modré čáry ukazují coulombovské potenciály prvních dvou atomů
U ∝ −1/|x|. Červená čára je součtem potenciálů všech deseti atomů. Zelená čára je aproximace potenciálu
funkcí cosinus.

vysvětlení tohoto fenoménu je třeba popsat pásovou strukturu energetických stavů elektronů v pevné
látce, kterou schematicky zobrazuje obr. 8.1. Smyslem této kapitoly je popsat a pochopit tento obrázek.

8.1 Periodický potenciál

V této kapitole se budeme zabývat modelem ideálního krystalu, který má perfektní periodickou mřížku bez
poruch a bez příměsí. Tyto odchylky se pak k řešení pro ideální krystal dopočítávají pomocí poruchového
počtu.

V jednoelektronové aproximaci je energetické spektrum pevné látky jednoznačně určené tvarem poten-
ciálu, který tuto látku nejlépe vystihuje. Tento potenciál zahrnuje jednak vliv atomárních jader v mřížce,
ale také potenciál popisující vzájemnou elektron-elektronovou interakci. Získání správného potenciálu je
značně složité a často se řešení hledá sofistikovanými iteračními metodami. Správnost řešení se hodnotí
podle souladu vypočítaných energetických hladin s měřenými hodnotami pro danou látku. Při řešení
Schrödingerovy rovnice se využije dvou vlastností potenciálu: a) je reálný, b) je periodický. Potenciál je
invariantní vůči operaci translace TT⃗ o libovolný vektor Bravaisovy mřížky T⃗ , která odpovídá symetrii
daného krystalu

TT⃗U(r⃗) = U(r⃗ + T⃗ ) = U(r⃗).

Protože hamiltonián je vůči translaci invariantní, můžeme říci, že operace translace komutuje s jedno-
elektronovým hamiltoniánem. Z pouhé periodicity potenciálu, bez znalosti jeho přesného tvaru, se dá
vysvětlit několik důležitých vlastností krystalů. Budeme tedy studovat řešení Schrödingerovy rovnice pro
jeden elektron,

Hψ =

(
− ℏ2

2m
∇2 + U(r⃗)

)
ψ = Eψ. (8.1)

Vlastní stavy energie můžeme zapsat jako vlastní stavy operátoru translace.

8.2 Blochův teorém

Švýcarský fyzik F. Bloch1 odvodil jako první výraz pro vlnovou funkci elektronu v periodickém potenciálu.

Teorém: V dokonalém periodickém potenciálu krystalu lze napsat řešení Schrödingerovy rovnice ve tvaru
rovinné vlny vynásobené periodickou funkcí, která má periodu shodnou s periodou krystalu.

ψk⃗(r⃗) = eık⃗·r⃗ uk⃗(r⃗), uk⃗(r⃗ + T⃗ ) = uk⃗(r⃗). (8.2)

Tyto vlnové funkce popisují stavy vlastní celému krystalu. Někdy se označují jako Blochovy elektrony
v protikladu k volným elektronům. Matematicky se dá zapsat Blochův teorém několika způsoby, které
1Felix Bloch je nositelem Nobelovy ceny za fyziku z roku 1952.
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jsou ale významem vzájemně ekvivalentní. Ze vztahu (8.2) přímo plyne druhý zápis Blochovy vlnové
funkce

ψk⃗(r⃗ + T⃗ ) = eık⃗·T⃗ ψk⃗(r⃗). (8.3)

K tomuto vztahu lze dojít také tak, že si uvědomíme, že vlnová funkce elektronu se musí transformovat
shodně při použití dvou obecných operací translace po sobě v libovolném pořadí, nebo pokud provedeme
pouze jednu translaci o součtový vektor. Pro tyto translace musí platit

TT⃗TT⃗ ′ = TT⃗ ′TT⃗ = TT⃗+T⃗ ′ ,

kde TT⃗ označuje operátor translace o vektor mřížkové translace T⃗ .

Jako obvykle je vhodné zavést Bornovy-von Karmanovy periodické okrajové podmínky. Po jejich
zavedení dostaneme, že vlnové vektory k⃗ jsou reálné a mohou nabývat pouze diskrétních hodnot. Těchto
dovolených hodnot je v první Brillouinově zóně N , t.j. právě tolik, kolik je elementárních buněk v daném
vzorku krystalu (viz př. 6.1).

8.3 Ústřední rovnice

Protože pracujeme s periodickým potenciálem, je nasnadě, že bude výhodné přejít pomocí Fourierovy
transformace z přímého prostoru do reciprokého prostoru (k-prostor). Pro jednoduchost se někdy uvádí
následující odvození pouze v jedné dimenzi s tím, že rozšíření na 3D je triviální. V některých místech
odvozování by to však mohlo být zavádějící, a proto se budeme v následující části této sekce držet ve 3D.
Uvažujme periodický potenciál s periodou danou třemi translačními vektory a⃗1, a⃗2, a⃗3. Tento potenciál
můžeme zapsat pomocí Fourierovy řady

U(r⃗) =
∑
G⃗

UG⃗ eıG⃗·r⃗, (8.4)

kde G⃗ označuje všechny mřížkové vektory reciprokého prostoru.

Koeficienty rozvoje UG⃗ rychle klesají s rostoucím G. Pro čistě coulombovský potenciál je závislost
těchto koeficientů UG⃗ ∝ 1/G2. Z vlastností Fourierovy transformace lze dopočítat koeficienty UG⃗ integrací
přes jednu elementární buňku

UG⃗ =
1

Vc

∫
buka

dV e−ıG⃗·r⃗U(r⃗). (8.5)

Konstantní člen U0 můžeme zvolit roven nule, protože určuje pouze hladinu odčítání energie. Díky re-
álnosti potenciálu musí pro koeficienty rozvoje obecně platit U−G⃗ = U∗

G⃗
. Pokud má krystal navíc ještě

symetrii inverze, získáme navíc další podmínku

U−G⃗ = UG⃗ = U∗
G⃗
.

Dále budeme potřebovat Fourierův rozvoj vlnové funkce jednoho typického elektronu. Protože víme,
že hledaná funkce ψ musí splňovat Bornovy-von Karmanovy okrajové podmínky, je možné zapsat tuto
funkci jako rozvoj do rovinných vln splňujících tyto okrajové podmínky

ψ(r⃗) =
∑
K⃗

C(K⃗) eıK⃗·r⃗. (8.6)

Suma se provádí přes vlnové vektory K⃗, které zahrnují vlnový vektor k⃗ a všechny jeho repliky získané
posunutím do dalších BZ, K⃗ = k⃗ + G⃗, jak to ukazuje obr. 8.3.

Nyní dosadíme rozvoje (8.4) a (8.6) do Schrödingerovy rovnice (8.1). Takto získáme výraz∑
K⃗

ℏ2

2m
K2C(K⃗) eıK⃗·r⃗ +

∑
G⃗

∑
K⃗

UG⃗ C(K⃗) eı(K⃗+G⃗)·r⃗ = E
∑
K⃗

C(K⃗) eıK⃗·r⃗. (8.7)

Protože rovinné vlny rozvoje vlnové funkce tvoří ortogonální systém, musí se shodovat koeficienty u
jednotlivých Fourierových složek na obou stranách rovnice. Jednoduše řečeno pokrátíme u všech členů
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Obr. 8.3: Na ose jsou zelenými body označeny vlnové vektory K povolené periodickými okrajovými
podmínkami pro 1D řetízek 20 atomů. Červeně jsou označeny vektory reciproké mřížky G. Žlutě je
vyznačena 1.BZ. Modře je znázorněn jeden vlnový vektor k z 1.BZ a jeho repliky posunuté pomocí všech
vektorů G.

sumu přes K⃗ a exponencielu se součinem (K⃗ · r⃗). Takto dostaneme výslednou rovnici, která musí platit
pro libovolný vybraný vlnový vektor k⃗ z 1.BZ, který vyhovuje okrajovým podmínkám

(λk − E)C(k⃗) +
∑
G⃗

UG⃗ C(k⃗ − G⃗) = 0, λk =
ℏ2k2

2m
. (8.8)

Tato rovnice se označuje jako ústřední rovnice (v originále central equation). Je třeba si uvědomit, že tato
rovnice vznikla pouze přepisem Schrödingerovy rovnice do momentového prostoru (k-prostoru).

Pro daný vlnový vektor k⃗ z 1.BZ obsahuje ústřední rovnice pouze koeficienty C(k⃗ − G⃗). Problém
hledání energetického spektra v 1.BZ se takto rozpadá na řešení ústřední rovnice pro každou povolenou
hodnotu vektoru k⃗. Řešením každé této rovnice je superpozice rovinných vln obsahujících pouze vlnový
vektor k⃗ a vektory posunuté o vektory reciproké mřížky G⃗. Tímto postupem jsme diferenciální Schrödin-
gerovu rovnici nahradili soustavou algebraických rovnic. Nekonečné sumy se mohou zdát komplikované,
v praxi je ale často potřeba zkombinovat jen několik málo koeficientů, dva nebo čtyři.

Jakmile jsou známy koeficienty C z řešení ústřední rovnice, můžeme zapsat Blochovu vlnovou funkci
v pořadí již ve třetím tvaru

ψk⃗(r⃗) =
∑
G⃗

C(k⃗ − G⃗) eı(k⃗−G⃗)·r⃗. (8.9)

Z tohoto zápisu je zřejmé, že periodickou část Blochovy funkce lze získat podle

uk⃗(r⃗) =
∑
G⃗

C(k⃗ − G⃗) e−ıG⃗·r⃗. (8.10)

Důkaz toho, že tato funkce je skutečně periodická s periodou krystalové mřížky, je triviální, a proto ho
přenechme čtenáři jako cvičení.

8.4 Kvazihybnost

Nyní bychom se měli zamyslet nad významem vlnového vektoru k⃗, který vystupuje v definici Blochových
vlnových funkcí.

1. Z výrazu (8.3) plyne, že Blochovy vlnové funkce jsou vlastními stavy operátoru mřížkové translace
TT⃗ s vlastní hodnotou danou fázovým faktorem eık⃗·T⃗ .

2. V limitě nulového potenciálu se ústřední rovnice (8.8) redukuje na výraz (λk−E)C(k⃗) = 0. Řešením

jsou standardní rovinné vlny s odpovídajícím tvarem ψk⃗(r⃗) = eık⃗·r⃗, které popisují volný elektron.

3. Vlnový vektor k⃗ vystupuje v zákonech zachování při srážkách elektronu v krystalu. Proto veličinu ℏk⃗
nazýváme kvazihybnost. Jako příklad uveďme nejjednodušší zákon zachování pro rozptyl elektronu
na fononu

k⃗ + q⃗ = k⃗′ + G⃗.
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4. Blochův stav už není vlastním stavem operátoru hybnosti, p = −iℏ∇. Můžeme ale určit střední
hodnotu operátoru hybnosti

⟨p⟩ = m

ℏ
∇k⃗E(k⃗).

5. Při působení vnější síly se Blochův stav elektronu vyvíjí podle jednoduché kinetické rovnice

F⃗ =
d

dt
(ℏk⃗).

8.5 Vlastnosti Blochových funkcí

Pokud dosadíme Blochovu vlnovou funkci ve tvaru (8.2) do Schrödingerovy rovnice (8.1), můžeme zjistit
obecné vlastnosti řešení, které tyto funkce splňují. Schrödingerova rovnice po zkrácení exponenciely získá
tvar [

− ℏ2

2m

(
△+ 2ı⃗k · ∇ − k2

)
+ U(r⃗)

]
uk⃗(r⃗) = E(k⃗)uk⃗(r⃗), (8.11)

kde△ = (d2/dx2+d2/dy2+d2/dz2) označuje Laplaceův operátor. Díky symetrii při komplexním sdružení
zjistíme, že musí platit

u∗
k⃗
(r⃗) = u−k⃗(r⃗), E(k⃗) = E(−k⃗), E(k⃗) = E(k⃗ + G⃗).

Energetické spektrum je tedy periodické. Závislosti získané v nějaké vyšší Brillouinově zóně lze jedno-
duše posunou do 1.BZ. Tomuto zobrazení energetických pásů se říká redukované pásové schéma. Často se
také dají energetické závislosti znázorňovat tak, že spojitě přecházejí, kopírují se, do všech Brillouinových
zón. Takto vzniká tzv. periodické pásové schéma.

8.6 Řešení ústřední rovnice v 1D

V této sekci budeme hledat řešení 1D ústřední rovnice

(λk − E)C(k) +
∑
G

UG C(k −G) = 0, λk =
ℏ2k2

2m
. (8.12)

Jde o soustavu homogenních lineárních rovnic svázaných koeficienty C(k−G). Soustava homogenních rov-
nic má nenulové řešení pouze tehdy, pokud je její determinant roven nule. Hledání vlastních stavů energie
pro daný vektor k odpovídá řešení podmínky nulovosti determinantu. Budeme uvažovat nejjednodušší
potenciál, který lze popsat pouze jednou harmonickou složkou (zelená čára v obr. 8.2)

U(x) = Ug eıgx + Ug e−ıgx, g =
2π

a
.

Zapíšeme si část determinantu, který budeme dále řešit za různých podmínek

det

∣∣∣∣∣∣∣∣∣∣∣

(λk−2g − E) Ug 0 0 0

Ug (λk−g − E) Ug 0 0

0 Ug (λk − E) Ug 0

0 0 Ug (λk+g − E) Ug
0 0 0 Ug (λk+2g − E)

∣∣∣∣∣∣∣∣∣∣∣
. (8.13)

8.6.1 Řešení na hraně Brillouinovy zóny

Uvažujme 1D řešení na hranici zóny, kde k = π/a. V tomto bodě budeme skládat řešení z rovinných
vln s koeficienty C(π/a) a C(−π/a). Dosazením do vztahu pro λ získáme energii pro volný elektron na
hraně pásu, E1 = ℏ2π2/2ma2. Z ústřední rovnice (8.12) nám vyjde determinant matice 2 × 2, který se
má rovnat nule

det

∣∣∣∣E1 − E Ug
Ug E1 − E

∣∣∣∣ = 0 ⇒ E± = E1 ± Ug =
ℏ2π2

2ma2
± Ug. (8.14)
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Tento výsledek interpretujeme tak, že na hranici BZ dochází ke štěpení energetické závislosti, vzniká
zakázaný pás o šířce 2Ug. Pro slabý periodický potenciál se řešení uvnitř BZ blíží volnému elektronu
s úzkým zakázaným pásem na hranici BZ. Pro silný periodický potenciál s velkou modulací vznikají
jakoby oddělené potenciálové jámy s vlastními energetickými hladinami pro každé minimum potenciálu.
Zakázané pásy jsou pak velmi široké.

Vlastním stavům energie odpovídají vlastní vlnové funkce stavů na hranici Brillouinovy zóny. Dosa-
zením vlastního řešení E do ústřední rovnice dostaneme podíl koeficientů C(−π/a)/C(π/a) = ±1. Z toho
pak dále dostaneme vlnové funkce

ψ±(x) = eıπx/a ± e−ıπx/a.

8.6.2 Řešení v blízkosti hrany Brillouinovy zóny

Nyní budeme hledat řešení v těsné blízkosti hranice Brillouinovy zóny. Hledaná vlnová funkce má tvar

ψ(x) = C(k) eıkx + C(k − g) eı(k−g)x. (8.15)

Pro tento případ zapíšeme dva řádky ústřední rovnice a z nich pak sestavíme determinant

(λk − E)C(k) +UgC(k − g) = 0

UgC(k) +(λk−g − E)C(k − g) = 0

}
⇒ det

∣∣∣∣λk − E Ug
Ug λk−g − E

∣∣∣∣ = 0. (8.16)

Řešení determinantu nám dá kvadratickou rovnici, která má dvě řešení

E± =
λk−g + λk

2
±

√(
λk−g − λk

2

)2

+ U2
g .

Což přepíšeme v jednotkách vzdálenosti od hrany BZ, k = π
a + ξ,

E±(ξ) = E1 +
ℏ2ξ2

2m
±
√
4E1

ℏ2ξ2
2m

+ U2
g ≈ E1 +

ℏ2ξ2

2m
± Ug

(
1 + 2

E1

U2
g

ℏ2ξ2

2m

)
, (8.17)

kde E1 = ℏ2π2/2ma2.

Tento výsledek je graficky znázorněn na obr. 8.4. Vlnové funkce, které pro oba pásy dostaneme, jsou
tvořeny majoritně jednou složkou rozvoje do rovinných vln. Pouze v oblasti hrany se podíl obou složek
vyrovná. Obrázek 8.4 a) ukazuje, jak se na hraně 1.BZ vytvoří zakázaný pás šířky 2Ug. První i druhý pás
mají na tomto místě extrém. Obrázek 8.4 b) ukazuje přelévání podílu koeficientů C v blízkosti hranice
zóny.
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Obr. 8.4: a) Vznik zakázaného pásu na hranici 1.BZ pro parametry: Ug = 0.4E1. Modře je znázorněn
tvar pásů na hranici zóny a vznik zakázaného pásu podle (8.17). Pásy povolených energií jsou podbarveny
žlutě. b) Podíl koeficientů C pro oba pásy.
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8.7 Přiblížení 3D prázdné mřížky

V případě prázdné 3D mřížky je potenciál zcela nulový. Oproti případu zcela volných elektronů mu-
síme pouze přenést energetickou závislost na vlnovém vektoru pomocí translací G⃗ do 1.BZ. Je výhodné
vytknout konstanty a pracovat v relativních veličinách: ξx = kx/(π/a), ε = E/E1

ε = (ξx − 2i)2 + (ξy − 2j)2 + (ξz − 2k)2, i, j, k . . . cel sla.

Výsledky tohoto modelu pro SC mřížku jsou zobrazeny v následujících obrázcích:
(PO. 8.1: Schéma směrů a bodů v reciproké mřížce ke krystalu SC).
(PO. 8.2: Redukované energetické schéma SC mřížky) a (PO. 8.3: FCC mřížky).

8.8 Řešení modelových úloh

8.8.1 Kronigův-Penneyův model ze Schrödingerovy rovnice

x

U

-b 0 a

UoE

Obr. 8.5: Kronigův-Penneyův potenciál pevné látky jako periodické uspořádání obdélníkových jam.

R. de L. Kronig a W.G. Penney2 jako první formulovali v roce 1930 tento model pevné látky, který
budeme dále označovat jako KP.

V tomto příkladu budeme řešit přímo Schrödingerovu rovnici pro periodický pravoúhlý potenciál
podle obr. 8.5. Nalezneme řešení nejprve v jámě a potom v bariéře. Protože jde o oblasti s konstantním
potenciálem, předpokládáme řešení v následujícím tvaru:

Schrödingerova rovnice vlnová funkce energie

v jámě 0 < x < a − ℏ2

2m
d2ψ
dx2 = Eψ ψ = A eıαx +B e−ıαx E = ℏ2α2

2m

v bariéře −b < x < 0 − ℏ2

2m
d2ψ
dx2 + Uoψ = Eψ ψ = C eβx +D e−βx Uo − E = ℏ2β2

2m

Kvantování dostaneme z okrajových podmínek. První dvě podmínky vycházejí ze spojitosti ψ a dψ/dx
v bodě x = 0. Zde Navážeme řešení zleva a zprava,

A+B = C +D,

ıαA− ıαB = βC − βD.
Dále využijeme blochovskou podmínku ψ(−b) = ψ(a) e−ık(a+b) pro navázání řešení v bodě x = −b
s řešením v bodě x = a,

A eıαa e−ık(a+b) +B e−ıαa e−ık(a+b) = C e−βb +D eβb,

ıαA eıαa e−ık(a+b) − ıαB e−ıαa e−ık(a+b) = βC e−βb − βD eβb

Tyto čtyři podmínky můžeme zapsat jako soustavu čtyř lineárních rovnic pro parametry A,B,C,D s
nulovou pravou stranou. Pokud má existovat nenulové řešení této soustavy, musí být nulový determinant
této soustavy rovnic:

det

∣∣∣∣∣∣∣∣
1 1 −1 −1
ıα −ıα −β β

eıαa e−ık(a+b) e−ıαa e−ık(a+b) − e−βb − eβb

ıα eıαa e−ık(a+b) −ıα e−ıαa e−ık(a+b) −β e−βb β eβb

∣∣∣∣∣∣∣∣ = 0. (8.18)

2R. de L. Kronig, W.G. Penney, Proc. Roy. Soc. (London) A130, 499 (1930).
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Pro zjednodušení zápisu je vhodné zavést následující substituci

x = αa, y = βb, z = k(a+ b).

Pozor: x, y, z použité odsud až po (8.20) nejsou souřadnice! Determinant (8.18) se nám zjednoduší na

det

∣∣∣∣∣∣∣∣
1 1 −1 −1
ıα −ıα −β β

eıx e−ız e−ıx e−ız − e−y − ey

ıα eıx e−ız −ıα e−ıx e−ız −β e−y β ey

∣∣∣∣∣∣∣∣ = 0. (8.19)

Determinant budeme počítat jako determinant (2×2) z prvních dvou řádků krát determinant (2×2)
z dalších dvou řádků. Permutací všech kombinací sloupců dostaneme šest členů, které si můžeme zapsat
pro přehlednost do tabulky

+(1, 2) (−2ıα)(−2β) = 4ıαβ

−(1, 3) −β2 e−ız( e−ıx − eıx)(− ey + e−y) = −4ıβ2 e−ız sin(x) sinh(y)

+(1, 4) −βıα e−ız( e−ıx + eıx)( ey + e−y) = −4ıαβ e−ız cos(x) cosh(y)
+(2, 3) βıα e−ız( e−ıx + eıx)(− ey − e−y) = −4ıαβ e−ız cos(x) cosh(y)
−(2, 4) −(ıα)2 e−ız(− e−ıx + eıx)( ey − e−y) = 4ıα2 e−ız sin(x) sinh(y)

+(3, 4) e−2ız(−2ıα)(−2β) = 4ıαβ e−2ız

V levém sloupci jsou zapsaná čísla sloupců, ze kterých se počítá determinant na prvních dvou řádcích a je
uvedeno znaménko odpovídající permutace. Pravý sloupec obsahuje výpočet násobku subdeterminantu z
prvních dvou řádků a subdeterminantu ze zbylých dvou řádků. Podtrženo a sečteno, podmínka nulovosti
determinantu nám dá rovnici pro vlastní hodnoty

4ıαβ(1 + e−2ız)− 4ı e−ız
[
(β2 − α2) sin(x) sinh(y) + 2αβ cos(x) cosh(y)

]
= 0.

Rovnici upravíme na

αβ( eız + e−ız) = (β2 − α2) sin(x) sinh(y) + 2αβ cos(x) cosh(y)

⇒ cos(z) =
β2 − α2

2αβ
sin(x) sinh(y) + cos(x) cosh(y). (8.20)
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Obr. 8.6: Pravá strana rovnice (8.22).
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Obr. 8.7: Dovolené energetické pásy jsou naznačeny žlutě. Vlevo rozšířené pásové schéma, vpravo redu-
kované pásové schéma.

Nyní dosadíme zpět za zkratky x, y, z odpovídající hodnoty

cos(k(a+ b)) =
β2 − α2

2αβ
sin(αa) sinh(βb) + cos(αa) cosh(βb). (8.21)

Toto je tedy přesné řešení Kronigova-Penneyova modelu bez jakýchkoliv aproximací. Pro názornost pro-
vedeme nyní limitu pro tenkou nekonečně vysokou bariéru (b → 0, β → ∞). Limita se provede tak, aby
zůstal konečný součin P = 1

2abβ
2:

cosh(βb)→ 1,

β2 − α2

2αβ
sinh(βb)→ β2

2αβ
(βb) =

β2b

2α
=

P

αa
.

V uvedené limitě dostaneme tedy finální vztah pro KP model

cos(ka) =
P

αa
sin(αa) + cos(αa). (8.22)

Pro P = 3
2π dostaneme pravou stranu jako funkci αa, jak ukazuje obr. 8.6. Protože funkce kosinus

na levé straně může nabývat hodnot pouze v intervalu (−1, 1), štěpí se energetické spektrum do pásů
povolených energií oddělených zakázanými pásy. Tento výsledek je graficky znázorněn na obr. 8.7.

Je nutné si získaný výsledek důkladně promyslet a odvodit z něho některé skutečnosti:

■ Energetické spektrum elektronu je rozděleno na dovolené a zakázané pásy.

■ S rostoucí energií elektronů se šířka dovolených pásů zvětšuje a šířka zakázaných pásů zmenšuje.

■ Pro P →∞ dostaneme izolované jámy ⇒ čárové spektrum.
■ Pro P → 0 zmizí vázané stavy v jámě ⇒ volný elektron.
■ Nespojitosti energie, zakázané pásy vznikají v bodech vyšší symetrie

k = ±n(π/a), n = 1, 2, . . . .

■ Derivace energetické závislosti pásu na hraně BZ je nulová,

dE

dk

∣∣∣
0,±π

a

= 0.

■ Počet stavů v každém pásu uvnitř 1.BZ (−πa ,
π
a ) je roven N .

■ Se započtením spinu je tedy možné na jeden pás umístit 2N elektronů.
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8.8.2 Kronigův-Penneyův model pomocí ústřední rovnice

Nabízí se samozřejmě otázka: Můžeme získat vztah (8.22) řešením ústřední rovnice? A bylo by skutečně
tristní, pokud by to v tomto obzvláště jednoduchém případě nešlo. Pro porovnání obtížnosti obou variant
řešení provedeme v této sekci výpočet ještě jednou pomocí ústřední rovnice. Tento výpočet publikoval
v roce 1983 indický fyzik Surjit Singh3.

Vlnovou funkci hledáme ve tvaru (8.6). Potenciál (8.4) budeme rovnou uvažovat s úzkými bariérami
ve tvaru δ-funkcí,

U(x) = Aa

N∑
s=0

δ(x− sa).

Potenciál dosadíme do ústřední rovnice (8.12). Pro koeficienty rozvoje potenciálu dostaneme přímou
integrací UG = A, a to pro všechny vektory reciproké mřížky G = 2πn/a,

(λk − E)C(k) +A
∑
n

C(k − 2πn/a) = 0. (8.23)

Sumu v tomto výrazu si označíme jako funkci f(k). Tato funkce je díky své definici periodická: f(k) =
f(k − 2πn/a). Rovnici (8.23) upravíme na tvar

C(k) = −f(k)2mA/ℏ
2

k2 − α2
, α2 =

2mE

ℏ2
. (8.24)

Tuto rovnici můžeme přepsat pro posunutý vlnový vektor k → k − 2πn/a. Využíváme periodičnosti
funkce f(k) a provedeme sumu přes index n

f(k) =
∑
n

C(k − 2πn/a) = −f(k)2mA/ℏ2
∑
n

1

(k − 2πn/a)2 − α2
.

Nyní funkci f(k) na obou stranách rovnice pokrátíme a dostaneme vztah, ve kterém se budeme snažit
vypočítat sumu

ℏ2

2mA
= −

∑
n

1

(k − 2πn/a)2 − α2
= − 1

2α

∑
n

[
1

(k − 2πn/a)− α
− 1

(k − 2πn/a) + α

]
.

Tento vztah dále upravíme na

−2ℏ2α
mAa

=
∑
n

[
1

a
2 (k − α)− πn

− 1
a
2 (k + α)− πn

]
.

Na tento tvar jsme upravili sumu proto, abychom mohli použít rozvoj funkce cotangens

cot(x) =

∞∑
n=−∞

1

x− πn
.

S jeho pomocí se nám podaří zbavit se sum a získat

−2ℏ2α
mAa

= cot
(a
2
(k − α)

)
− cot

(a
2
(k + α)

)
.

Pro finální úpravu tohoto výrazu budeme potřebovat ještě tři známé trigonometrické identity

sin(x± y) = sin(x) cos(y)± cos(x) sin(y),

sin2(x/2) = (1− cos(x))/2,

cos2(x/2) = (1 + cos(x))/2.

S jejich pomocí upravíme odvozovaný vztah na tvar

−2ℏ2α
mAa

=
2 sin(αa)

cos(αa)− cos(ka)
.

Tento výraz se shoduje s rovnicí (8.22). Musíme pouze sjednotit konstanty zavedené v obou metodách
výpočtu následovně: P = mAa2/ℏ2.
3Surjit Singh, „Kronig-Penney model in reciprocal lattice spaceÿ, Am. J. Phys. 51, 179 (1983).
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8.9 Poznámky k pásové struktuře

Z periodických okrajových podmínek plyne, že počet stavů vektoru k⃗ v jednom energetickém pásu je
právě N . Každá primitivní buňka krystalu přispívá jedním bodem (povolenou hodnotou) k⃗ do každého
energetického pásu. Pro dvě možné orientace spinu je tedy v každém pásu 2N dovolených stavů.

Krystal může být izolátor pouze tehdy, pokud má sudý počet valenčních elektronů. Kovy mají buď li-
chý počet valenčních elektronů (alkalické kovy), nebo mohou vznikat z prvků se sudým počtem valenčních
elektronů za předpokladu vzájemného překryvu energetických pásů (kovy alkalických zemin). Na konci
této kapitoly se tedy vracíme zpět k obr. 8.1, který by měl být nyní zcela jasný. Popis tohoto obrázku je
dobrým cvičením a čtenáři ho vřele doporučuji.

8.9.1 Metoda těsné vazby

Pokud předpokládáme slabé interakce mezi atomy krystalu, můžeme využít k vytvoření periodické části
Blochovy funkce atomární orbitaly

uk⃗(r⃗) =
1√
Vck

∑
m⃗

eık⃗·(m⃗−r⃗) f(r⃗ − m⃗). (8.25)

Tento postup je použitelný pro nižší energetické pásy, jako je valenční pás. Vektory m⃗ označují místa, kde
leží atomy v krystalové mřížce. Funkce f(r⃗ − m⃗) zde představuje atomární orbital, např. 1s funkci, na
atomu s polohovým vektorem m⃗. Proto se metoda těsné vazby někdy označuje jako lineární kombinace
atomárních orbitalů s anglickou zkratkou LCAO. Jako cvičení je vhodné ověřit, že takto vytvořená funkce
je skutečně periodická, uk⃗(r⃗ + T⃗ ) = uk⃗(r⃗).

8.9.2 Bloch mezi volnými elektrony a atomárními orbitaly

a) b) c) d)

Obr. 8.8: Energetické pásové schéma: a)
čárkovaná parabola pro volné elektrony
bude po započítání slabého periodic-
kého potenciálu nespojitá (plné čáry),
b) překlopení do 1.BZ pro Blochovy
elektrony, c, d) energie atomárních or-
bitalů, které se vlivem interakce těsné
vazby rozšíří na energetické pásy. Pře-
vzato z [8] str. 163.

Výpočet pásové struktury daného materiálu lze provést různými způsoby. Pro valenční pás je možné
použít metodu těsné vazby, pro vodivostní pás je zase vhodnější použít metodu téměř volných elektronů.
Pásová struktura, která vychází pro Blochovy elektrony, je někde uprostřed, jak to ukazuje obr. 8.8.
To je dané vhodnou volbou Blochovy vlnové funkce, která se skládá z exponenciely a periodické části.
Exponenciela je řešením pro volný elektron a periodickou část můžeme napočítat z atomárních orbitalů
(8.25). Porovnání těchto tří metod ukazuje (PO. 8.4: Pásová struktura Ge).

Projděme si nyní jednotlivé modely výpočtu energetických stavů v pevné látce logicky seřazené. Jak je
zřejmé výpočet energetické pásové struktury a disperze E(k⃗) propojuje celý výklad fyziky pevných látek
a vyžaduje provázání několika probraných i ještě neprobraných částí. Uvedeme tedy relevantní odkazy
jak do předchozí, tak i do navazujících částí skripta. Výpočty a experimentální testování energetických
pásů pomocí tomografie Fermiho plochy bude dále zmíněno v sekci 10.3.

1. Chování kovu popisuje dobře Fermiho plyn volných vodivostních elektronů. Potenciál uvnitř kovu
je nulový a celý krystal lze chápat jako potenciálovou krabici (viz sekce 7.3). Výsledkem je to, že
všechny kovy se podle tomto modelu mají chovat stejně. Materiál kovu má být izotropní, nejsou
žádné preferované směry. Systém vodivostních elektronů vyplní Fermiho kouli, která má na povrchu
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vlnový vektor kF a energii EF. Zopakujme zde vztahy (7.7) pro vlnovou funkci a energii elektronu
jako funkci vlnového vektoru,

ψ = eık⃗·r⃗, E =
ℏ2k2

2m
. (8.26)

Jednotlivé elektrony se liší kvantovým číslem, kterým je právě vlonvý vektor k⃗.

2. Model prázdné mřížky odpovídá modelu téměř volných elektronů, který byl diskutován v sekci 8.7.
Periodičnost potenciálu vede na podmínku periodičnosti energetické disperzní závislosti,

E(k⃗) = E(k⃗ + G⃗).

Díky tomuto vztahu lze části parabolické disperzní závislosti (8.26), které jsou již mimo 1.BZ,
do této první zóny překlopit. Lze říci, že periodičnost krystalu způsobuje periodičnost disperzní
závislosti E(k⃗), kterou je možné celou namapovat do 1.BZ.

3. Dalším logickým krokem je započtení slabého periodického potenciálu.

U(r⃗ + T⃗ ) = U(r⃗).

Tam, kde se původně paraboly energetických závislostí křížily, dojde ke vzniku zakázaných pásů.
Pásy se nechtějí vzájemně křížit a dochází k efektu zvanému anti-crossing. Tyto body jsou typicky
v bodech vyšší symetrie reciprokého prostoru. Obvykle se jedná buď o střed Γ, nebo kraje 1.BZ.
Tento efekt je nádherně vidět v obr. 8.4. Celé energetické spektrum se díky slabému periodickému
potenciálu rozdělí na pásy povolených a pásy zakázaných energií.

4. Zde se v našich úvahách dostáváme do centrálního bodu, kde přichází ke slovu Blochův elektron.
Ten jsme podrobně probírali již od začátku této kapitoly. Zopakujme vztah pro vlnovou funkci
Blochova elektronu (8.2),

ψk⃗(r⃗) = eık⃗·r⃗ uk⃗(r⃗), uk⃗(r⃗ + T⃗ ) = uk⃗(r⃗).

Je zřejmé, první část odpovídá vlnové funkce volnému elektronu (8.26). Kdežto periodická část Blo-
chovy vlnové funkce uk⃗(r⃗) se váže k atomárním orbitalům volného atomu. Z vybraného atomárního
orbitalu (např. f(r⃗) = f3s) můžeme sestrojit tuto funkci podle předpisu (8.25), který odpovídá
normování na jednotkový objem. V případě, že zvolíme normování na jeden atom, vypadal by zápis
pro krystal složený z N atomů následovně,

uk⃗(r⃗) =
1√
N

N∑
m⃗

eık⃗·(m⃗−r⃗) f(r⃗ − m⃗).

Toto normování bude výhodné pro výpočet kolem vztahu (10.6).

5. Nyní se od středového bodu začneme posouvat na druhý okraj rozsahu uvažovaných modelů. Násle-
duje model těsné vazby, nebo-li LCAO − lineární kombinace atomárních orbitalů. Pokud má atom 6
nejbližších sousedů, rozštěpí se atomární energetická hladina na pás o šesti stavech. Započtením pe-
riodického uspořádání atomů dostaneme disperzní závislost E(k⃗) a energetické pásy. Metodu těsné
vazby budeme diskutovat v sekci 10.3.1, kde pro nejjednodušší 1D případ vyjde,

E(k) = Eat − β − 2γ cos(ka).

Parametr β určuje posun atomární energetické hladiny a γ udává překryv vlnových funkcí soused-
ních atomů.

6. Díky symetrii dochází u polovodičů typicky k hybridizaci tetraedrických vazeb. Rozebereme-li krys-
tal a necháme pouze nejbližší sousedy, dostaneme molekulové orbitaly. Originální atomární s a
p orbitaly se zkombinují na sp3 orbitaly, které nám umožňují popsat symetrii vzájemných vazeb
v krystalech, která pak odpovídá hustotě elektronů.

7. Na úplném konci našeho zkoumaného rozsahu jsou volné atomy bez jakékoliv interakce s okolím.
Volný atom lze řešit klasicky pomocí Bohrova modelu, viz sekce 1.1.1. Kvantová teorie elektronu
v coulombovském potenciálu dává kupodivu stejné energie (1.3) jako Bohrův model,

En = −Ry

n2
.

Kvantová teorie ale navíc umožňuje spočítat vlnové funkce, které zapisujeme jako orbitaly 1s, 2s,
2p, atd. Z nich je pak možné napočítat rozložení elektronové hustoty.
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PO. 8.1: Směry a body v periodickém schématu reciproké mřížky ke kubickému krystalu s mřížkou SC.
1.BZ je zvýrazněna žlutě.
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PO. 8.2: Redukované energetické schéma pro SC krystal v aproximaci prázdné mřížky. Energetické
závislosti ve 2D jsou zobrazeny plnou čarou, pro 3D jsou zobrazeny tečkovaně.
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PO. 8.3: Redukované energetické schéma pro FCC krystal v aproximaci prázdné mřížky.
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PO. 8.4: Porovnání pásové struktury germania spočítané: a) metodou těsné vazby, b) metodou
empirického pseudopotenciálu, c) metodou téměř volných elektronů. Převzato z [14] str. 93.

130



8.10 Příklady

Př. 8.1: Energie téměř volných elektronů ve čtvercové/kubické mřížce:
(a) Pro jednoduchou čtvercovou 2D mřížku v modelu téměř volných elektronů ukažte, že kinetická energie
elektronu v rohu 1.BZ, k⃗ = π/a(1, 1), je dvojnásobná než ve středu strany, k⃗ = π/a(1, 0). (b) Určete tento
poměr pro případ 3D SC mřížky. Kittel, str. 209, př. 1

Nápověda: Využijte obrázky:
(PO. 8.1: Schéma reciproké mřížky ke krystalu SC).
(PO. 8.2: Redukované energetické schéma).

Př. 8.2: Energie téměř volných elektronů v mřížce FCC:
Analogicky s předešlým příkladem uvažujte energetické pásy ve struktuře FCC. Pro připomenutí si zo-
pakujte tvar 1.BZ a (PO. 3.3: Zaplnění reciprokého prostoru).
Výsledek je zobrazen na (PO. 8.3: Energetické pásové schéma FCC).
Komentujte energetické pásy např. ve směru [111]. Právě tady je vidět, že minimum energie nemusí nutně
ležet v bodě Γ nebo na hranici zóny. Kittel, str. 209, př. 2

Př. 8.3: Kronigův-Penneyův model:
Využijte vztah pro energii elektronů v KP modelu pevné látky (8.22) odvozený v této kapitole. (a)
Nalezněte energii nejnižšího energetického pásu pro k = 0 v limitě slabého potenciálu, P ≪ 1. (b) Pro
stejný případ najděte velikost prvního zakázaného pásu pro k = π/a. Kittel, str. 209, př. 3

Nápověda: Energii budeme normovat na hodnotu na hraně pásu E1 = ℏ2π2/2ma2.
(a) V uvedené limitě se nám vztah pro energii (8.22) změní na: 1− P = cos(αa) = 1− (αa)2/2.
(b) Zde budeme řešit rovnici: 1 = P sin(π + ξ)/(π + ξ) + cos(π + ξ).

Řešení: (a) E/E1 ≈ 2P/π2, (b) Eg/E1 = (E − E1)/E1 ≈ 4P/π2.

Př. 8.4: Čtvercová mřížka:
Uvažujte 2D čtvercovou mřížku s krystalovým potenciálem tvaru

U(x, y) = −4U cos(2πx/a) cos(2πy/a).

Použijte ústřední rovnici a nalezněte velikost zakázaného pásu v bodě k = (π/a, π/a). Postačí řešit
determinant řádu 2× 2. Kittel, str. 209, př. 6

Nápověda: Potenciál lze přepsat následovně

U(x, y) = −U
4∑

n=1

eıG⃗n.r⃗,

kde G⃗n = 2π/a(±1,±1). Protože v rohu 1.BZ se budou kombinovat dva členy C(k⃗) a C(−k⃗), bude řešení
ústřední rovnice

E± = λ± U =
ℏ2π2

2ma2
± U.

Šířka zakázaného pásu bude tedy 2U .

Př. 8.5: Metoda těsné vazby v 1D:
Při této metodě považujme potenciály jednotlivých atomů za delta funkce. Pevná látka vznikne jako
1D řetízek těchto delta funkcí. Interakce mezi sousedními atomy je zprostředkovaná pouze tunelováním
s koeficientem t. Poruchový hamiltonián můžeme zapsat v Diracově symbolice jako

H = −t
∑
l

|l + 1⟩⟨l|+ |l⟩⟨l + 1|,

kde l indexuje atomy na pozici Rl = la a vlnové funkce |l⟩ označují atomární orbital na pozici l-tého
atomu.

Řešení: V Diracově symbolice je Schrödingerova rovnice zapsaná jako

H|k⟩ = Ek|k⟩.
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Blochovy vlnové funkce jsou
|k⟩ =

∑
l

eıkl|l⟩.

Přímým dosazením hamiltoniánu a vlnové funkce do Schrödingerovy rovnice získáme vztah pro energii v
energetickém pásu, který vznikne z atomárních energetických hladin

Ek = −2t cos(k), kde k ∈ (−π, π). (8.27)

Nulová hladina energie odpovídá energii atomární hladiny. Tato hladina se díky tunelování podél 1D
atomárního řetízku rozšíří na pás šířky 4t, viz obr. 8.9.

x
1 2 3 4 5 6 7 8 9 10

EU(x)

k
- 0

0

E0

1.BZ

4t

Obr. 8.9: Potenciál deseti δ-funkcí (vlevo) a energetický pás (8.27) vzniklý tunelováním (vpravo).

Př. 8.6: Atom jako δ-potenciál:
Vyřešte Schrödingerovu rovnici pro jednoduchý δ-potenciál v dimenzi 1D, U(x) = −λδ(x). Nalezněte
energii a vlnovou funkci základního stavu. V tomto příkladu používáme delta funkci, která má rozměr
1/Å. Integrací δ(x) podle souřadnice x dostaneme jedničku. Proto je rozměr λ roven eVÅ.

Řešení: Víme, že hledáme vázaný stav. Mimo δ-funkci se bude vlnová funkce v bariéře přirozeně expo-
nenciálně tlumit. Normovaná vlnová funkce a jí odpovídající energie vázaného stavu má tedy tvar

ψ(x) =
√
κ e−κ|x|, E = −ℏ2κ2

2m
. (8.28)

Zintegrujeme Schrödingerovu rovnici

− ℏ2

2m

[
dψ

dx

]ξ
−ξ
−

ξ∫
−ξ

dxλδ(x)ψ(x) =

ξ∫
−ξ

dxEψ(x).

Provedeme limitu ξ → 0 a dostaneme

− ℏ2

2m

(
dψ

dx

∣∣∣∣
+

− dψ

dx

∣∣∣∣
−

)
− λψ(0) = 0.

Dosadíme vlnovou funkci (8.28) a její derivace

− ℏ2

2m
(−2
√
κκ) = λ

√
κ ⇒ λ =

ℏ2κ
m

, κ =
mλ

ℏ2
.

Tento výsledek můžeme dosadit do výrazu pro energii základního stavu

E0 = − m

2ℏ2
λ2.

Tak např. pro λ = 12.4 eVÅ dostaneme energii základního stavu E0 = −10 eV a parametr κ = 1.6 Å−1.
Pro typickou vzdálenost atomů, a = 2 Å, pak dostaneme parametr štěpení z předchozího příkladu:
t = λκ e−κa = 0.8 eV a šířku energetického pásu 4t = 3.2 eV.
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Replika prvního tranzistoru: Tranzistorový efekt byl objeven v Bellových laboratořích týmem
pracovníků ve složení William Shockley, John Bardeen a Walter Brattain. Jako den objevu se udává
16. prosinec 1947. Za tento objev získal tříčlenný tým v roce 1956 Nobelovu cenu za fyziku.

John Bardeen je doposud jediná osoba, která získala Nobelovu cenu za fyziku dvakrát. Podruhé to bylo
v roce 1972 za BCS teorii supravodivosti. Tu s ním získali ještě Leon Cooper a John Robert Schrieffer.

Převzato z webu WIKIPEDIA: http://en.wikipedia.org/wiki/Transistor
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Kapitola 9

Polovodiče

Obsah kapitoly
9.1 Charakteristické vlastnosti polovodičů . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Pásová struktura polovodičů . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.3 Pohybové rovnice elektronu v energetickém pásu . . . . . . . . . . . . . . . 137

9.3.1 Elektrické pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.3.2 Magnetické pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.4 Kvazičástice elektron a díra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.4.1 Efektivní hmotnost elektronu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.4.2 Díra jako kvazičástice v obsazeném pásu . . . . . . . . . . . . . . . . . . . . . . 140

9.4.3 Disperzní relace v okolí středu 1.BZ . . . . . . . . . . . . . . . . . . . . . . . . 142

9.4.4 Měření efektivní hmotnosti v polovodičích . . . . . . . . . . . . . . . . . . . . . 142
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9.6 Příměsová vodivost nevlastních polovodičů . . . . . . . . . . . . . . . . . . . 145

9.6.1 Teplotní ionizace donorů a akceptorů . . . . . . . . . . . . . . . . . . . . . . . . 146

9.7 Termoelektrické jevy v polovodičích . . . . . . . . . . . . . . . . . . . . . . . 147

9.8 Příklady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.1 Charakteristické vlastnosti polovodičů

Na úvod je dobré si vyjasnit, co je polovodič a jak se liší od kovů a izolátorů. Předpokladem pro polo-
vodičové chování materiálů je kovalentní vazba. Tato vazba má kvantový charakter a vzniká překryvem
vlnových funkcí valenčních elektronů sousedních atomů. Tato vazba je tvořena dvojicí elektronů s opačně
orientovaným spinem.

Při nízkých teplotách se dokonalý krystal polovodiče bude chovat jako izolátor. Vlastnosti typické
pro polovodič vznikají hlavně v důsledku tepelné excitace a vlivem příměsí. Typické polovodiče jsou
prvky ze 4. skupiny periodické tabulky prvků (Si, Ge). Ty mají čtyři valenční elektrony, které vytvářejí
vazby v tetraedrické hybridizační konfiguraci sp3. Přestože existují dvě možné prostorové konfigurace
tetraedrických vazeb, v krystalech těchto polovodičů se vyskytuje pouze uspořádání typu diamantu. Obě
možné konfigurace současně se objevují pouze u amorfních materiálů.

Tetraedrické vazby vytvářejí i binární polovodiče, které můžeme dělit podle čísla sloupců v perio-
dické tabulce následovně. Polovodiče III-V (tři-pět) jsou sloučeniny: GaAs, AlAs, GaN; polovodiče II-VI
(dva-šest) jsou sloučeniny: CdTe, HgTe, ZnS. Většina těchto polovodičů vytváří krystaly typu sfalerit.
Kovalentní vazba u těchto polovodičů se částečně kombinuje s vazbou iontovou, což vede k polarizaci
vazby.
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x

Obr. 9.1: Typické vodivosti, resp. rezistivity izolátorů, polovodičů a kovů při pokojové teplotě. U polovo-
dičů je uveden rozsah, jehož levá krajní hodnota je zdůrazněná tečkou. Ta odpovídá čistému polovodiči
bez příměsí.

9.2 Pásová struktura polovodičů

Pro typické polovodiče se udává měrný odpor při pokojové teplotě v rozmezí 10−3 až 108 Ωcm. Typické
odpory/vodivosti některých materiálů jsou uvedeny v obr 9.1. Pásová struktura v přímém prostoru při
teplotě 0 K odpovídá tomu, že poslední zcela obsazený pás je valenční pás. Nad ním je pás zakázaných
energií, oddělující vodivostní pás, který je zcela prázdný (obr. 9.2). Plný ani prázdný pás nemůže vést
elektrický proud. Při nízkých teplotách jsou proto čisté polovodiče izolátory, nemají volné elektrony a
nevedou elektrický proud. S rostoucí teplotou může dojít k vytržení elektronu z některé vazby a tento
volný elektron přispívá k vodivosti. V pásové struktuře to odpovídá přechodu elektronu z valenčního
do vodivostního pásu. Energie potřebná k tomuto přechodu odpovídá právě šířce zakázaného pásu Eg.
Hodnoty pro různé materiály jsou zapsány v tab. 9.1. Pomocí pásové struktury je pak navíc možné popsat
i to, že k vodivosti přispívá i prázdný stav, který zůstal po vytrženém elektronu ve valenčním pásu a
který se nazývá díra.

E

r
a

k
- /a /a

Eg

Obr. 9.2: Standardní pásová struktura polovodiče zobrazená v přímém prostoru (vlevo) a disperzní relace
v reciprokém prostoru s vyznačenou 1. Brillouinovou zónou (vpravo).
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Tab. 9.1: Zakázaný pás typických krystalů při 300 K.

Krystal C (diamant) Si Ge GaAs
Eg(eV) 5.4 1.14 0.67 1.43

Energie zakázaného pásu Eg polovodičů je typicky kolem 1 eV. Polovodiče dělíme na přímé a nepřímé
podle toho, zda minimum vodivostního pásu leží v k-prostoru nad maximem valenčního pásu. Typické
příklady nepřímých polovodičů jsou Si a Ge, typický přímý polovodič je např. GaAs.
(PO. 9.1: Pásová schémata polovodičů Si, Ge, GaAs),
(PO. 9.2: Minima pásové struktury ve vodivostním pásu).
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k
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(E
)
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a) b)

Obr. 9.3: Schéma absorpce fotonu v pásové struktuře a) přímého a b) nepřímého polovodiče. Přechod
elektronu mezi pásy je znázorněn červenou šipkou, fonon zelenou šipkou. Žlutě je zakresleno odpovída-
jící spektrum absorpce. V případě nepřímého polovodiče není minimum vodivostního pásu v centru BZ
globálním minimem.

K přechodu elektronu z valenčního do vodivostního pásu polovodiče může dojít např. při absorpci
fotonu. Ve valenčním pásu pak zůstane díra. Protože foton s energií řádově 1 eV má zanedbatelný vlnový
vektor, je uvedený přechod vertikální v k-prostoru. Pokud se má uskutečnit přechod elektronu, který
není vertikální v k-prostoru, musí se pro splnění zákona zachování hybnosti na přechodu podílet další
kvazičástice. Nejčastěji se setkáme s tím, že se využije fonon, který má k tomu vhodné vlastnosti. Fonony
mají vlnové vektory pokrývající celou Brillouinovu zónu, naproti tomu jejich typické energie jsou pouze
10 až 30 meV. Typické energetické schéma přechodu elektronu v pásové struktuře přímého a nepřímého
polovodiče je zobrazeno v obr. 9.3.

Zákony zachování při absorpci fotonu s vlnovým vektorem k⃗ a s frekvencí ωopt lze zapsat ve tvaru:

k⃗(elektron ve vod. p.)± q⃗(fonon) = k⃗(foton) ≈ 0; Eg ± ℏω(q⃗) = ℏωopt. (9.1)

Přechodu se účastní fonon s vlnovým vektorem q⃗ a s frekvencí ω(q⃗). Znaménko (+) platí, pokud v procesu
fonon vznikne, znaménko (−) platí, pokud při procesu jeden fonon zanikne.

Obrovský význam polovodičů v dnešní elektronice tkví především v tom, že vlastnosti polovodičů
můžeme významně měnit pomocí přidání příměsí jiných prvků, neboli dotováním polovodičů. Jako vlastní
označujeme ty polovodiče, které jsou nominálně bez příměsí. Polovodiče, které jsou dotované tak, aby
v nich převládaly elektrony, resp. díry, označujeme jako nevlastní polovodiče n-typu, resp. p-typu.

9.3 Pohybové rovnice elektronu v energetickém pásu

Odvodíme pohybovou rovnici elektronu v energetickém pásu. Protože Blochovy vlnové funkce jsou roz-
prostřené v celém krystalu, chceme-li popsat elektron, který je lokalizován, musíme ho popsat jako vlnové
klubko se středním vlnovým vektorem k⃗. Ve vlnovém klubku má hodnota k určitý rozptyl, není ostrá.
Grupová rychlost tohoto klubka, která odpovídá šíření elektronu v krystalu, je daná derivací v⃗g = dω/dk⃗.

137



Kmitočet ω souvisí s energií podle vztahu E = ℏω, a tedy platí

v⃗g =
1

ℏ
dE

dk⃗
. (9.2)

9.3.1 Elektrické pole

V případě působení vnějšího elektrického pole bude energie předaná elektronu za čas δt rovna elektrické
síle násobené dráhou elektronu podle

δE = F⃗ · δx⃗ = −eE⃗ · v⃗g δt.

Pokud přepíšeme diferenciál energie užitím derivace podle k a dosadíme za grupovou rychlost z (9.2),
dostaneme

dE

dk⃗
· δk⃗ = −eE⃗ · 1

ℏ
dE

dk⃗
δt.

Snadnou úpravou dostaneme finální tvar pohybové rovnice elektronu

ℏ δk⃗ = −eE⃗ δt ⇒ ℏ
dk⃗

dt
= F⃗ . (9.3)

Podle druhého Newtonova zákona pro volný elektron platí, že působící síla se rovná časové změně hyb-
nosti. Tento vztah se dá zapsat pro volný elektron ve tvaru shodném s (9.3). Ale pro elektron vázaný
v energetickém pásu polovodiče to má trochu odlišný význam. Zde je disperzní vztah mezi energií a vlno-
vým vektorem dán vlastnostmi krystalu. Působením vnější síly na elektron dochází k předávání energie
jak elektronu, tak i krystalové mřížce. To je popsané právě pohybem elektronu v daném energetickém
pásu.

Použijeme-li tvar Blochovy vlnové funkce (8.9) s vlnovým vektorem k⃗

ψk⃗(r⃗) =
∑
G⃗

C(k⃗ + G⃗) eı(k⃗+G⃗)·r⃗, (9.4)

můžeme spočítat střední hodnotu operátoru hybnosti elektronu v tomto stavu jako

⟨pel⟩ = ⟨ψk⃗| − ıℏ∇|ψk⃗⟩ =
∑
G⃗

ℏ(k⃗ + G⃗)|C(k⃗ + G⃗)|2 = ℏk⃗ + ℏ
∑
G⃗

G⃗|C(k⃗ + G⃗)|2. (9.5)

První člen odpovídá hybnosti volného elektronu a druhý člen je zodpovědný za interakci s mřížkou,
které se předává impuls po kvantech ℏG⃗. Podrobnější rozbor interakce s mřížkou je téma pro pokročilejší
učebnice.

Střední hodnotu operátoru hybnosti lze počítat i s použitím zápisu Blochovy vlnové funkce jako
součinu rovinné vlny a periodické části uk⃗(r⃗) ve tvaru (8.2). Toto odvození se provádí následovně,

pel ψk⃗(r⃗) = −ıℏ∇
(
eık⃗·r⃗ uk⃗(r⃗)

)
=

(
ℏk⃗ − ıℏ

∇uk⃗
uk⃗

)
ψk⃗(r⃗).

Při výpočtu střední hodnoty tohoto operátoru je potřeba spočítat integrál z (ıℏ∇uk⃗/uk⃗). Tak získáme
výraz pro výpočet hybnosti elektronu z parametrů pásu, ve kterém se tento elektron pohybuje. Tento
vztah je důležitý např. pro výpočet proudu

pel =
m

ℏ
∇k⃗E(k⃗). (9.6)

Formálně musí být tento výraz ekvivalentní s výsledkem předešlého výpočtu (9.5), což se dá ověřit.

9.3.2 Magnetické pole

Pohybová rovnice (9.3) bude platit stejně i při působení magnetické Lorentzovy síly

ℏ
dk⃗

dt
= −e v⃗ × B⃗ ⇒ dk⃗

dt
= − e

ℏ2
∇k⃗E × B⃗. (9.7)

Za povšimnutí stojí to, že pohybová rovnice vpravo je zapsaná v souřadnicích k-prostoru. Z tvaru této
pohybové rovnice můžeme odvozovat následující vlastnosti řešení:
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■ Při působení magnetického pole se elektron v k-prostoru pohybuje po ploše konstantní energie
(kolmo na směr gradientu energetické disperzní závislosti).

■ Průmět vlnového vektoru k⃗ do směru magnetického pole je během celého pohybu konstantní. V re-
ciprokém k-prostoru to představuje pohyb v rovině kolmé na vektor B⃗ po ploše konstantní energie.
V reálném x-prostoru tomu odpovídá pohyb po šroubovici s osou ve směru B⃗.

9.4 Kvazičástice elektron a díra

9.4.1 Efektivní hmotnost elektronu

Zderivujeme výraz pro grupovou rychlost (9.2) podle času. Tím získáme vztah pro zrychlení, který budeme
dále upravovat, abychom dostali formální podobnost s druhým Newtonovým zákonem

dv⃗g
dt

=
1

ℏ
d∇k⃗E
dt

=
1

ℏ
(∇k⃗∇k⃗E) · dk⃗

dt
=

1

ℏ2
(∇k⃗∇k⃗E) · F⃗ =

←−−−→(
1

m∗

)
· F⃗ .

Při odvozování jsme za derivaci podle času dosadili pohybovou rovnici (9.3). Nově zavedený tenzor
←−→(

1
m∗

)
má význam převrácené hmotnosti a představuje velmi důležitou veličinu: tenzor reciproké efektivní hmot-
nosti s maticovými elementy (

1

m∗

)
µν

=
1

ℏ2
d2E

dkµdkν
. (9.8)

Podle tohoto vztahu provedeme výpočet efektivní hmotnosti v celé Brillouinově zóně pro nejjednodušší
energetický pás zobrazený v obr. 9.4a). Z obr. 9.4b) je zřejmé, že efektivní hmotnost je nespojitá a může
být i záporná. Pokud je sledovaný energetický pás vodivostní a je pouze slabě obsazen, elektrony obsadí
nejnižší hladiny blízko středu zóny. Pro tyto obsazené stavy lze pokládat efektivní hmotnost za konstantní
veličinu.

- /a /a0

E(k)

k

me

k

a) b)

Obr. 9.4: Výpočet efektivní hmotnosti v jednoduchém energetickém pásu. a) Typický energetický pás, b)
efektivní hmotnost elektronů v tomto pásu spočítaná podle (9.8).

Tato efektivní hmotnost umožňuje popsat dynamiku pohybu elektronu v pásu tak, jako by se jednalo
o částici s touto hmotností. Efektivní hmotnost je daná tvarem energetického pásu a je jiná než klidová
hmotnost volného elektronu. Proto je i Blochův elektron v energetickém pásu kvazičástice. Nyní můžeme
provést rozvoj energetické disperzní závislosti kolem minima, jehož polohu si označíme k⃗0

E(k⃗) = E(k⃗0) +
1

2

∑
µν

d2E

dkµdkν

∣∣∣k⃗0(k − k0)µ(k − k0)ν . (9.9)

Efektivní hmotnost elektronu v pásu je tedy tenzorová veličina, při působení vnější síly v různých směrech
se bude elektron urychlovat různě. Jakýkoliv obecný tenzor ve 3D lze zapsat v diagonálním tvaru, kdy
jsou nenulové pouze tři koeficienty.
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Tab. 9.2: Šířka zakázaného pásu Eg v elek-
tronvoltech a efektivní hmotnosti v jednot-
kách hmotnosti volného elektronu pro tři ty-
pické III-V polovodiče.

materiál Eg me mlh mhh

GaAs 1.52 0.067 0.082 0.45
InAs 0.42 0.023 0.025 0.41
InSb 0.24 0.014 0.016 0.40

Tabulka 9.2 ukazuje efektivní hmotnosti typických III-V polovodičů. Pro ně jsou typické tři vlast-
nosti: a) efektivní hmotnost elektronů je podobná hmotnosti lehkých děr, b) tyto hmotnosti jsou úměrné
šířce zakázaného pásu, c) efektivní hmotnost těžkých děr příliš nezávisí na materiálu. Jednoduchou em-
pirickou závislost efektivní hmotnosti elektronů na šířce zakázaného pásu uvádí Thomas Ihn ve své knize
Semiconductor Nanostruckures.

1

me
=

1

m0

(
1 +

17 eV

Eg

)
.

Tato závislost je na obr. 9.5 zakreslena červenou čarou. Je vidět, že tato empirická křivka dobře kopíruje
řadu experimentálních bodů.

Obr. 9.5: Typická závislost efektivní hmot-
nosti elektronů na šířce zakázaného pásu Eg
pro různé polovodiče. Pro zobrazení jsou pou-
žity tři různé symboly odpovídající stoupající
iontovosti polovodičů IV, III-V a II-VI. Pře-
vzato z knihy Thomase Ihna[19].
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Rozborem vlastností pásové struktury polovodiče zjistíme, že následují výroky musí buď všechny pla-
tit, nebo platí všechny výroky negované:

■ Elektron se může v pásu snadno urychlovat.

■ Elektron má malou efektivní hmotnost.

■ Energetický pás má velkou křivost.

■ Tento pás má velkou šířku.

■ Pás vzniknul díky silné interakci stavů na sousedních atomech.

Takto formulované výroky obvykle platí pro vodivostní pás.

9.4.2 Díra jako kvazičástice v obsazeném pásu

Nyní se budeme zabývat případem, kdy je valenční pás prakticky zcela zaplněn. V takovém případě je
rychlejší popsat obsazení stavů výčtem prázdných míst (děr), než říkat, které stavy jsou v tomto pásu
zaplněné. Dále je vhodné připomenout, že zcela obsazený pás nemůže vést elektrický proud, neboť ke
každému stavu s rychlostí v⃗e je obsazen i stav s opačnou rychlostí −v⃗e. Suma rychlostí, vlnových vektorů
nebo spinů s⃗ přes stavy v celé Brillouinově zóně musí být díky této symetrii nulová,∑

1.BZ

v⃗(k⃗) = 0,
∑
1.BZ

k⃗ = 0,
∑
1.BZ

s⃗ = 0. (9.10)

Obrázek 9.6 ukazuje pro porovnání energetické schéma polovodiče s jedním elektronem ve vodivostním
pásu a druhé energetické schéma s jednou dírou ve valenčním pásu. Díra se ve vnějších polích chová tak,
jako by měla kladný náboj. Pokud např. přiložíme na polovodič elektrické pole v kladném směru osy x̂,
elektrony se budou ve valenčním pásu přemísťovat doleva. Díra v pásu se proto bude posouvat opačně,
doprava, ve směru pole. Vlastnosti díry se dají odvodit z vlastností elektronů v daném pásu s využitím
sumačních pravidel (9.10).
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Obr. 9.6: Energetický pas a) s jedním elektronem, b) s jednou dírou.
Tab. 9.3: Parametry díry na základě vlastností elektronu chybějícího ve valenčním pásu.

kvazičástice náboj hmotnost energie k-vektor rychlost spin

elektron −e me < 0 Ee k⃗e v⃗e s⃗e

díra +e mh = −me > 0 Eh = −Ee k⃗h = −k⃗e v⃗h = v⃗e s⃗h = −s⃗e

V tab. 9.3 jsou sepsány všechny parametry díry na základě vlastností elektronu chybějícího ve vale-
nčním pásu. Všechny tyto vztahy spolu souvisí a budeme je pouze krátce komentovat. Uvažujme nejdříve
energii díry, čím níže je díra ve valenčním pásu, tím výše jsou stavy obsazené elektrony a celková energie
je vyšší. Energie díry tedy roste směrem dolů v obr. 9.6b). Protože díry mají stejně jako elektrony po-
ločíselný spin, musí se řídit Fermiho-Diracovou statistikou (7.5). Distribuční funkce pro díry je daná jako
pravděpodobnost, že stav není obsazen elektronem, takže

fh(E) = 1− fe = 1− 1

e(E−µ)/kBT + 1
=

1

e(µ−E)/kBT + 1
. (9.11)

Pokud u této distribuční funkce otočíme znaménko energie Eh = −Ee, dostaneme obvyklý výraz pro
Fermiho-Diracovo rozdělení. Vztah pro vlnový vektor a spin díry vychází přímo z (9.10), vztah pro
rychlost odvodíme z celkového proudu

j⃗ = −e
∑
k⃗ ̸=k⃗e

v⃗e = −e

(∑
1.BZ

v⃗e − v⃗e

)
= ev⃗e.

Zcela zaplněný pás s jednou dírou s vlnovým vektorem k⃗e a s rychlostí elektronu v⃗e způsobuje proud, který
je ekvivalentní jedné díře s kladným nábojem +e a rychlostí vh = ve. Nakonec připomeňme ještě efektivní
hmotnosti. Označíme si efektivní hmotnost elektronůme a efektivní hmotnost děrmh. V důsledku otočení
znaménka energie pro díry bude i opačné znaménko u efektivní hmotnosti mh = −me. Jak je patrné
z obr. 9.4b), díry u vrcholu valenčního pásu budou mít kladnou efektivní hmotnost. Díky tomuto zavedení
jsou efektivní hmotnosti elektronů i děr kladné veličiny. Jak ukazují červené šipky v obr. 9.7, elektrický
proud generovaný elektrony i dírami je vždy ve směru elektrického pole E⃗.

elektron

díra

E

ve je

vh

jh

Obr. 9.7: Pohyb elektronu ve vodivostním pásu a díry ve
valenčním pásu pod vlivem elektrického pole E. Přestože
rychlosti obou kvazičástic směřují v opačných směrech,
elektrický proud způsobený oběma kvazičásticemi směřuje
ve směru elektrického pole.
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Zavedení díry způsobem představeným v této sekci musí být konzistentní. Směr vlnového vektoru a
rychlosti musí být kolineární. Jako cvičení je vhodné si provést rozbor příkladu optické excitace elektronu
z valenčního do vodivostního pásu pro k⃗ ̸= 0, při kterém musí platit zákon zachování energie, k-vektoru
i spinu.

V následujícím rámečku shrneme všechny důležité rovnice popisující dynamiku kvazičástice v ener-
getickém pásu:

v⃗ =
1

ℏ
∇k⃗E,

(
1

m∗

)
µν

=
1

ℏ2
d2E

dkµdkν
, ℏ

dk⃗

dt
= F⃗ ,

dv⃗

dt
=

←−−−→(
1

m∗

)
· F⃗ . (9.12)

9.4.3 Disperzní relace v okolí středu 1.BZ

k

E

Eg

Obr. 9.8: Zjednodušené pásové schéma polovodiče s jedním
elektronovým vodivostním pásem a třemi děrovými pásy ve
valenčním pásu. Pásy jsou uvažovány v parabolické apro-
ximaci podle (9.9), Eg – šířka zakázaného pásu, ∆ – spin-
orbitální štěpení.

Pásová schémata tří typických polovodičů jsou zobrazena na konci kapitoly, (PO. 9.1: Pásová
schémata Si, Ge, GaAs). Vybereme si GaAs, který je přímý polovodič, a popíšeme základní rysy jeho
energetických pásů. Při obvyklých výpočtech vlastností polovodičů není nutné znát globální disperzní
relace v celé BZ, ale stačí charakterizovat energetické pásy v okolí extrémů pásu. Zjednodušené pásové
schéma typického přímého polovodiče obsahuje čtyři energetické pásy, jak je to zobrazeno na obr. 9.8.
Zakázaný pás šířky Eg odděluje obsazené stavy ve valenčním pásu a prázdné stavy ve vodivostním pásu.
Vodivostní pás vzniká z atomárních s hladin, a proto je pouze jeden. Valenční pás vzniká z atomárních
p hladin (px, py, pz), a proto jsou ve valenčním pásu tři děrové pásy. Pás lehkých děr a pás těžkých děr
mají společné maximum na vrcholu valenčního pásu. Díky interakci spinu s orbitálním momentem děr
je třetí děrový pás posunutý k nižším energiím. Tento posun se označuje jako spin-orbitální štěpení ∆.
Typické pásové schéma polovodiče tedy obsahuje čtyři energetické pásy, které mají rozlišné křivosti a tedy
i efektivní hmotnosti odpovídajících kvazičástic (elektrony, lehké díry, těžké díry a díry ve spin-orbitálně
odštěpeném pásu).

9.4.4 Měření efektivní hmotnosti v polovodičích

Ještě jednou zopakujme, že elektron i díra v polovodiči jsou kvazičástice. Mohou existovat pouze v krys-
talu, ale ne mimo něj. Nesmíme si je plést s elementárními částicemi, jako je volný elektron nebo pozitron.
Efektivní hmotnost elektronů je např. v GaAs pouze 0.067 m0.

Erf

B
Obr. 9.9: Geometrie uspořádání experimentu pro měření
cyklotronové rezonance. Vysokofrekvenční elektrické pole
E⃗rf osciluje ve směru kolmém na směr statického magnetic-
kého pole B⃗.

Efektivní hmotnost se zavádí pro popis stavů blízko hrany pásu, kdy má smysl použít parabolickou
aproximaci energetického pásu. Tenzor efektivní hmotnosti lze měřit pomocí magnetického pole B⃗. No-
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sitelé proudu se pohybují po spirálách s osou podél směru magnetického pole. Budeme uvažovat např.
měření efektivní hmotnosti elektronu. Podobně, jako jsme to odvozovali pro elektrony v kovu, využijeme
podmínky rovnováhy sil působících na elektron při kruhovém pohybu. Stejně jako v kapitole o kovech
(v sekci 7.9) dojdeme k výrazu pro cyklotronovou frekvenci

ωc =
eB

m∗ . (9.13)

V experimentálním uspořádání podle obr. 9.9 máme studovaný vzorek umístěný v magnetickém poli
B⃗. Elektrony budou v tomto vzorku vykonávat pohyb po kružnici. Pokud na vzorek bude působit vy-
sokofrekvenční elektrické pole polarizované ve směru kolmém na magnetické pole s rezonanční frekvencí
ωc, bude se směr elektrického pole měnit ve fázi stejně jako složka rychlosti elektronu. Dojde tedy k re-
zonanční absorpci energie. Uveďme jednoduchý příklad elektrického pole s frekvencí ν = 24 GHz. Tomu
odpovídá úhlová frekvence ω = 1.5 × 1011 s−1 a energie E = ℏωc ≈ 0.1 meV. Vlnová délka odpovídají-
cího fotonu je přibližně 10 mm. Pro typickou efektivní hmotnost 0.1 m0 pak podle (9.13) dostaneme, že
budeme pro tento experiment potřebovat magnetické pole o intenzitě 0.085 Tesla (850 Gauss).

9.5 Koncentrace vlastních nositelů

Odvodíme si koncentraci elektronů a děr v polovodiči s danou šířkou zakázaného pásu a při dané teplotě.

Pozor: U polovodičů se název chemický potenciál µ nepoužívá. Místo něj se používá termín Fermiho
mez, přestože byla původně tato mez definována pouze pro teplotu absolutní nuly.

Tato Fermiho mez nechť leží v zakázaném pásu, jak to ukazuje obr. 9.10. Pro elektrony excitované
přes zakázaný pás do vodivostního pásu dostaneme jejich koncentraci integrací přes celý vodivostní pás:

n=
1

V

∞∫
Eg

De(E) fe(E) dE =
1

2π2

(
2me

ℏ2

)3/2

eµ/kBT
∞∫

Eg

√
E − Eg e−E/kBT dE

= 2

(
mekBT

2πℏ2

)3/2

e(µ−Eg)/kBT = n0 e
(µ−Eg)/kBT . (9.14)

Pro hustotu stavů jsme použili vztah (7.13), Fermiho-Diracovo rozdělení pro obsazení hladin elektrony
jsme za podmínky (E − µ≫ kBT ) nahradili pouze Boltzmannovým faktorem e−(E−µ)/kBT (viz dodatek
B). Parametr n0 představuje efektivní počet stavů ve vodivostním pásu při dané teplotě, n(µ = Eg) = n0.

E E

Eg

fe (E)

fh (E)

Obr. 9.10: Vlevo: zjednodušené pásové schéma
polovodiče s Fermiho hladinou ve středu zaká-
zaného pásu. Vpravo: Fermiho-Diracovo roz-
dělení, žlutě je znázorněno rozdělení pro elek-
trony a šedivě pro díry.

Zcela analogicky bychom mohli postupovat při výpočtu koncentrace děr ve valenčním pásu,

p =
1

V

0∫
−∞

Dh(E) fh(E) dE = 2

(
mhkBT

2πℏ2

)3/2

e−µ/kBT = p0 e
−µ/kBT . (9.15)
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Toto je velmi zajímavý výsledek. Pokud vynásobíme koncentraci elektronů a děr, získáme hodnotu, která
není závislá na poloze Fermiho meze, ale závisí pouze na šířce zakázaného pásu

np = 4

(
kBT

2πℏ2

)3

(memh)
3/2 e−Eg/kBT (9.16)

Hodnota násobku np tedy nezávisí na dopování polovodiče. Tato relace se nazývá zákon působení aktivních
hmotností. Pro kompenzovaný (intrinsický) polovodič je ni = pi =

√
np. Pokud vlivem dopování na n-typ

zvýšíme koncentraci elektronů o tři řády, pak je to na úkor děr, jejichž koncentrace bude zase o tři řády
nižší proti případu nedopovaného polovodiče.

Podmínka n/p = 1 musí platit pro intrinsický polovodič nezávisle na teplotě. Přímým dosazením pak
dostaneme vztah pro teplotní závislost polohy Fermiho meze pro nedopovaný polovodič,

µ(T ) =
1

2
Eg +

3

4
kBT ln

mh

me
. (9.17)

Při zvyšování teploty od absolutní nuly se začne Fermiho mez posouvat od poloviny zakázaného pásu
k pásu s lehčími nositeli proudu (obvykle stoupá, posouvá se za elektrony ve vodivostním pásu).

Koncentraci elektronů n a děr p v polovodiči určuje zákon působení aktivních hmotností. Násobek
np nezávisí na konkrétním dopování, mění se pouze poměr obou druhů nosičů. Těžké díry mají z definice
větší efektivní hmotnost než lehké díry. Pás těžkých děr je tedy plošší a mají u hrany valenčního pásu
mnohem vyšší hustotu stavů. Pokud lehké díry při výpočtu mezipásových přechodů úplně ignorujeme,
neuděláme velkou chybu, ale podstatně zjednodušíme výpočet.

Budeme-li chtít vyjádřit teplotní závislost koncentrace nosičů proudu, vyjdeme ze vztahů (9.14) a
(9.15). Násobek np je úměrný efektivnímu počtu stavů ve vodivostním pásu n0, počtu stavů ve valenčním
pásu p0 a exponenciele. Všechny tyto tři části jsou závislé na teplotě. Efektivní počty stavů jsou úměrné
teplotě v mocnině 3/2. Proto vychází celková teplotní závislost následovně,

np ∝ n0p0 e−Eg/kBT ∝ T 3 e−Eg/kBT . (9.18)

Teoreticky napočítaná teplotní závislost intrinsické koncentrace elektronů tří druhů čistých polovodičů je
v obr. 9.11.

Obr. 9.11: Teplotní závislost koncentrace
elektronů pro tři různé polovodiče [21].

9.5.1 Elektrická vodivost

Budeme postupovat analogicky jako v sekci 7.8. Při výpočtu elektrické vodivosti musíme na rozdíl od
kovů započítat dva nosiče proudu (elektrony a díry). Protože vlastnosti obou nosičů se liší, je třeba si
definovat novou charakterizující veličinu pohyblivost. Tato kladná veličina se definuje vztahem

µ =
|v|
E
. (9.19)

Pohyblivost je střední driftová rychlost nositelů pod vlivem jednotkového pole (E = 1 V/cm). Využijeme
vztah (7.26) a můžeme rovnou zapsat pohyblivosti elektronů a děr za pomoci jejich efektivních hmotností
a relaxačních dob

µe =
eτe
me

, µh =
eτh
mh

. (9.20)

Celkovou elektrickou vodivost polovodiče pak můžeme zapsat jako součet dvou příspěvků,

σ = e(nµe + pµh). (9.21)
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9.6 Příměsová vodivost nevlastních polovodičů

Obr. 9.12: Ionizace příměsí v křemíku: a) fosfor jako donor, b) bór jako akceptor. Vlevo je zakreslen
základní energetický stav, vpravo je excitovaný stav, t.j. ionizovaná příměs a volná částice v energetickém
pásu. Fialová šipka naznačuje volný pohyb kvazičástice v pásu.

Jak jsme ukazovali na začátku této kapitoly na obr. 9.1, lze elektrické vlastnosti polovodiče řádově
měnit dopováním1. To se provádí tak, že se do teoreticky ideální mřížky polovodiče umístí atomy příměsí.
Příměsi se dělí na dvě základní skupiny: donory a akceptory. Jako typický příklad můžeme uvést křemíkový
polovodič. Příměs třímocného prvku, jako je bór nebo hliník, se v křemíku chová jako akceptor, kdežto
příměs pětimocného prvku, jako je fosfor, se chová jako donor. U III-V polovodičů závisí charakter příměsi
na pozici v mřížce. Donorem v GaAs může být Si na místě Ga, nebo Te na pozici As. Jako akceptor by
v GaAs působilo Be na místě Ga, nebo Si na pozici As.

Nejlépe je možné si toto chování vysvětlit pomocí ionizace příměsí zakreslené na obr. 9.12. Nejprve
budeme uvažovat případ donorového atomu fosforu. Jeho čtyři valenční elektrony tvoří tetraedrické koor-
dinační vazby se sousedními atomy křemíku. Poslední pátý elektron je slabě vázán, a pokud dojde např.
k tepelné excitaci, uvolní se do volného stavu, kterým je stav ve vodivostním pásu. V krystalové mřížce
zůstane ionizovaný iont P+. Zcela zaplněný valenční pás nemusíme uvažovat a na systém kladného iontu a
volného elektronu se můžeme dívat jako na modifikovaný atom vodíku, jehož řešení je tématem základních
učebnic kvantové mechaniky [11]. Vliv okolního prostředí se započítá relativní permitivitou ε. Analogie
s atomem vodíku nám umožňuje ihned napsat vazebnou energii základního stavu tohoto systému, kdy je
elektron na 1s vázané hladině v potenciálu iontu atomu fosforu

Ed =
e4me

2(4πεε0ℏ)2
=

13.6

ε2
me

m0
eV. (9.22)

Protože elektron se při excitaci uvolňuje z atomu fosforu do vodivostního pásu, nachází se jemu odpovída-
jící příměsová hladina v zakázaném pásu, a to přesně na energii o hodnotu Ed pod hranou vodivostního

1V některých textech se používají alternativní termíny jako dotování nebo legování.
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pásu, viz obr. 9.13a). Vázaný stav elektronu můžeme co do rozměrů charakterizovat pomocí modifikova-
ného Bohrova poloměru,

ad =
4πεε0ℏ2

e2me
= 0.53 ε

m0

me
Å. (9.23)

Tento poloměr udává střední vzdálenost elektronu od donoru na stabilní hladině. Kupodivu tento poloměr
bývá větší než meziatomární vzdálenosti. Vazebné energie a Bohrovy poloměry pro donory u typických
polovodičů jsou uvedeny v tab. 9.4.

Tab. 9.4: Parametry donorů u typických
polovodičů. Je zřejmé, že takto napočí-
tané parametry donorů závisí pouze na
materiálu polovodiče a nezávisí na kon-
krétní příměsi.

Krystal Si Ge GaAs
me/m0 0.2 0.1 0.067

ε 11.7 15.8 12.85
Ed(meV) 20 5.5 5.5
ad(nm) 3 8 10

Nyní se věnujme akceptorům, u nichž je situace obdobná. Bór v základním stavu má pouze tři valenční
elektrony. Při doplnění čtvrtého elektronu vznikne záporný iont, který má propojené koordinační vazby
na všechny sousední křemíky. Tento doplněný elektron pak ale musí chybět někde jinde ve valenčním
pásu. Protože k přechodu elektronu na atom bóru je potřeba dodat energii, bude mít vázaný akceptorový
stav hladinu v zakázaném pásu, a to o excitační energii nad vrcholem valenčního pásu, viz obr. 9.13b).
Na proces excitace se lze dívat také tak, že elektron přejde na akceptor a vzniká díra ve valenčním pásu.

Ed

Ec

Ev

Ea

Ec

Ev

a) b)

Obr. 9.13: Ionizace příměsí v polovodiči: a) n-typ s donory, b) p-typ s akceptory. Energie Ev a Ec označují
hranu valenčního, resp. vodivostního pásu.

Je dobré si uvědomit rozdíl mezi vodivými stavy (elektrony ve vodivostním pásu, díry ve valenčním
pásu) a vázanými stavy. Stavy donorů a akceptorů jsou v krystalu lokalizované a nemohou tedy přímo
přispívat k vodivosti. K vodivosti přispívají tím, že poskytují slabě vázané nosiče, které je možné snadno
excitovat do pásů. Donory a akceptory tedy vytvářejí povolené hladiny v zakázaném pásu polovodiče.
Fermiho mez se v dopovaném polovodiči nachází v blízkosti této příměsové hladiny. Pásové schéma ty-
pického dopovaného polovodiče je zobrazeno na obr. 9.13. Základní polovodičová součástka – dioda –
vznikne, pokud máme polovodič dopovaný v jedné polovině krystalu na n-typ a ve druhé polovině na
p-typ. Teoreticky si to můžeme představit tak, že dva kusy polovodiče v obr. 9.13 přitiskneme k sobě.
Takto se ale reálné polovodičové součástky nevyrábějí. Diodě a p-n přechodu se bude podrobněji věnovat
kapitola 12.

Pokud je koncentrace dopování vysoká, Nd > 1/a3d, dochází k přeskokům elektronů přímo mezi
příměsemi bez využití pásů polovodiče. Tento degenerovaný polovodič je potom vodivý i za velmi nízkých
teplot. Poloha Fermiho meze se s teplotou moc nemění a degenerovaný polovodič se chová elektrický
podobně jako špinavý kov. S tímto tématem souvisí i př. 9.3.

9.6.1 Teplotní ionizace donorů a akceptorů

Jak jsme již upozorňovali, dopování polovodičů se používá pro změnu koncentrace volných nosičů proudu
v polovodiči. Proto si nyní uvedeme vztah pro nízkoteplotní koncentraci elektronů ve vodivostním pásu
pro n-dopovaný polovodič. Teplotní závislost této koncentrace je řešena v př. 9.4 na konci této kapitoly.

n = (n0Nd)
1/2 e−Ed/2kBT , n0 = 2

(
mekBT

2πℏ2

)3/2

, (9.24)

kde Nd je koncentrace donorů v polovodiči a n0 je efektivní koncentrace stavů ve vodivostním pásu.
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Na první pohled by se mohlo zdát, že čím větší bude koncentrace donorů v polovodiči, tím větší bude
koncentrace vodivostních elektronů ve vodivostním pásu a tím větší bude elektrická vodivost polovodičo-
vého materiálu. Přítomnost ionizovaných příměsí v mřížce ale způsobuje snížení pohyblivosti elektronů,
které se na nabitých iontech rozptylují, což vede ke zkrácení relaxační doby. U všech polovodičů je jedním
rozptylovým mechanismem rozptyl na fononech. Ten je ale dominantní u čistých polovodičů a za vyšších
teplot. Rozptyl na fononech se dá potlačit ochlazením vzorku. Naproti tomu rozptyl na příměsích nezá-
visí na teplotě. Za nízkých teplot je možný rozptyl i na neutrálních příměsích, u vyšších teplot převládá
Rutherfordův rozptyl na nabité příměsi.

Vliv ionizovaných atomů příměsí na vodivost se u některých polovodičových součástek dá kompenzo-
vat vhodným návrhem heterostruktury. Lze navrhnout strukturu diody nebo tranzistoru, kde jsou ionty
příměsí prostorově odděleny od vodivého kanálu, kde se mohou elektrony s velkou koncentrací pohybovat
s velkou pohyblivostí podobně jako v čistém polovodiči.

9.7 Termoelektrické jevy v polovodičích

Obr. 9.14: Termoelektrické jevy: a) Peltierův článek mění elektrický proud na TE chlazení spoje dvou
typů polovodiče. b) Seebeckův jev popisuje to, že se ohříváním spoje dvou polovodičů generuje TE napětí
na konektorech.

Studium termoelektrických vlastností je důležité hlavně u dopovaných polovodičů, kde je jeden typ
majoritních nosičů (elektrony nebo díry). Protože elektrony přenášejí elektrický proud v opačném směru,
než ve kterém se pohybují, tepelná energie, kterou si s sebou nesou, se pohybuje proti směru elektrického
proudu. Základní dva termoelektrické jevy lze vysvětlit pomocí obr. 9.14. Levý obrázek představuje
termoelektrické (TE) chlazení vlivem procházejícího proudu (Peltierův jev). Pokud by se obrátila polarita
zdroje a proud protékal v opačném směru, TE článek by fungoval jako ohřívač. Pravý obrázek ukazuje
TE napětí, které se generuje ohřevem p-n přechodu (Seebeckův jev).

Pro popis termoelektrických jevů se zavádí několik parametrů. Peltierův koeficient – Π se definuje
jako podíl toku energie vůči elektrickému proudu, které jsou přenášené volnými nosiči. Tento Peltierův
koeficient je tedy kladný pro díry a záporný pro elektrony:

Πe =
jU
je

< 0, Πh =
jU
jh

> 0. (9.25)

Jak je zřejmé z definice, jednotkou Peltierova koeficientu je podíl W/A, což dává jednotku volt.

Absolutní termoelektrická síla – QT udává velikost intenzity elektrického pole E generovaného v po-
lovodiči gradientem teploty ∇T nebo jako podíl termoelektrického napětí ∆V generovaného na koncích
tyčky s teplotním rozdílem ∆T . Tato veličina se někdy označuje jako Seebeckův koeficient

QT = −∆V

∆T
=

E

∇T
. (9.26)

Z definice je jednotkou Seebeckova koeficientu V/K. Generace napětí na materiálu, jehož konce jsou na
různé teplotě znázorňuje obr. 9.15. Uvažujme případ kdy nosiče proudu jsou elektrony a sledujme jejich
rychlosti uprostřed tyče. Zleva doprava míří elektrony z chladnější oblasti a tedy s nižší kinetickou energií
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a rychlostí. Zprava míří elektrony s vyšší rychlostí. Plochou kolmého řezu tyče tedy převládá proud částic
zprava doleva a na chladném konci se bude hromadit záporný náboj podle vztahu (9.26).

T1 T2

∆V = −QT (T2 − T1)

Obr. 9.15: Seebeckův jev, generované
napětí je úměrné teplotnímu rozdílu.
Délka šipek naznačuje jak s teplotou
narůstá střední rychlost elektronů.

Podle Kelvinova vztahu2 je Peltierův koeficient úměrný absolutní teplotě s úměrností danou termo-
elektrickou silou. Platí tedy vztah Π = QTT . V jednotkách to vychází následovně: volt se rovná V/K ·K.
Díky změně znaménka Peltierova koeficientu můžeme určit typ dopování podle polarity elektrického na-
pětí na povrchu vzorku s gradientem teploty. Pro p-typ je konec s vyšší teplotou záporně nabitý, u n-typu
je teplejší konec kladně nabitý.

Rozdílné chování různě dopovaných polovodičů umožňuje konstrukci Peltierových článků, které umož-
ňují použít elektrický proud přímo ke stimulaci přenosu tepelné energie. Toho se dnes používá v tzv.
elektronických chladničkách. Fotografie typických Peltierových článků je na obr. 9.16.

Obr. 9.16: Termoelektrické chladící prvky, převzato
z webu PELTIERY: http://www.peltiery.cz/

2Významný skotsko-irský fyzik William Thomson (1824 – 1907) je známý spíše pod svým šlechtickým jménem lord
Kelvin of Largs.
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PO. 9.1: Redukované pásové schéma pro tři typické polovodiče (Ge, Si, GaAs) v 1.BZ. Zakresleny jsou
disperzní závislosti ve dvou významných směrech. Převzato z [3].

PO. 9.2: 3D zobrazení oblastí minima vodivostního pásu tří typických polovodičů (Ge, Si, GaAs).
Převzato z [3].
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9.8 Příklady

Př. 9.1: Teplotní závislost Fermiho meze:
Vysvětlete, čím je způsoben posun Fermiho meze v intrinsickém (čistém) polovodiči se vzrůstající teplotou
směrem k vodivostnímu pásu.

Nápověda: Použijte vztah (9.17) a doprovodný text v této kapitole, důležitá je podmínka rovnováhy.

Př. 9.2: Absorpční hrana polovodiče:
Odvoďte vztah mezi energií zakázaného pásu přímého polovodiče a vlnovou délkou odpovídající absorpční
hraně. Materiál polovodiče bude absorbovat fotony s touto a kratší vlnovou délkou.

Řešení:

E = ℏω =
ℏ2πc
λ

= eẼ,

kde Ẽ označuje energii v elektronvoltech. Dosadíme konstanty a budeme uvažovat vlnovou délku λ v mi-
krometrech, takže pro převod do SI budeme násobit faktorem 10−6

Ẽ =
hc

eλ
=

6.626× 10−34 · 2.9979× 108

1.602× 10−19 · λ× 10−6
[eV],

Ẽ [eV] = 1.24/λ [µm].

Př. 9.3: Příměsové stavy v InSb:
Parametry tohoto polovodiče jsou: Eg = 0.23 eV, ε = 18, me = 0.15 m0. Podle vztahů odvozených v této
kapitole dopočítejte následující: a) ionizační energii donorů, b) Bohrův poloměr donorů, c) minimální
koncentraci donorů, kdy se začne projevovat překrývání drah elektronů na sousedních příměsích.

Nad touto koncentrací dochází k vytváření příměsového pásu. Přeskakováním po příměsích může již dojít
k vedení elektrického proudu přímo na této hladině. Kittel, str. 250, př. 1

Řešení: a) 6.3 meV, b) 6.4 nm, c) 3.9× 1018 cm−3.

Př. 9.4: Ionizace donorů:
Uvažujme polovodič s koncentrací donorů Nd a ionizační energií Ed, která je definovaná jako kladná
veličina. Určete koncentraci elektronů ve vodivostním pásu a polohu Fermiho meze pro: a) nízkoteplotní
limitu, b) při pokojové teplotě. Použijte vztahy (9.11) a (9.14). Pro nízkoteplotní limitu odvoďte vztah
(9.24). Kittel, str. 250, př. 5

Řešení: Nejprve obecně určíme koncentraci ionizovaných donorů. Pravděpodobnost, že je příměs ionizo-
vaná, odpovídá pravděpodobnosti, že je na tomto stavů díra:

fh = ( e(µ−E)/kBT + 1)−1 = ( e(µ−Eg+Eg−E)/kBT + 1)−1 = ( e(µ
′+Ed)/kBT + 1)−1.

V tomto odvození je vhodné zavést µ′ jako vzdálenost Fermiho meze od hrany vodivostního pásu. Ioni-
zované donory jsou zdrojem pro volné elektrony ve vodivostním pásu N+

d = n. Tuto rovnost můžeme
přepsat následovně

N+
d =

Nd
e(µ′+Ed)/kBT + 1

= n = n0 e
µ′/kBT .

A to upravíme na rovnost

Nd = n0 e
µ′/kBT

(
eµ

′/kBT eEd/kBT + 1
)
. (9.27)

a) V nízkoteplotní limitě zanedbáme v (9.27) jedničku vůči exponenciele

e2µ
′/kBT =

Nd
n0

e−Ed/kBT ⇒ µ′ = −Ed
2
− 1

2
kBT ln

(
n0
Nd

)
.

Koncentraci elektronů potom dostaneme dosazením za exponencielu z levé strany předešlého řádku

n = n0 e
µ′/kBT = (n0Nd)

1/2 e−Ed/2kBT .
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b) Pro pokojové teploty je kBT ≈ 26 meV a v závorce vztahu (9.27) můžeme zanedbat exponencielu vůči
jedničce. Tím přímo dostaneme, že všechny donory jsou ionizované

Nd = n0 e
µ′/kBT = n ⇒ µ′ = −kBT ln

(
n0
Nd

)
.

Př. 9.5: Parametry donorů v polovodiči:
Uvažujme polovodič s koncentrací donorů Nd = 1013 cm−3, Ed = 1 meV a m = 0.01 m0.
a) Použijte výsledky z předchozího příkladu a určete koncentraci vodivostních elektronů při teplotě 4 K.
b) Určete navíc ještě Hallův koeficient. Kittel, str. 250, př. 2

Nápověda: Připomeňme hodnotu Boltzmannovy konstanty kB = 1.3807×10−23 JK−1 = 0.0862 meVK−1.
Při výpočtu si nejprve spočítejme n0 = 3.87× 1013 cm−3.

Řešení: n = 0.46× 1013 cm−3, RH = −1.35 m3C−1.

Př. 9.6: Výpočet Hallova koeficientu pro polovodiče:
Postupujte analogicky s odvozením v sekci 7.9.1 a vypočítejte vztah pro Hallův koeficient pro polovodič
s dvěma typy nosičů proudu. Hledaný vztah je analogií výrazu (7.34). Pro výpočet je nutné znát koncen-
traci elektronů n, koncentraci děr p a poměr pohyblivostí obou nosičů b = µe/µh. Kittel, str. 250, př. 3

Nápověda: Nejprve ukažte, že poměr b určuje kromě poměru pohyblivostí i poměr cyklotronové frekvence
násobené relaxačním časem a také poměr středních driftových rychlostí, které ale mají opačný směr,

b =
µe
µh

=
ωeτe
ωhτh

= − vex
vhx

.

Řešení:

RH =
1

e

p− nb2

(p+ nb)2
.

Př. 9.7: Cyklotronová rezonance pro anizotropní efektivní hmotnost:
Uvažujme energetickou plochu ve tvaru jednoosé anizotropie.

E(k⃗) =

(
k2x + k2y
2mT

+
k2z
2mL

.

)

Konstanty mT a mL představují transverzální a longitudální efektivní hmotnost elektronu. Určete efek-
tivní hmotnost a odpovídající cyklotronovou frekvenci pro magnetické pole orientované: a) kolmo na osu
symetrie, b) podél této osy, c) v obecném směru, který svírá s osou úhel θ. Kittel, str. 250, př. 4

Nápověda: Pro obecný směr magnetického pole je efektivní hmotnost daná elipsou,

1

(m∗)2
=

cos2 θ

m2
T

+
sin2 θ

mTmL
.
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Fermiho plochy různých kovů. Převzato z webu UNIVERSITY OF FLORIDA:
http://www.phys.ufl.edu/fermisurface/
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Kapitola 10

Fermiho plochy v kovech

Obsah kapitoly
10.1 Zavedení pásových schémat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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10.2.2 Model téměř volných elektronů . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
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10.4 Experimentální metody zkoumání Fermiho ploch . . . . . . . . . . . . . . . 161
10.4.1 Kvantování v magnetickém poli – Landauovy hladiny . . . . . . . . . . . . . . 162
10.4.2 Cyklotronvý pohyb – integrál v čase . . . . . . . . . . . . . . . . . . . . . . . . 163
10.4.3 Kvantování v magnetickém poli – kvantování momentu hybnosti . . . . . . . . 165
10.4.4 Extremální orbita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.5 Příklady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

V kapitole 7 jsme probrali základní vlastnosti kovů a ukázali si, že typické elektrické a tepelné vlast-
nosti kovů lze odvodit z chováním Fermiho elektronového plynu. Díky Pauliho vylučovacímu principu je
stav každého elektronu v kovu popsán unikátními kvantovými čísly. Všechny obsazené stavy elektronů
při teplotě absolutní nuly zaplňují v k-prostoru geometrické těleso ohraničené Fermiho plochou. Stavy na
Fermiho ploše mají nejvyšší energii a stavy uvnitř tohoto tělesa mají energii nižší. Experimenty studující
vlastnosti kovů jsou proto zaměřené na zkoumání geometrického tvaru Fermiho plochy.

10.1 Zavedení pásových schémat

Pro periodickou strukturu krystalu se zavádí popis stavů elektronů pomocí Blochových vlnových funkcí.
Vlastní číslo těchto vlnových funkcí je vlnový vektor K⃗, který lze díky symetrii vždy transformovat do
1.BZ. Této proceduře se říká mapování energetické závislosti do redukovaného pásového schématu. Při
tomto mapování je potřeba vlnový vektor posunout o vhodný vektor reciproké mřížky G⃗ tak, že k⃗ = K⃗+G⃗
už leží v 1.BZ.

Energetické disperzní závislosti elektronů lze potom zobrazit třemi způsoby, které jsou vzájemně
ekvivalentní, jak ukazuje obr. 10.1.

Rozšířené pásové schéma: vychází z energetické závislosti pro volné elektrony, pouze se započítá
štěpení pásů na hranách zón.

Redukované pásové schéma: získáme posunutím všech energetických závislostí do 1.BZ. Toto schéma
má tu vynikající vlastnost, že každý energetický pás obsahuje v 1.BZ právě tolik stavů, kolik je elementár-
ních buněk v krystalu N . Pro správný popis stavů všech elektronů je tedy potřeba dodat nové kvantové
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Obr. 10.1: Energetické pásy 1D řetízku zakreslené zleva v rozšířeném, redukovaném a periodickém páso-
vém schématu. Zelené šipky ukazují vektor G⃗ odpovídající šířce BZ, o který se provádí posun energetických
závislostí.

číslo. Pro zvolený vektor k⃗ je potřeba ještě udat číslo energetického pásu n. Blochovu vlnovou funkci pak
označujeme jako ψn,⃗k(r⃗). Podle počtu valenčních elektronů studovaného kovu můžeme odhadnout počet
obsazených pásů.

Periodické pásové schéma: vznikne kopírováním redukovaného schématu do všech zón. Díky tomu je
možné názorně sledovat dynamiku chování elektronů ve vnějším poli, kdy může elektron v daném pásu
plynule přecházet do sousedních zón. Toto poslední pásové schéma má zase nejblíže k popisu energetických
pásů pomocí metody těsné vazby.

10.2 Sestrojení Fermiho plochy

Tento úkol si přiblížíme pro případ 2D čtvercové mřížky. Hranice mezi Brillouinovými zónami jsou dané
podmínkou (3.6), kterou jsme si odvodili v sekci 3.3

2k⃗ · G⃗ = G2. (10.1)

Jednotlivé BZ jsou pro tuto mřížku zakresleny v (PO. 3.2: Čtvercová mřížka).

10.2.1 Model volných elektronů

Sestrojení Fermiho ploch pro volné elektrony provedeme Harrissonovým1 postupem [20]. Obrázek 10.2a)
ukazuje reciprokou mřížku, do které zakreslíme všechny mřížkové body (modré tečky). V každém mřížko-
vém bodě zakreslíme kružnici o poloměru odpovídajícímu dané koncentraci volných elektronů. Poloměr
této kružnice odpovídá Fermiho vlnovému vektoru. Každý bod k-prostoru, který leží uvnitř alespoň jedné
kružnice, představuje obsazený stav 1.BZ. Body společné alespoň dvěma kružnicím odpovídají obsazeným
stavům 2.BZ. Obdobně můžeme postupovat dál, bod sdílený m kružnicemi bude obsazen ve všech zónách
až do řádu m.

Obdobně bychom postupovali i u 3D krystalu, kde bychom kružnice nahradili koulemi. Nejjednodu-
ššími kovy jsou alkalické kovy, které mají jeden valenční elektron na buňku, Z∗ = 1. Fermiho plocha
např. sodíku je prakticky kulová, jak ukazuje úvodní obrázek této kapitoly. Pro vícemocné kovy je třeba
započítat vliv mřížky a přejít od modelu volných elektronů minimálně k modelu téměř volných elektronů.
Popisu kovů, jakožto speciálních pevných látek, se věnují některé specializované knihy [7].

Vraťme se ještě zpět k 2D čtvercové mřížce. Poloměr Fermiho kružnice na obr. 10.2a) je takový, aby
odpovídal čtyřem elektronům na elementární buňku. Fermiho vlnový vektor má v tomto případě velikost

kF =

√
2Z∗

π

π

a
, (10.2)

1W.A. Harrison je autorem řady knih o pevných látkách: „Elementary Electronic Structureÿ, „Electronic Structure and
the Properties of Solids: The Physics of the Chemical Bondÿ, „Fermi surfaceÿ a další.
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Obr. 10.2: Harrisonova geometrická konstrukce Fermiho plochy volných elektronů v první až čtvrté BZ
čtvercové mřížky. Tmavší červená barva odpovídá vyššímu číslu Brillouinovy zóny.

kde a značí mřížkovou konstantu a n udává počet elektronů na elementární buňku. To, jak Fermiho plocha
pro různé hodnoty n zasahuje do jednotlivých 2D BZ, ukazuje obr. 10.3. Číslování zón na obr. 10.2b)
odpovídá tomu, z jakých barevně označených oblastí na obr. 10.3 se příslušná zóna poskládá.

1.BZ

2.BZ

3.BZ

4.BZ

5.BZ

1

2
3 4 5

6

7

Obr. 10.3: Jednotlivé barvy zobra-
zují pět BZ pro čtvercovou mřížku.
Tečkovaně jsou znázorněny Fermiho
kružnice (10.2) s indexem, který
udává počty elektronů na elemen-
tární buňku.

10.2.2 Model téměř volných elektronů

Jak přejít od Fermiho ploch pro volné elektrony k Fermiho plochám pro téměř volné elektrony? Přibližný
odhad můžeme provést bez složitých výpočtů, využijeme pouze několik úvah zohledňujících symetrii řeše-
ného problému.

1. Jak jsme si ukazovali v kapitole 8, interakce elektronů se slabým periodickým potenciálem mřížky
způsobí vznik zakázaných energetických pásů v místě křížení energetických závislostí (na hranici
BZ nebo v bodě Γ).

2. Fermiho plocha bude vždy2 protínat hranici zóny kolmo. Tím je zaručena spojitost rychlosti odpo-
vídajícího elektronu při přechodu přes okraj BZ.

2Ojediněle jsou možné případy, kdy tomu tak není.
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3. Ostré rohy na Fermiho plochách se zaoblí, aby se mohly elektrony spojitě posouvat po Fermiho
ploše vlivem vnějšího pole.

4. Celkový objem uzavřený Fermiho plochou závisí pouze na koncentraci elektronů, ale nezávisí na
detailech krystalového potenciálu. Pokud při zakulacování rohů někde kousek Fermiho tělesa ode-
bereme, musíme jinde stejný objem přidat.

Pod vlivem těchto poznatků se můžeme pokusit upravit dvě zóny z pravé strany obr. 10.2. Na zónách
2.BZ a 3.BZ nám vadí hlavně ostré rohy. Zaoblením získáme realističtější tvary Fermiho plochy, které
ukazuje obr. 10.4.

Zatím jsme se v této kapitole zabývali pouze 2D modely krystalu. Reálné 3D krystaly jsou podstatně
náročnější na představivost. Fermiho plochy typických kovů jsou zakresleny na obrázku na začátku této
kapitoly. Různé barvy označují Fermiho plochu v různých zónách. Prakticky kulovou plochu mají jedno-
mocné kovy jako sodík a měď. Náročnější jsou Fermiho plochy pro hexagonální krystaly. Za povšimnutí
stojí také Fermiho plochy trojmocného hliníku s FCC mřížkou. Transformace energetických závislostí
do 1.BZ vede ke vzniku neočekávaných geometrických útvarů ve třetí zóně (na úvodním obrázku této
kapitoly zobrazeno fialově).

k E Obr. 10.4: Kvalitativní odhad změny tvaru
Fermiho ploch v druhé a třetí BZ čtvercové
mřížky podle obr. 10.2 při započítání slabého
periodického potenciálu mřížky. Na jednom
místě Fermiho plochy je zakreslen směr deri-
vace ∇k⃗E, který směřuje k vyšší energii a tedy
ven z Fermiho tělesa.

10.2.3 Orbity v magnetickém poli

Pokud na kov, jehož obsazené energetické stavy jsou uzavřeny Fermiho plochou, působí magnetické pole,
budou se elektrony na Fermiho ploše pohybovat po orbitách3. Podle geometrie této orbity rozlišujeme tři
základní typy, jak ukazuje obr. 10.5. Elektronová orbita uzavírá prostor se stavy obsazenými elektrony,
děrová orbita uzavírá prostor s prázdnými stavy a elektrony ji obklopují zvenku. Otevřená orbita je taková
dráha elektronu, která se neuzavírá, ale elektron na této orbitě má stále jeden preferovaný směr. Elektron
na spodní straně Fermiho plochy v obr. 10.5c) se pohybuje doprava, přejde-li hranici zóny, objeví se na
levé straně opět v 1.BZ.

B

k

k E
dk
dt

k

k E

dk
dt

Obr. 10.5: Tři typy orbit na Fermiho ploše v magnetickém poli vystupujícím z plochy obrázku: a) elektro-
nová, elektrony se pohybují proti směru hodinových ručiček, b) děrová, elektrony se pohybují po směru
hodinových ručiček, c) otevřená orbita není uzavřená v 1.BZ, ale přechází do sousední BZ.

3„Orbitaÿ popisuje oběžnou dráhu částice, kdežto atomární „orbitalÿ (např. 2s, 2p) představuje pravděpodobnostní
rozložení výskytu elektronu v odpovídajícím atomárním stavů.
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Zopakujme pohybové rovnice (9.7) a (9.2), které popisují pohyb elektronu v magnetickém poli, a které
byly vysvětleny v předchozí kapitole

ℏ
dk⃗

dt
= −e(v⃗g × B⃗), v⃗g =

1

ℏ
∇k⃗E ⇒ dk⃗

dt
= − e

ℏ2
(∇k⃗E × B⃗). (10.3)

Je dobré si ještě navíc promyslet pohyb děr na Fermiho ploše. Zjistíme, že díry se díky kladnému
znaménku náboje, otočené energetické ose a otočenému vlnovému vektoru, budou po Fermiho ploše po-
hybovat opačným směrem než elektrony. To ukazuje obr. 10.5 na místě a) a b). Musíme si uvědomit, že
elektronová orbita popisuje pár elektronů uprostřed jinak prázdného pásu. Kdežto děrová orbita předsta-
vuje nehybný plný pás ve kterém se uprostřed pohybuje pár děr. Zkráceně se dá říci, že elektrony i díry
se pohybují v takovém směru, že po levé straně míjejí stavy obsazené elektrony a po pravé straně mají
stavy prázdné (obsazené dírami).

10.3 Výpočet pásové struktury

Používá se několik metod výpočtu pásové struktury. Různé metody se liší tím, jak přesně dokáží popsat
daný systém elektronů v pevné látce. Zmíníme zde tři jednodušší metody, které jsou snadno pochopi-
telné a jsou výpočetně nenáročné. První výpočty tohoto typu byly prováděny bez použití počítačů, což
si dnes dokážeme jen stěží představit. Nicméně i s použitím nejmodernější výpočetní techniky je třeba
dobře formulovat řešený problém a správně naprogramovat odpovídající algoritmus. V dalších sekcích
budeme postupně probírat metodu těsné vazby, Wignerovu-Seitzovu metodu a jako třetí metodu pseudo-
potenciálů. Náročnost těchto tří metod je mírně vzestupná. Vynikající knihou, která se zabývá různými
výpočetními metodami pásové struktury, je „Solid State Physicsÿ autorů Ashcroft a Mermin, která vyšla
roku 1976 [7].

10.3.1 Metoda těsné vazby

Tuto metodu lze použít tam, kde se při vytváření krystalu z jednotlivých atomů zachovává atomární cha-
rakter vlnových funkcí elektronů. Proto se tato metoda někdy označuje jako LCAO – linear combination
of atomic orbitals. Metoda vychází z předpokladu, že v blízkosti každého mřížkového bodu můžeme cel-
kový hamiltonián krystalu H aproximovat hamiltoniánem volného atomu Hat, který se nachází na této
mřížkové pozici. Zapíšeme si systém elektronových hladin volného atomu v počátku souřadného systému,

Hatψn = Enψn. (10.4)

Dále předpokládejme, že vlnové funkce ψn obsazených stavů jsou dobře lokalizované, jejich hodnota je
zanedbatelně malá ve vzdálenosti od středu odpovídající mřížkové konstantě.

Uvažujme pro jednoduchost nejprve případ, kdy k sobě přiblížíme dva atomy vznikajícího krystalu
s jedním valenčním elektronem popsaným vlnovou funkcí s orbitalu. Ve chvíli, když se začnou částečně
překrývat vlnová funkce elektronu na atomu A (ψA) s vlnovou funkcí elektronu na atomu B (ψB), jak
to ukazuje obr. 4.3, musíme systém elektronů popsat jinými vlnovými funkcemi. Ty můžeme zapsat jako
lineární kombinaci atomárních funkcí (ψA ± ψB). Symetrická vlnová funkce (ψA + ψB) bude mít energii
o něco nižší než volný atom a přispívá k vazbě obou atomů. Anti-symetrická vlnová funkce (ψA − ψB)
bude mít energii o něco vyšší.

Rozšíříme-li naše úvahy na N atomů (a N elektronů v případě atomů s valencí jedna), potom se díky
překryvu elektronových obalů musí původní energetická hladina odpovídající volnému atomu rozšířit na
pás, který bude obsahovat právě N povolených energetických stavů. Šířka pásu se zvětšuje se zvyšujícím
se překryvem. Má-li atom valenční elektrony v s, p a d orbitalech, vytvoří se odpovídající počet různých
energetických pásů. Různých znamená to, že se pásy v k-prostoru mohou křížit, ale nemohou se úplně
překrývat. Stavy, které jsou ve volném atomu degenerované, vytvoří v krystalu různé pásy.
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Podrobný výpočet

Uvažujme ten nejjednodušší případ atomu s jedním s valenčním elektronem4 s vlnovou funkcí základního
stavu ψ a energií Eat. Systém N vlnových funkcí popisujících elektrony v krystalu budeme hledat ve
tvaru lineární kombinace atomárních orbitalů s vlastním číslem k⃗

ψk⃗(r⃗) =
1√
N

N∑
m=1

Ck⃗,mψ(r⃗ − a⃗m), neboli |ψk⃗⟩ =
1√
N

N∑
m=1

Ck⃗,m|ψm⟩. (10.5)

Za podmínky správné volby koeficientů Ck⃗,m bude mít tato vlnová funkce Blochův tvar. Ukážeme si, že
exponenciální tvar je správná volba,

Ck⃗,m = eık⃗·⃗am ⇒ |ψk⃗⟩ =
1√
N

∑
m

eık⃗·⃗am |ψm⟩

⇒ uk⃗(r⃗) =
1√
N

∑
m

eık⃗·(a⃗m−r⃗)ψ(r⃗ − a⃗m). (10.6)

Jako důkaz správnosti této volby ověříme nyní periodičnost uk⃗(r⃗) při posunu o vektor přímé mřížky T⃗

uk⃗(r⃗ + T⃗ )/
√
N =

∑
m

eık⃗·(a⃗m−r⃗−T⃗ )ψ(r⃗ + T⃗ − a⃗m) =
∑
m

eık⃗·(a⃗m−T⃗−r⃗)ψ(r⃗ − (⃗am − T⃗ ))

=
∑
m′

eık⃗·(a⃗m′−r⃗)ψ(r⃗ − a⃗m′) = uk⃗(r⃗)/
√
N. (10.7)

Energie jednotlivých Blochových vlnových funkcí napočítáme v prvním řádu poruchové teorie

E(k⃗) = ⟨ψk⃗|H|ψk⃗⟩ =
1

N

∑
m

∑
j

eık⃗·(a⃗j−a⃗m)⟨ψm|H|ψj⟩. (10.8)

Dvojitou sumu můžeme díky translační symetrii krystalu vyjádřit jako N násobek jednoduché sumy
s jednou atomární vlnovou funkcí posunutou do počátku souřadnic,

E(k⃗) =
∑
m

e−ık⃗·⃗am⟨ψm|H|ψ0⟩. (10.9)

Celkový hamiltonián zapíšeme jako atomární hamiltonián (10.4) plus porucha, která doplňuje ato-
mární potenciál na periodický potenciál krystalu: H = Hat + ∆U . Jednoduše můžeme říci, že ∆U je
vlastně periodický potenciál krystalu, od něhož je odečten potenciál jednoho volného atomu v počátku.
Vztah pro energii přepíšeme

E(k⃗) = Eat + ⟨ψ0|∆U |ψ0⟩+
∑
m ̸=0

e−ık⃗·⃗am⟨ψm|∆U |ψ0⟩

=Eat − β − γ
∑
n

e−ık⃗·ρ⃗n . (10.10)

První člen Eat představuje energetickou hladinu atomárního hamiltoniánu. Druhý člen −β popisuje pokles
atomární energetické hladiny vlivem poruchového potenciálu ∆U . Poslední člen popisuje poruchovou
změnu energie díky vlivu nejbližších sousedů, které jsou na pozicích ρ⃗n vůči počátku. Polohu nejbližších
sousedů jsme probírali v první kapitole. Pro kubické mřížky je to znázorněno na obr. 10.6. Překryvový
parametr γ je konstantní, pokud jsou všichni nejbližší sousedé stejně vzdáleni o ρ a pokud je použitá
atomární vlnová funkce dostatečně symetrická. Jako příklad lze provést výpočet tohoto parametru pro
dva atomy vodíku s 1s elektronovými hladinami:

γ[Ry] = 2

(
1 +

ρ

aB

)
e−ρ/aB , (10.11)

kde energie je v jednotkách Rydberg (≈ 13.6 eV) a vzdálenost se škáluje v jednotkách Bohrova poloměru
(≈ 0.529 Å).

4Pokud bychom uvažovali obsazení více orbitalů (s, p, d), pak bychom museli přidat ještě jeden index označující číslo
pásu a sumaci přes tento index. Výpočet by byl obdobný, ale méně přehledný.
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SC: 6 BCC: 8 FCC: 12

Obr. 10.6: Polohy nejbližších sousedů (červené body) vůči zvolenému atomu (modrý bod) ve třech typech
prostorového uspořádání kubických mřížek.

SC mřížka

Pro prostou kubickou mřížku je šest nejbližších sousedů na pozicích

ρ⃗ = (±a, 0, 0); (0,±a, 0); (0, 0,±a).

Energetický pás (10.10) můžeme zapsat jako

E(k⃗) = Eat − β − 2γ [cos(kxa) + cos(kya) + cos(kza)] . (10.12)

Takto získáme kosinový profil energetického pásu s celkovou šířkou pásu 12γ. Pokud bychom udělali
harmonický rozvoj v minimu pásu, tak dostaneme vztah, z něhož lze určit efektivní hmotnost elektronů
na hraně tohoto pásu m∗, viz obr. 10.7:

E(k⃗) = Eat − β − 6γ + γk2a2 ⇒ m∗ =
ℏ2

2γa2
. (10.13)

k

E

Obr. 10.7: Modře je zobrazena energetická závislost (10.12), ener-
getický pás je podbarven. Červenou čárkovanou čarou je zakres-
lena parabolická aproximace na hraně pásu, která určuje efektivní
hmotnost podle (10.13).

BCC mřížka

Stejný výpočet provedeme nyní pro prostorově centrovanou kubickou mřížku. Osm nejbližších sousedů je
zde na pozicích

ρ⃗ = ±a
2
(1, 1, 1); ±a

2
(−1, 1, 1); ±a

2
(1,−1, 1); ±a

2
(−1,−1, 1).

Energetický pás můžeme zapsat jako

E(k⃗) = Eat − β − 8γ

[
cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kza

2

)]
.

FCC mřížka

Pro úplnost zopakujeme výpočet ještě pro plošně centrovanou kubickou mřížku. Dvanáct nejbližších
sousedů je zde na pozicích

ρ⃗ = ±a
2
(1, 1, 0); ±a

2
(−1, 1, 0); ±a

2
(1, 0, 1); ±a

2
(−1, 0, 1); ±a

2
(0, 1, 1); ±a

2
(0,−1, 1).

Energetický pás pro FCC mřížku vyjde

E(k⃗) = Eat − β − 4γ

[
cos

(
kxa

2

)
cos

(
kya

2

)
+ cos

(
kxa

2

)
cos

(
kza

2

)
+ cos

(
kya

2

)
cos

(
kza

2

)]
.

159



10.3.2 Wignerova-Seitzova metoda

Pro alkalické kovy s jedním valenčním elektronem jsou vlnové funkce elektronu v krystalu podobné ato-
márním funkcím volného atomu. Energetickou závislost uvažujeme jako v modelu téměř volných elektronů.
Vlnové funkce ale musí respektovat hromadění náboje v blízkosti iontů, stejně tak jako je tomu u ato-
márních vlnových funkcí. To je rozdíl proti rovinným vlnám volných elektronů, které nejsou v prostoru
nikde lokalizované. Zapíšeme si Schrödingerovu rovnici pro Blochovu vlnovou funkci(

p2

2m
+ U(r⃗)

)
eık⃗·r⃗uk⃗(r⃗) = E(k⃗) eık⃗·r⃗uk⃗(r⃗). (10.14)

Pokud provedeme derivace exponenciely (p = −ıℏ∇), získáme Schrödingerovu rovnici pro uk⃗(r⃗)(
(p+ ℏk⃗)2

2m
+ U(r⃗)

)
uk⃗(r⃗) = E(k⃗)uk⃗(r⃗). (10.15)

Ve středu BZ (bod Γ, k⃗ = 0) je řešením ψ0 = u0(r⃗). Tato funkce je periodická s periodou mřížky a
blízko atomů bude mít charakter atomárních vlnových funkcí. Je mnohem snazší najít tvar funkce u0(r⃗),
která je řešením rovnice (

p2

2m
+ U(r⃗)

)
u0(r⃗) = E0u0(r⃗). (10.16)

Energii v celé BZ pak aproximujeme výrazem E0 + (ℏ2k2/2m).

Důležitou předností této metody je to, že Wigner a Seitz vytvořili jednoduchý a poměrně přesný
způsob nalezení funkce u0(r⃗). Například, pro 3s funkci elektronu v kovu sodíku je funkce eık⃗·r⃗u0(r⃗) ve
většině objemu prakticky shodná s rovinnou vlnou. Pouze v blízkosti atomů vzroste hodnota funkce a
začne oscilovat.

Kohezní energie sodíku

Při vzniku kovu z jednotlivých atomů dojde k rozšíření energetických hladin na pásy. Díky tomu, že se
tento pás celkově posouvá k nižším energiím, a díky tomu, že valenční pás kovů, jako je sodík, je zaplněn
jen z části, je střední energie valenčních elektronů nižší než energetická hladina volného atomu. Tento
rozdíl udává kohezní energii kovu.

Parametry krystalové struktury jsme probírali v kap. 1, detaily pro sodík lze vyčíst z (PO. 1.1:
Periodická tabulka). Sodík krystalizuje v BCC struktuře. Na začátku kapitoly Kovy (str. 100) jsme
si odvodili jeho Wignerův poloměr, rs = 2.08 Å. Z krystalového uspořádání odvodíme, že polovina
vzdálenosti nejbližších sousedů činí 1.86 Å.

Fermiho energii pro sodík pak spočítáme podle vztahu uvedeného v tab. 7.1, EF = 3.1 eV. V příkladu
7.4 jsme si odvodili, že střední kinetická energie volných elektronů je 3

5EF = 1.9 eV. Všechny výše uvedené
energetické vztahy jsou pro přehlednost graficky znázorněny na obr. 10.8. Obrázek nám pomůže správně
zformulovat energetickou bilanci pro kohezní energii sodíku,

Ekoh
∼= (−5.2− (−8.2 + 1.9)) eV = 1.1 eV.

0 eV

-5.15 eV

-6.3 eV

-8.2 eV

-10 eV

Energie

Ekoh

atom kov

EF

E(k)

Obr. 10.8: Grafické znázornění výpočtu
kohezní energie krystalu sodíku. Vlevo
je červeně zobrazen potenciál atomu so-
díku a modře vlnová funkce a energie
valenčního elektronu. Vpravo je modře
energetický pás kovu se zaplněním po
Fermiho mez. Kohezní energie je rozdí-
lem energie atomární hladiny a střední
energie v pásu krystalu kovu.
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10.3.3 Další metody výpočtu pásové struktury

Zmínili jsme zde pouze několik metod výpočtu pásové struktury. Různých výpočetních metod však vzniklo
značně mnoho, a proto zde uvedeme pouze krátký výčet. Podrobný výklad těchto metod lze nalézt
v literatuře např. v [7].

Jaké metody výpočtu je vhodné použít třeba pro krystal kovu železa, který má elektronovou strukturu
18Ar:4s23d6? Elektrony ve 3d orbitalech popíše metoda těsné vazby, 4s elektrony započteme pomocí
modelu téměř volných elektronů. Osmnáct elektronů v hlubokých slupkách můžeme popsat přesnými
atomárními vlnovými funkcemi. Pro zpřesnění výpočtů můžeme nyní požadovat, aby vlnové funkce vyšších
stavů byly kolmé na hluboké atomární stavy. Takto přejdeme k aproximaci OPW, kdy požadujeme, aby
Blochovy stavy ve vodivostním pásu byly zapsány rozvojem do ortogonalizovaných rovinných vln. Na
tuto metodu navazuje metoda Pseudopotenciálu, která započítává vyšší řády oprav.

Muffin tin

Obr. 10.9: Plech na pečení mufin (vlevo) připomíná tvar potenciálu s konstantní hodnotou v oblasti mezi
atomy. Mufiny po upečení (vpravo) nechte vychladnout.

Reálný potenciál krystalu můžeme také aproximovat atomárním potenciálem v oblasti blízko atomár-
ních jader (koule). V oblasti mezi těmito koulemi pak potenciál nahradíme konstantou. Toto přiblížení se
označuje jakoMuffin-tin potenciál, což je dané podobností tohoto potenciálu s formou na pečení mu-
fin, jak ukazuje obr. 10.9. Metoda APW používá pro navazování řešení na kulových rozhraních přechod
od rovinných vln ke kulovým vlnám, které jsou řešením sféricky symetrického problému. K nejsložitějším
metodám patří metoda KKR, která spočívá v řešení Schrödingerovy rovnice pro krystalový potenciál
metodou Greenových funkcí.

Seznam zmiňovaných metod

Na závěr této sekce zopakujme všechny zmiňované výpočetní metody seřazené podle náročnosti:
■ Metoda téměř volných elektronů,

■ LCAO – lineární kombinace atomárních orbitalů (metoda těsné vazby),

■ OPW – Orthogonal Plane Wave,

■ Metoda Pseudopotenciálu,

■ Muffin-tin potenciál,

■ APW – Augmented Plane Wave,

■ KKR – vyžívá Greenovy funkce.

10.4 Experimentální metody zkoumání Fermiho ploch

Jak jsme si odvozovali v předešlých kapitolách, pro studium vlastností systému elektronů je výhodné
použít statické magnetické pole. Protože magnetické pole vyvolává sílu kolmou na směr rychlosti nabité
částice, nemůže jí předávat energii a tato částice se tedy pohybuje po ekvienergetické (Fermiho) ploše. Na
tomto základě se vyvinulo hned několik experimentálních metod mapování tvaru Fermiho plochy. Mezi
ně patří následující měření:
■ oscilace magnetorezistence (Šubnikovův-de Haasův jev),

■ oscilace magnetizace (de Haasův-van Alphenův jev),

■ oscilace délky vzorku,

161



■ magnetoakustické geometrické rezonance,

■ oscilace teploty vzorku,

■ oscilace Peltierova jevu a termoelektrického napětí,

■ oscilace teplotní vodivosti.

Všechny tyto jevy vyžadují detailní teoretický rozbor, z kterého se získá charakteristická periodičnost
vlastností kovů (ale i polovodičů) v homogenním magnetickém poli B⃗. Tyto vlastnosti jsou periodické
s periodou 1/B.

10.4.1 Kvantování v magnetickém poli – Landauovy hladiny

Pro popis stavu dané částice je potřeba zadat kanonicky sdružené veličiny, kterými jsou pro volnou částici
souřadnice a hybnost (impulz). V magnetickém poli B⃗ je k polohovému vektoru elektronu r⃗ kanonicky
sdružen impulz (ℏk⃗ + eA⃗) = (−ıℏ∇ + eA⃗). Náboj elektronu (−e) je zodpovědný za kladné znaménko
u druhého členu. Vektor A⃗ označuje vektorový potenciál, který musí splňovat podmínku B⃗ = ∇ × A⃗.
Zvolme si orientaci magnetického pole B⃗ = (0, 0, B). Volba vektorového potenciálu není jednoznačná.
Výběr vektorového potenciálu ve tvaru A⃗ = (0, Bx, 0) se nazývá Landauovo cejchování, viz obr. 10.10.
Schrödingerovu rovnici pro volný elektron v magnetickém poli zapíšeme jako modifikaci vztahu (7.6)

(−ıℏ∇+ eA⃗)2

2m
ψ(r⃗) =

1

2m

[(
−ıℏ ∂

∂x

)2

+

(
−ıℏ ∂

∂y
+ eBx

)2

+

(
−ıℏ ∂

∂z

)2
]
ψ(r⃗) = Eψ(r⃗). (10.17)

Proti volnému elektronu nám přibyl jeden člen závislý na souřadnici x. Proto budeme hledat řešení ve
tvaru

ψ(r⃗) = φ(x) eı(kyy+kzz). (10.18)

Tuto vlnovou funkci dosadíme do Schrödingerovy rovnice a provedeme derivace podle souřadnic y a z,
čímž získáme členy ℏky a ℏky,[

− ℏ2

2m

(
d2

dx2

)
+

1

2m
(ℏky + eBx)

2
+

ℏ2k2z
2m

]
φ(x) = Eφ(x). (10.19)

Tuto rovnici upravíme následovně[
− ℏ2

2m

(
d2

dx2

)
+

1

2
m

(
eB

m

)2(ℏky
eB

+ x

)2
]
φ(x) =

(
E − ℏ2k2z

2m

)
φ(x),

a provedeme substituce za červené členy. Touto transformujeme Schrödingerovu rovnici na tvar rovnice
řešené pro harmonický oscilátor posunutý v souřadnici x o hodnotu x0,[

− ℏ2

2m

(
d2

dx2

)
+

1

2
mω2

c (x0 + x)
2

]
φ(x) = Exyφ(x), (10.20)

Obr. 10.10: Volba směru (cejchování)
vektorového potenciálu A⃗ pro popis
vlivu magnetického pole B⃗. Nejedno-
značnost volby A⃗ znamená, že není
důležitá konkrétní hodnota v daném
místě ale symetrie rozložení potenciálu
v prostoru, neboť magnetické pole se
počítá jako rotace vektorového poten-
ciálu.

x

y
B

A = (0, Bx, 0)

A
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kde ωc = eB/m je obvyklá cyklotronová frekvence, v posunu souřadnice x0 = ℏky/eB se skrývá závislost
na y-ové souřadnici. Celkovou energii, E = Exy+ℏ2k2z/2m, jsme rozdělili na kvantovanou složku v rovině
xy a volný pohyb ve směru z, t.j. ve směru magnetického pole.

U harmonického oscilátoru dochází k periodickému přelévání energie mezi kinetickou a potenciální.
Při cyklotronovém pohybu v magnetickém poli dochází k přelévání kinetické energie mezi x-ovou a y-
ovou složkou. Matematicky je to ale stejné a protože řešení rovnice harmonického oscilátoru je známé
[11], můžeme rovnou zapsat výsledný vztah pro kvantování energie harmonického oscilátoru

Exy =

(
n+

1

2

)
ℏωc = (2n+ 1)µBB, µB =

eℏ
2m

, (10.21)

kde jsme použili výraz pro Bohrův magneton µB. Kvantové číslo n označuje pořadové číslo hladiny
harmonického oscilátoru a v tomto kontextu se nazývá číslem Landauovy hladiny5, n = 0, 1, . . . .

0.0
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Obr. 10.11: Znázornění vývoje Landau-
ových hladin při zvyšování magnetické
indukce od 0 T do hodnoty B1. Teč-
kovaně jsou označeny příklady několika
magnetických polí, kdy je nejvyšší hla-
dina zcela obsazena.

Obrázek 10.11 ukazuje typický vějíř Landauových energetických hladin. Magnetické pole je znor-
mované na hodnotu B1, při takto silném magnetickém poli je obsazena pouze jedna jediná Landauova
hladina s kvantovým číslem n = 0. Pro slabší pole se začne obsazovat vyšší hladina s číslem n = 1. Ze
vztahu (10.21) plyne podmínka B1 = EF/2µB.

Vlnové funkce stavů na jednotlivých hladinách mají tvar

φn(x) =
1√

2nn!λB
√
π

e−(x−x0)
2/2λ2

BHn

(
x− x0
λB

)
, λB =

√
ℏ

mωc
=

√
ℏ
eB

, (10.22)

kde prostorové souřadnice se škálují s magnetickou délkou λB , která udává poloměr nejmenší orbity, po
které se elektron pohybuje. Hn označuje Hermitův polynom n-tého řádu. Obrázek 10.12 ukazuje, jak se
po zapnutí magnetického pole zformují Landauovy hladiny v k-prostoru, viz též př. 10.6.

Celé řešení Schrödingerovy rovnice pro volný elektron v magnetickém poli by se dalo stejným způso-
bem zopakovat i pro model téměř volných elektronů. Jak ale víme, slabý periodický potenciál se dá pro
stavy na hraně pásu započítat pouhým zavedením efektivní hmotnosti. V průběhu výše uvedeného řešení
by se pouze provedla všude substituce m→ m∗.

10.4.2 Cyklotronvý pohyb – integrál v čase

Při pohybu elektronu v magnetickém poli B⃗ platí pohybová rovnice (10.3). Dále použijeme vztah pro
výpočet rychlosti elektronu při pohybu v energetickém pásu uvedený v témže rámečku. Vzájemnou kom-
binací obou můžeme spočítat skalární součin

∇k⃗E ·
dk⃗

dt
= 0 ⇒ ∂E

∂kx

∂kx
∂t

+
∂E

∂ky

∂ky
∂t

+
∂E

∂kz

∂kz
∂t

=
dE

dt
= 0.

První výraz lze interpretovat tak, že změna vektoru k⃗ je vždy kolmo ke gradientu energie, což vede na
rozpis diferenciálu vpravo, který říká, že energie elektronu se s časem nemění. Jak bylo již zmíněno,
měřením v magnetickém poli nutíme elektrony obíhat po ekvienergetické ploše po křivce, která je kolmá
na magnetické pole. Děláme tedy sondu Fermiho plochy pomocí řezů kolmých na magnetické pole B⃗.
5Lev Davidovič Landau [Lev Davidoviq Landau ] je nositelem Nobelovy ceny za fyziku z roku 1962.
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Obr. 10.12: a) Krystal bez magnetického pole, zelené tečky označují povolené stavy vektoru k⃗, které jsou
dané Bornovými-von Karmanovými okrajovými podmínkami. b) Krystal v magnetickém poli, v tomto
případě pro popis elektronových stavů používáme kvantové číslo n – číslo Landauovy hladiny. V obrázku
je znázorněno n u prvních šesti hladin. Degenerace každé hladiny je v zobrazeném případě rovna D = 32.
Úhlová poloha zobrazených stavů na Landauově hladině není relevantní.

Uvažujme pohyb elektronu v časovém intervalu∆t = t2−t1, při kterém přejde vlnový vektor z hodnoty
k⃗1 na k⃗2.

∆t = t2 − t1 =

t2∫
t1

dt =

k⃗2∫
k⃗1

dk

|dk⃗dt |
=

ℏ2

eB

k⃗2∫
k⃗1

dk

|∇k⃗E|
. (10.23)

Rozeberme význam ∇k⃗E. Uvažujme plochu konstantní energie E a sousední plochu s energií E + δE.

Nechť bod k⃗ na ploše E je spojen vektorem δk⃗ s bodem na ploše E + δE, viz obr. 10.13. Pro malé δE je
gradient kolmý na ekvienergetické plochy a platí

δE = ∇k⃗E · δk⃗ = |∇k⃗E|δk.

Tento vztah dosadíme do jmenovatele v integrálu ve vztahu (10.23) a získáme

∆t = t2 − t1 =
ℏ2

eB

1

δE

k⃗2∫
k⃗1

δkdk. (10.24)

Teď již jen sjednotíme body k1 a k2 a budeme tedy uvažovat periodický pohyb po uzavřené orbitě. Čas
∆t bude tedy odpovídat periodě oběhu a můžeme definovat úhlovou frekvenci tohoto pohybu jako

ωc =
eB

m∗
c

=
2π

∆t
⇒ m∗

c =
eB

2π
∆t =

eB

ωc
.

V magnetickém poli bude elektron obíhat po ekvienergetické orbitě kolmo na vektor B⃗. Určením frekvence
tohoto pohybu zjistíme efektivní cyklotronovou hmotnost m∗

c v tomto místě, která je určená křivostí

Obr. 10.13: Geometrická interpretace v textu použitých parame-
trů. Rovina nákresu je kolmá na magnetické pole. Červeně je
zakreslena orbita s energií E a modře orbita s energií E + δE.
Růžová plocha označuje rozdílovou plochu mezi orbitami. Zelená
část představuje integrál mezi body k⃗1 a k⃗2 podle vztahu (10.24)
a je úměrný rozdílu času (t2 − t1).

k E

E + E

E

k

k

k

A(E+ E)-A(E) B
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energetické závislosti v tomto místě k-prostoru. Dosazením (10.24) a integrací po uzavřené orbitě získáme

m∗
c =

ℏ2

2π

∂A(E, k∥)

∂E
.

Veličina A(E, k∥) určuje velikost orbity elektronu na ekvienergetické ploše s danou velikostí paralelní
složky k∥, která je projekcí vlnového vektoru do směru magnetického pole. Derivace této plochy popisuje,
jak roste velikost plochy s energií E při diferenciálním zvýšení energie. Je zřejmé, že pokud je ∂A/∂E > 0,
plocha orbity s energií roste, jedná se o elektronovou orbitu. Naopak pokud ∂A/∂E < 0, plocha orbity
se vzrůstem energie klesá, jedná se o děrovou orbitu (obr. 10.14).

kx

E

kx

ky B
Obr. 10.14: Nákres děrové orbity
(růžová) a elektronové orbity (tyrky-
sová) v energetickém schématu (vlevo)
a v k-prostoru (vpravo). Čerchovaná
čára představuje Fermiho mez. Směr
obíhání elektronů a děr v důsledku
magnetického pole je naznačen šipkou.
Srovnejte s obr. 10.5.

10.4.3 Kvantování v magnetickém poli – kvantování momentu hybnosti

Pro periodický pohyb elektronu po uzavřené orbitě musí platit Bohrova-Sommerfeldova kvantovací pod-
mínka na moment hybnosti ve tvaru ∮

p⃗ · dr⃗ = 2πℏ
(
n+

1

2

)
, (10.25)

kde n je kvantové číslo označující Landauovu hladinu a fázová oprava velikosti 1
2 je daná kvadratic-

kou disperzní závislostí energie na k⃗ pro volný elektron. Právě tato hodnota je potřeba též pro soulad
s odvozením vedoucím na energii Landauových hladin (10.21).

Nyní budeme uvažovat obecnou orbitu pro elektron nebo pro díru s nábojem q̃. Za kanonickou hybnost
dosadíme p⃗ = ℏk⃗+ q̃A⃗. Pro odvozování budeme ještě potřebovat vztah mezi vektory k⃗ a r⃗, který získáme
integrací pohybové rovnice (9.7) následovně:

ℏ
dk⃗

dt
= q̃

dr⃗

dt
× B⃗ ⇒ ℏk⃗ = q̃ r⃗ × B⃗. (10.26)

Pomocí těchto vztahů budeme upravovat integrál momentu hybnosti na levé straně (10.25):∮
p⃗ · dr⃗ =

∮
ℏk⃗ · dr⃗ + q̃

∮
A⃗ · dr⃗ (10.27)

= q̃

∮
r⃗ × B⃗ · dr⃗ + q̃

∫
∇× A⃗ · dS⃗ (10.28)

=−q̃B⃗ ·
∮
r⃗ × dr⃗ + q̃B⃗ ·

∫
dS⃗ (10.29)

=−2q̃B⃗ · S⃗ + q̃B⃗ · S⃗ = −q̃B⃗ · S⃗ = −q̃Φ, (10.30)

kde Φ označuje magnetický tok plochou, kterou ohraničuje dráha částice v reálném prostoru. Pro úpravu
prvního integrálu jsme použili geometrický vztah, který udává, že dráhový integrál∣∣∣∣∮ r⃗ × dr⃗

∣∣∣∣ = |2S⃗| = 2S,

je roven dvojnásobku plochy uzavřené křivkou, po níž se integruje. Pro úpravu druhého integrálu se
využila Stokesova věta o převodu křivkového integrálu na plošný integrál z rotace. Výsledek dosadíme do
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kvantovací podmínky (10.25) a dostaneme podmínku kvantování magnetického toku orbitou opisovanou
elektronem (q̃ = −e) v magnetickém poli

Φn = BSn =
2πℏ
e

(
n+

1

2

)
⇒ Sn =

2πℏ
eB

(
n+

1

2

)
. (10.31)

Velikost konstanty (2πℏ/e) je 4.14× 10−15 Tm2. Je důležité si uvědomit, že velikost cyklotronové orbity
se mění s magnetickým polem právě tak, aby magnetický tok orbitou Φn nezávisel na magnetickém poli.

Využijeme opět (10.26) pro výpočet plochy orbity v k-prostoru

An =

(
eB

ℏ

)2

Sn =
2πeB

ℏ

(
n+

1

2

)
. (10.32)

Při zvětšení kvantového čísla n o 1 se zvětší plocha orbity v reciprokém prostoru o ∆A,

∆A = An+1 −An =
2πeB

ℏ
. (10.33)

Při zapnutí magnetického pole není již vektor k⃗ dobrým kvantovým číslem. Dříve homogenně rozložené
stavy v k-prostoru se shromáždí na Landauových hladinách. Díky tomu, že plocha ∆A je konstantní, je
počet stavů na všech Landauových hladinách stejný. Tato hodnota se nazývá degenerací hladiny a můžeme
ji odvodit následovně

D =
∆A

(∆k)2
=

2πeB

ℏ

(
L

2π

)2

= ρB, kde ρ =
eL2

2πℏ
, (10.34)

kde L značí délku krystalu, jehož průřez kolmo na magnetické pole je L2. Z tohoto vztahu lze odvodit
velikost magnetického pole, při němž bude N elektrony kovu obsazeno přesně s Landauových hladin. To
znamená, že jsou zcela obsazeny Landauovy hladiny s kvantovým číslem: n = 0, 1, . . . , s− 1.

D(Bs)s = ρBss = N = ρB1.

Při nulovém magnetickém poli jsou v kovu obsazeny všechny stavy v kouli ohraničené Fermiho mezí. Pro
magnetické pole o velikosti B1, které se nazývá fundamentální pole, se stavy všech těchto N elektronů
přesunou na jedinou Landauovu hladinu. (PO. 10.1: Obsazení Landauových hladin).

Ze znalosti velikosti plochy orbity An v k-prostoru můžeme spočítat příčný vlnový vektor z podmínky
An = πk2xy. Výsledek můžeme dosadit do vztahu pro energii a získáme

E =
ℏ2k2z
2m∗ +

ℏ2k2xy
2m∗ = Ez + ℏω

(
n+

1

2

)
. (10.35)

Tento výsledek přesně souhlasí s kvantováním do Landauových hladin podle vztahu (10.21). Tyto 3D
energetické plochy tvoří válce v k-prostoru, jak ukazuje obr. 10.15.

Obr. 10.15: Znázornění 3D Landauových
energetických hladin v k-prostoru. Index n
značí číslo hladiny podle (10.35), zeleně je za-
kreslena poloha Fermiho meze pro případ bez
magnetického pole.

kF

B kz

n = 0

n = 1

n = 2

n = 3
kx

ky
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10.4.4 Extremální orbita

V této sekci jsme probíraly několik pohledů na vliv, který má statické magnetické pole na chování elek-
tronů a děr v pásové struktuře kovu nebo polovodiče. Souhrnně lze říci toto např. pro elektrony:

■ Energie pohybu elektronu v rovině kolmo na magnetické pole je kvantovaná do Landauových hladin
(10.21) s kvantovým číslem n = 0, 1, . . ..

■ Kvantum energie pohybu v rovině je ℏωc. Pro přechod mezi hladinami je potřeba dodat elektronu
toto kvantum energie.

■ Na různých Landauových hladinách mají elektrony různou rychlost, ale úhlová rychlost je vždy
stejná ωc. Všechny Landauovy hladiny mají stejný počet stavů, kolik se na ně dá umístit elektronů.
Degenerace D se počítá podle (10.34).

■ Plochy orbity v k-prostoru kolmo na B⃗ jsou rovněž kvantované (podstava Landauovy trubky, viz
obr. 10.15). Přechodem na vyšší hladinu se zvětší plocha orbity vždy o konstantní hodnotu ∆A,
jejíž velikost udává (10.33).

■ Kvantováním orbit v k-prostoru dojde současně ke kvantování velikostí orbit elektronu i v reálném
prostoru. Jejich velikost Sn je úměrná Landauovu číslu.

■ Magnetický tok Φn tekoucí orbitou v reálném prostoru se kvantuje v jednotkách podílu Planc-
kovy konstanty a náboje elektronu (2πℏ/e). Velikost magnetického toku (10.31) nezávisí na poli B⃗.
Dvojnásobně pole tedy způsobí zmenšení Landauovy orbity na poloviční plochu.

■ Ve směru magnetického pole se chová elektron volně a zachovává si konstantní projekci vlnového
vektoru k∥.

Pozorný čtenář si možná již položil choulostivou otázku. Pro obecnou 3D Fermiho plochu budou mít
její řezy v různých bodech podél směru B⃗ různou plochu a tedy i různou periodu oscilací. Celková odezva
látky bude součtem příspěvků od všech částí Fermiho plochy. Bude možné takto komplexní signál ro-
zumně interpretovat? Naštěstí rozhodující vliv mají pouze příspěvky od extremálních orbit, neboť ostatní
příspěvky se díky rozdílům ve fázi vzájemně vyruší. Tomu dává za pravdu i experimentální pozorování,
kdy se i u složitých Fermiho ploch pozorují ostré oscilace, ve kterých se projevuje nejvíce extremální or-
bita. Ta může být elektronová, nebo děrová. Otevřené orbity se neprojevují charakteristickými oscilacemi.
Extremální orbita v obr. 10.15 by byla kružnice o poloměru kF.
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PO. 10.1: Obsazení Landauových hladin v závislosti na magnetickém poli. U horního obrázku je
vodorovná osa B a u druhého obrázku je to 1/B. Počet elektronů je vždy N = 64, plocha pod zelenou
čarou představuje zcela obsazené hladiny, žlutě jsou zobrazeny elektrony v částečně zaplněné Landauově
hladině. Dole jsou zakresleny polohy stavů na Landauových hladinách uvnitř Fermiho koule pro čtyři

magnetická pole. Fundamentální pole má hodnotu B1 = 120 T.
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10.5 Příklady

Př. 10.1: 2D kov s čtvercovou mřížkou:
Obrázek 10.2 ukazuje geometrický způsob nalezení tvaru Fermiho plochy v jednotlivých zónách pomocí
Harissonovy konstrukce. Levou stranu tohoto obrázku jsme mohli vidět již v jedné z předešlých kapitol.
Zkuste tento obrázek najít.

Nápověda: Hledejte na obrázku v kapitole Úvod.

Př. 10.2: Poloměr 2D Fermiho plochy:
Odvoďte vztah (10.2) pro velikost Fermiho vektoru pro čtvercovou mřížku s mřížkovou konstantou a a
s elementární buňkou obsazenou n valenčními elektrony. Udělejte tabulku, ve které bude pro každé číslo
n ≤ 7 a pro každou z prvních pěti BZ uvedeno, zda je tato zóna prázdná, nebo je obsazená částečně,
nebo úplně.

Nápověda: Použijte obr. 10.3.

Př. 10.3: Poloměr Landauovy hladiny:
Využijte vztahy (10.32), (10.34) a obr. 10.12. Odvoďte vztah pro poloměr n-té Landauovy hladiny kxy,n,
pokud znáte degeneraci Landauových hladin D a vzdálenost stavů v k-prostoru bez magnetického pole
∆k. Pro srovnání s obr. 10.12 dosaďte (D = 32).

Řešení:

kxy,n = ∆k

√
D

π

√
n+

1

2
.

Př. 10.4: Brillouinovy zóny obdélníkové mřížky:
Načrtněte první dvě Brillouinovy zóny 2D obdélníkové mřížky s poměrem mřížkových vektorů b = 3a.
Kittel, str. 284, př. 1

Př. 10.5: Brillouinovy zóny 2D kovu:
Uvažujte 2D kov se čtvercovou mřížkou, který má dva vodivostní elektrony na atom. Načrtněte Fermiho
plochu v přiblížení téměř volných elektronů. Využijte obr. 10.3. Kittel, str. 285, př. 4

Př. 10.6: Obsazení Landauových hladin:
Využijte vztahy od (10.32) až po (10.34) a s využitím vhodného počítačového programu spočítejte počet
stavů, které geometricky spadají na jednotlivé Landauovy hladiny s D = 32 podle obr. 10.16.

B

10: 24
9: 32
8: 40
7: 32
6: 28
5: 32
4: 32
3: 32
2: 28
1: 32
0: 37

0

1
2

3
4

5
678

D = 32

Obr. 10.16: Výpočet obsazení jednotlivých Lan-
dauových hladin stavy z barevných mezikruží.
Nápověda: Pokud zvolíme ∆k = 1, potom bude
An = D(n + 1/2). Takže třeba červená plo-
cha obsahuje původně 37 povolených stavů.
Poloměry barevných ploch najdeme z rovnosti
πk2xy = D(n+ 1).

Př. 10.7: Perioda oscilací v magnetickém poli pro draslík:
a) Vypočítejte periodu ∆(1/B), kterou bychom dostali pro draslík v modelu volných elektronů. Tuto
periodu mají oscilace magnetického momentu (de Haasovy-van Alphenovy) i oscilace elektrického odporu
(Šubnikovy-de Haasovy). b) Jaká plocha v reálném prostoru odpovídá ploše extremální orbity pro velikost
magnetického pole B = 1 T. Kittel, str. 285, př. 7

Řešení: b) Průměr plochy vyjde 72.6 nm.
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Kvazičástice v pevných látkách.

SPP na zeměpisné pozici: 49◦35’51.509”N, 17◦15’46.747”E.
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11.1 Zavedení formalismu kvazičástic

Kvazičásticí se ve fyzice označuje kolektivní excitace systému mnoha identických částic. Zavedením kva-
zičástice můžeme modelovat chování mikroskopicky komplikovaného systému mnoha interagujících částic
např. elektronů v pevné látce. Chování látky lze potom popsat tak, jako by obsahovala fiktivní slabě
interagující kvazičástice ve volném prostoru. Vezměme si jako příklad elektron v polovodiči. Pohyb elek-
tronu v polovodiči je velmi obtížně popsatelný, neboť je ovlivněn coulombovskými interakcemi se všemi
ostatními elektrony a jádry.

Kvazičástici elektron pohybující se v pásu polovodiče definujeme jako kolektivní stav elektronů po-
psaný pomocí Blochovy vlnové funkce. Tato kvazičástice se pohybuje jakoby bez interakcí volně v objemu
celého krystalu, ale její hmotnost je pouze zlomkem hmotnosti volného elektronu m0. Pokud přiložíme
na polovodič napětí přes elektrické kontakty, můžeme při průchodu proudu sledovat elektron na jedné
straně vstupující do polovodiče a na druhé straně elektron vystupující. Pokud by se mezi elektrodami
šířil elektron volným prostorem, měl by hmotnost m0. Pokud se ale šíří polovodičem, má hmotnost nižší,
přejít mezi kontakty je pro něj tedy snazší.
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Abychom toto vysvětlili, musíme si uvědomit, že polovodič je systém s mnoha elektrony. Elektron na
vstupu je „jinýÿ než ten na výstupu, jenže elektrony jsou nerozlišitelné elementární částice, jsou všechny
stejné. Proto ten elektron na výstupu z polovodiče je „stejnýÿ jako ten na vstupu.

Kvazičástice představuje elementární excitaci systému identických částic. Je nutné, aby byl systém
těchto částic blízký základnímu stavu a kvazičástice pak představují energii, která je v systému navíc. Je
zajímavé si uvědomit např. to, že systém elektronů v kovu má i při teplotě blízké absolutní nule (0K)
stále obrovskou energii uloženou v kinetické energii elektronů díky Pauliho vylučovacímu principu. Na
jeden kubický centimetr vychází stovky kilojoule.

11.1.1 Opakování již dříve probraných kvazičástic

Pro popis přenosu elektrického proudu v polovodiči se zavádí kvazičástice elektron a díra. Blochův elektron
popisuje dobře velmi málo obsazený vodivostní pás. Naproti tomu díra je kvazičástice, která umožňuje
velmi efektivně popsat valenční pás, který je skoro úplně obsazený. Tyto kvazičástice jsme probrali po-
drobně v kap. 9. Podle Blochova teorému je pro kvazičástice možné zavést jako dobré kvantové číslo
vlnový vektor s tím, že veličina ℏk⃗ se chová jako impulz (hybnost) této kvazičástice.

Jako další kvazičástici jsme definovali fonon pro popisu vibrací mřížky. Jedná se o elementární ex-
citaci daného vibračního módu. Díky harmonické aproximaci potenciálu atomárních jader jsme dospěli
k formulaci řešeného problému ve tvaru harmonického oscilátoru. Protože energetické hladiny jsou zde
ekvidistantní, je možné zvyšování energie vibrací mřížky pouze po kvantech, která nazýváme fonon.

Pro definici každé kvazičástice je nutné zadat tři vlastnosti:
■ disperzní závislost E(k⃗);

■ statistické chování, t.j. zda se jedná o fermiony, nebo o bosony;

■ zda je fixní počet částic, nebo je konstantní chemický potenciál.

Pro výpočty chování systému kvazičástic je umění zvolit dostatečně komplexní hamiltonián, tak aby
popsal všechny studované efekty. Ale aby byl jen tak složitý, aby byl ještě rozumně řešitelný. Při kvantovém
popisu se zavedou kreační a anihilační operátory. Využije se tedy druhé kvantování, které automaticky
započítává statistické vlastnosti, což se musí brát do úvahy, pokud je těch kvazičástic v látce více.

11.1.2 Nové kvazičástice

■ Kvazičástice plazmon popisuje kolektivní podélné oscilace plynu vodivostních elektronů. Tento efekt
je výrazný u kovů a projevuje se vznikem plazmové hrany obvykle v ultrafialové oblasti spektra.
Pro nižší frekvence a tedy celou viditelnou oblast jsou potom kovy perfektní zrcadla.

■ Kvazičástice polariton popisuje interakci fotonového a fononového systému v pevné látce. Protože
disperzní relace pro fotony a pro optické fonony v látce se protínají, můžou tyto částice vzájemně
interagovat. Vytváří tak společně novou kvazičástici.

■ Kvazičástice polaron je typická spíše pro soli. Elektron v tomto krystalu může svým elektrickým
nábojem modifikovat polohy iontů v polární mřížce. Tím se mřížka při pohybu elektronu krystalem
polarizuje, což pocítí i další elektrony. U polaronu jde tedy o elektron-fononovou interakci.

■ Exciton je kvazičástice složená z elektronu ve vodivostním pásu a díry ve valenčním pásu. Díky
coulombovské interakci záporně nabitého elektronu a kladně nabité díry může tento pár vytvořit
vázaný stav podobný atomu vodíku.

■ Velmi populární kvazičásticí jsou Cooperovy páry elektronů, které vznikají za velmi nízkých teplot,
kdy jeden elektron modifikuje mřížku a tak se vytváří energetická hladina pro druhý elektron v jeho
blízkosti. Díky mřížce tak vzniká velmi slabá virtuální přitažlivá interakce mezi elektrony. Základní
stav elektronů v supravodiči je oddělen malou energetickou mezerou od prvního excitovaného stavu.
Pokud je za nízkých teplot tepelná excitace kBT menší než šířka energetické mezery, vede tento
materiál proud bez jakéhokoliv odporu. Proto se takovému materiálu říká supravodič a pro jeho
provoz je často zapotřebí héliových teplot (teplota zkapalnění hélia, 4.2 K ≈ −269 ◦C).

■ Kvazičástice magnon popisuje šíření spinové vlny, která se šíří ve feromagnetiku.

S některými z vyjmenovaných kvazičástic se ještě setkáme v dalším výkladu této kapitoly. Podrobnější
popis těchto jevů je ale nad rámec tohoto úvodního textu.
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11.2 Interakce pevné látky s optickým polem

V předešlých kapitolách jsme probrali základní koncepty popisu pevné látky od mřížky vázaných iontů
přes volné elektrony v kovu až po pásovou strukturu polovodičů. V této části se pokusíme využít těchto
znalostí pro popis interakce optického pole s pevnou látkou. V celém skriptu striktně používáme soustavu
jednotek SI, které jsou sepsané v seznamu na konci skripta na str. 214. V celé řadě knih jsou ale optické
parametry látek popsané v soustavě CGS [2]. V učebnici „Fundamentals of Semiconductorsÿ [14] si dali
autoři Yu a Cardona tu práci, že uvádí vzorce v obou soustavách. Neocenitelná je u nich také zadní
předsádka, kde přehledně shrnuli všechny převodní vztahy. Výňatek z této jejich tabulky je přepsán na
konci skripta na str. 217.

Věnujme se tedy popisu interakce pole a látky. Vývoj klasického optického pole je přesně popsán
řešením čtyř Maxwellových rovnic

∇× E⃗ = − ∂
∂t B⃗, ∇ · B⃗ = 0,

∇× H⃗ = j⃗ + ∂
∂tD⃗, ∇ · D⃗ = ρ.

(11.1)

Zopakujme značení jednotlivých veličin, E⃗ je elektrická intenzita a D⃗ indukce, H⃗ je magnetická intenzita
a B⃗ indukce. Veličina ρ označuje koncentraci volných nábojů a jejich pohyb popisuje hustota proudu j⃗.

Pro řešení Maxwellových rovnic (11.1) je potřeba ještě zadat materiálové vztahy, které popisují odezvu
materiálu na vnější pole. Budeme se věnovat pouze nemagnetickým materiálům, takže první materiálový
vztah je triviální, B⃗ = µ0H⃗, s permeabilitou µ0 = 4π × 10−7 H/m. Druhý materiálový vztah dává do
vzájemného poměru elektrické vektory optického pole

D⃗ = ε0E⃗ + P⃗e = εε0E⃗, ⇒ P⃗e = (ε− 1)ε0E⃗, (11.2)

kde P⃗e je vektor polarizace, který představuje hustotu dipólových momentů v látce. V tomto vztahu
vystupuje relativní permitivita1, která je obecně funkcí frekvence a vlnového vektoru ε(ω, K⃗), ε0 je
permitivita vakua. Třetím materiálovým vztahem by byl Ohmův zákon pro elektrický proud, j⃗ = σ(ω)E⃗.

Pro popis některých jevů je nutné místo rozdělení nábojů a proudů na volné a vázané, které je obvyklé,
použít místo toho dělení na náboje a proudy externí a indukované. Toto dělení použijme nyní a ukažme
si, kam to vede. Pro náboje bude platit,

ρtot = ρext + ρind, ∇ · D⃗ = ρext, ε0∇ · E⃗ = ρtot.

Jak je zřejmé intenzita pole je svázaná s celkovým nábojem, kdežto externí náboj vyvolává jako odezvu
elektrickou indukci. Provedeme Fourierův rozklad obou vztahů s divergencí do prostorových frekvencí
s vlnovým vektorem K⃗, kde použijeme D⃗(K⃗) = ε0ε(K⃗)E⃗(K⃗).

∇ · D⃗ = ε0∇ ·
∑
K⃗

ε(K⃗)E⃗(K⃗) eıK⃗·r⃗ =
∑
K⃗

ρext(K⃗) eıK⃗·r⃗, (11.3)

ε0∇ · E⃗ = ε0∇ ·
∑
K⃗

E⃗(K⃗) eıK⃗·r⃗ =
∑
K⃗

ρtot(K⃗) eıK⃗·r⃗.

Protože obě rovnosti musí platit pro každou harmonickou složku, můžeme provést podíl obou rovnic po
jednotlivých složkách. Takto získáme rovnici pro výpočet permitivity,

ε(K⃗) =
ρext
ρtot

=
ρext + ρind − ρind

ρtot
= 1− ρind

ρtot
. (11.4)

11.2.1 Komplexní optické konstanty

Optické pole může s pevnou látkou interagovat mnoha různými způsoby. Různé interakce jsou typické
pro různé spektrální oblasti. Studium interakce látky s optickým polem dalo vzniknout celé řadě experi-
mentálních metod, které se dnes rutinně používají.

Na začátku kapitoly 3 jsme si říkali, že strukturu krystalu můžeme pozorovat pouze pomocí záření
v rentgenové oblasti. Viditelné světlo se může na krystalu odrazit, může projít nebo může být absorbováno.

1V některé literatuře se místo termínu permitivita používá dielektrická funkce.
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Mikroskopickou podobu látky takto nevidíme a zákon odrazu nebo lomu je dán optickými konstantami
krystalu, jako je např. index lomu. Pro šíření rovinné vlny v prostředí s absorpcí je vhodné zavést tyto
optické konstanty jako komplexní veličiny, které jsou díky disperzi závislé na frekvenci optického pole ω.

Pro značení komplexních veličin používáme vlnovku. Komplexní index lomu můžeme zapsat jako

Ñ(ω) = n(ω) + ıκ(ω). (11.5)

Klasický index lomu n(ω) je zodpovědný za snížení rychlosti šíření světla uvnitř krystalu a díky tomu
způsobí zkrácení vlnové délky uvnitř materiálu. Index extinkce κ(ω) je zodpovědný za absorpci a způso-
buje postupné snižování amplitudy procházejícího světla. Protože komplexní index lomu je analytickou
funkcí v celém spektrálním rozsahu, dá se na tuto funkci použit matematický aparát komplexní funkce
komplexní proměnné2. Ten vede na Kramersovy-Kronigovy relace, které říkají, že reálná a imaginární
část jedné komplexní proměnné jsou spolu navzájem integrálně svázané. Pokud naměřím v dostatečně
širokém spektru absorpci danou extinkcí κ(ω), pak mohu pomocí těchto relací dopočítat profil indexu
lomu n(ω).

V nemagnetickém prostředí platí mezi permitivitou a komplexním indexem lomu vztah Ñ2 = ε̃ = ε1+
ıε2. Tato rovnost zavádí komplexní permitivitu, jejíž reálná část ε1 označuje dosud používanou permitivitu
např. v (11.2). Imaginární část permitivity ε2 je svázaná s absorpcí a též s vodivostí daného materiálu.
Podobně lze definovat také komplexní funkci odrazivosti při kolmém dopadu rozšířením platnosti vztahu
platného původně pro reálné veličiny

r̃(ω) =
Ñ − 1

Ñ + 1
=
√
R(ω) eıφ(ω). (11.6)

V tomto vztahu komplexní veličina r̃(ω) označuje odrazivost pro elektrické pole a reálné veličiny R(ω) a
φ(ω) značí intenzitní odrazivost a posun fáze elektrického pole při odrazu.

Pro všechny zavedené komplexní veličiny popisující optické vlastnosti látky musí platit Kramersovy-
Kronigovy relace. Na tomto principu je založena metoda studia parametrů krystalů pomocí měření spekter
odrazivosti. Často se používá konfigurace kolmého dopadu světla na povrch krystalu.

11.3 Plazmon – reflexe na volných elektronech

Působení látky na procházející elektromagnetickou vlnu je popsané komplexní permitivitou ε̃(ω, K⃗). Její
reálné limity mají následující význam, ε(ω, 0) popisuje objemové i povrchové plazmony a je svázaná
s kolektivním pohybem volných nábojů jako celku. V následujícím odstavci ji budeme označovat jako
ε(ω). Druhá limita ε(0, K⃗) představuje elektrostatické stínění interakce elektronu s jiným elektronem,
s mřížkou nebo s příměsemi v krystalu.

11.3.1 Drudeho model volných elektronů v kovu

Příspěvek volných elektronů ke komplexnímu permitivitě a potažmo k indexu lomu se počítá pomocí Dru-
deho modelu, který předpokládá volný pohyb vodivostních elektronů v celém objemu krystalu. Budeme
předpokládat, že elektrické pole je popsané časovou harmonickou funkcí a kmitá v jednom směru. Jde
tedy o lineárně polarizované světlo. Potom nám stačí pro vyšetřování pohybu volného elektronu v kovu
pod vlivem tohoto pole pouze 1D pohybová rovnice3 pro souřadnici x ve směru pole:

mẍ+mẋ/τ = −eE.

Druhý člen na levé straně představuje tlumení s relaxační dobou τ . Ten je zodpovědný za ustálení rov-
nováhy systému, ale vede také k tomu, že látku musíme popisovat komplexní permitivitu. My tento člen
nyní zanedbáme, čímž se výpočet podstatně zjednoduší, ale na popis základního chování systému to bude
stačit.

Pro harmonické elektrické pole s frekvencí ω bude i souřadnice elektronu harmonickou funkcí času se
stejnou frekvencí, e−ıωt. Za tohoto předpokladu můžeme snadno vyjádřit druhou derivaci podle času a

2Francouzský matematik A.L. Cauchy zpracoval teorii funkce komplexní proměnné již v roce 1825.
3V literatuře se často označuje jako Drudeho-Sommerfeldův mikroskopický modelu kovu.
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takto odvodíme z pohybové rovnice vztah pro amplitudu harmonické výchylky,

−ω2mx = −eE ⇒ x =
eE

mω2
. (11.7)

Protože má každý elektron náboj −e, je dipólový moment generovaný jeho výchylkou na vzdálenost x
roven −ex. Polarizaci generovanou v jednotkovém objemu kovu můžeme získat jako dipólový moment
jednoho elektronu vynásobený koncentrací elektronů n

Pe = −nex = − ne2

mω2
E. (11.8)

Závislost permitivity na frekvenci ω můžeme odvodit dosazením do (11.2). Takto získáme vztah

ε(ω) = 1 +
Pe
ε0E

= 1−
ω2
p

ω2
, kde ω2

p =
ne2

ε0m
(11.9)

je plazmová frekvence. Pokud se v kovu rozhýbe plyn volných elektronů, bude mít tendenci kmitat právě
na této frekvenci.

Pro optické frekvence ω < ωp dochází k úplnému odrazu dopadajícího záření. V této oblasti totiž
podle (11.9) vychází ε(ω) < 0, což nedovoluje šíření optického pole látkou. Vezmeme-li si jako typický
příklad alkalické kovy, můžeme z koncentrace elektronů spočítat plazmovou frekvenci a plazmovou vlno-
vou délku, která je uvedená v tab. 11.1. Graficky je zde znázorněna generace plazmonů v kovové fólii.

Tab. 11.1: Vlevo – koncentrace elektronů, plazmová frekvence a odpovídající plazmová vl-
nová délka pro alkalické kovy. Vpravo – grafické znázornění generace plazmonů v kovové
vrstvě při nepružném rozptylu elektronů.

Prvek Li Na K Rb
n [1022 cm−3] 4.70 2.65 1.40 1.15
ωp [1015 s−1] 12.23 9.18 6.68 6.05
λp [nm] 154 205 282 311
ℏωp [eV] 8.05 6.04 4.39 3.98

dopadající elektron

rozptýlený elektron

plazmon

Pro správný popis chování celého krystalu musíme kromě elektronů započíst také mřížku. Permitivitu
mřížky v oblasti nad plazmovou hranou můžeme obvykle považovat za konstantu. Pro kovový krystal
budeme tedy pouze modifikovat vztah (11.9) tím, že k němu přičteme vhodnou konstantu následovně:

ε(ω) = ε(∞)−
ω2
p

ω2
= ε(∞)

[
1−

ω2
p

ε(∞)ω2

]
. (11.10)

Po této úpravě je zřejmé, že se plazmová frekvence posune na hodnotu ωp = ωp/
√
ε(∞), jak ukazuje

obr. 11.1.
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Obr. 11.1: Červená čára je permitivita
spočítaná pro elektrony podle vztahů
(11.9), zelená čára je permitivita spočí-
taná pro celý kovový krystal podle
(11.10) s hodnotou ε(∞) = 3. Žlutě je
zobrazena oblast záporné permitivity,
světlo s touto frekvencí se nemůže ma-
teriálem šířit a daný kov se chová jako
perfektní zrcadlo.

Je zajímavé že Drudeho model, který předpovídá odraz viditelného světla na kovu se dá analogicky
použít i na odraz rádiových vln od ionosféry, neboť díky volným elektronům v ionosféře je permitivita
této vrstvy pro rádiové vlny záporná.

Platnost Drudeho modelu je omezena do frekvencí, na kterých se začnou projevovat mezipásové
optické přechody a začne stoupat absorpce. To je typické pro zlato, které díky tomu získává svou charak-
teristickou barvu (PO. 11.1: Experimentální permitivita kovů).

11.3.2 Řešení vlnové rovnice

Pro popis optického pole v látce lze z Maxwellových rovnic (11.1) odvodit vlnovou rovnici. Ta má pro
elektrické pole tvar

ε
∂2E⃗

∂t2
= c2△E⃗.

Předpokládáme-li řešení ve tvaru rovinné vlny, E⃗ ∝ eı(k⃗·r⃗−ωt), dostaneme disperzní relaci pro elektro-
magnetické pole v krystalu kovu

ε(ω, k⃗)ω2 = c2k2 (11.11)

Tato relace nám umožňuje spočítat fázovou rychlost a index lomu nopt

vf ≡
ω

k
=

c√
ε(ω, k⃗)

⇒ nopt =

√
ε(ω, k⃗). (11.12)

Disperzní relaci (11.11) můžeme upravit dosazením permitivity z (11.10) následovně

ε(∞)ω2 = c2k2 + ω2
p ⇒ ω(k)2 =

c2k2

ε(∞)
+ ω2

p. (11.13)

Grupovou rychlost pro šíření energie optického pole bychom dostali derivací této závislosti, vg ≡ dω/dk.
Je snadné ověřit, že grupová rychlost bude vždy menší než rychlost fázová, viz obr. 11.2.

Nyní můžeme shrnout optické vlastnosti kovu v různých frekvenčních oblastech:

■ Pro ω < ωp je permitivita záporná a vlnový vektor bude imaginární. Žlutá oblast v obr. 11.1. Vlna
se bude v materiálu tlumit s charakteristickou délkou 1/|k|.

■ Pro ω = ωp je permitivita nulová. Pouze pro tuto frekvenci jsou možné podélné oscilace plazmatu.

■ Pro ω > ωp je permitivita kladná a vlna se šíří krystalem s fázovou rychlostí podle (11.12).
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Obr. 11.2: Červená čára představuje
disperzní relaci pro příčnou elektromagne-
tickou vlnu v plazmatu podle (11.13). Gru-
pová rychlost je směrnice této křivky a ni-
kde nepřesahuje rychlost světla ve vakuu.
Disperzní závislost se limitně blíží k modře
zakreslené ose.

11.3.3 Plazmony

Kvazičástice plazmon představuje kvantum kolektivních podélných oscilací plynu volných elektronů. Jak
jsme si ukázali, k těmto oscilacím může docházet pouze na plazmové frekvenci ωp. Plazmon se může
ve vrstvě kovu vygenerovat průchodem nebo odrazem elektronu s energií typicky 1–10 keV. Při vzniku
několika plazmonů předá tento rychlý elektron kovové vrstvě energii, která je celočíselným násobkem
energetického kvanta ℏωp. Energetické spektrum rychlých elektronů po průchodu vrstvou kovu bude
vykazovat oscilace odpovídající násobkům energie plazmonu.

Experiment ale ukazuje, že se ve spektru energetických ztrát elektronů ukazují dvojí oscilace. Oscilace
s energií ℏωp odpovídají objemovým plazmonům, za druhé oscilace s nižší energií (ℏωp/

√
2) jsou zodpo-

vědné povrchové plazmony. Geometrický faktor odmocnina z jedné poloviny vychází z toho, že povrch je
rovina, která odděluje polovinu prostoru s volnými elektrony od druhého poloprostoru bez jakýchkoliv
nábojů. Na konec ještě uveďme, že plazmon se může vygenerovat i při odrazu fotonu na kovové vrstvě.

11.3.4 Elektrostatické stínění volnými elektrony

Elektrické pole kladně nabytých iontů klesá se vzdáleností r v krystalu kovu rychleji než podle stan-
dardního Coulombova zákona jako 1/r. Je to dané tím, že volné elektrony se vlivem pole přeuspořádají
tak, aby elektrické pole efektivněji odstínily. Toto stínění lze popsat tím, že statická permitivita ε(0, K⃗)
je funkcí prostorové frekvence. Označme střední hustotu náboje elektronů −n0e, které odpovídá pozadí
kladně nabitých iontů s koncentrací +n0e. V případě výchylky z rovnováhy můžem uvažovat harmonickou
stojatou vlnu ve směru osy x. Pozitivní náboj bude možné zapsat jako

ρ+(x) = n0e+ ρext(K) sinKx.

ρext(K) představuje amplitudu harmonického zvlnění náboje s prostorovou frekvencí K. To vytvoří vnější
elektrické pole, které bude působit na plyn volných elektronů.

Vnější elektrické pole dostaneme z hustoty náboje řešením Poissonovy rovnice, △φ = −ρ/ε0. Střední
hodnoty kladného a záporného náboje se vzájemně odečtou a bude platit,

φ = φext(K) sinKx, ρ = ρext(K) sinKx.

Z Poissonovy rovnice pak plyne
K2φext(K) = ρext(K)/ε0. (11.14)

Volné elektrony bude ovlivňovat jak tento externí potenciál, tak i indukovaný potenciál, který vytváří
samy elektrony. Celkový potenciál i celkový náboj získáme jako prostý součet externího a indukovaného.
Výsledkem řešení Poissonovy rovnice bude tedy analogický vztah,

K2φ(K) = ρ(K)/ε0. (11.15)
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Složitější výpočet, který vyžaduje několik předpokladů včetně Thomasova-Fermiho přiblížení[1, 2],
ukazuje, že při teplotě absolutní nuly bude chemický potenciál v krystalu konstantní, daný vztahem pro
Fermiho energii systému volných elektronů (7.11).

µ =
ℏ2

2m

(
3π2n0

)2/3
.

Díky tomu lze pak dopočítat v prvním přiblížení lokální koncentraci elektronů z lokálního potenciálu,

n(x) ∼= n0 +
3

2
n0
eφ(x)

EF
⇒ ρind(K) = −3n0e

2

2EF
φ(K). (11.16)

S využitím řešení Poisonovy rovnice (11.15) a vztahu (11.4) získáme finální vztah,

ε(K⃗) = 1− ρind
ρtot

= 1 +
k2s
K2

. (11.17)

Hodnota 1/ks je Thomasova-Fermiho stínící délka, kterou lze vypočítat různým způsobem. Uvedeme
několik možností.

k2s =
3

2

n0e
2

ε0EF
=
e2

ε0
D(EF) =

4

aB

3

√
3n0
π
, (11.18)

kde EF je Fermiho energie, D(EF) je hustota stavů na Fermiho energii a aB je Bohrův poloměr. Hodnoty
stínící délky můžeme spočítat třeba z koncentrace volných elektronů, kterou lze určit přímo z krystalové
struktury. Jako příklad je vhodné si vypočítat stínící délku např. pro měď, pro kterou vyjde 0.55 Å. Tento
úkol řeší příklad 11.1.

Odvodili jsme dva limitní výrazy pro permitivitu elektronového plynu,

ε(0,K) = 1 +
k2s
K2

; ε(ω, 0) = 1−
ω2
p

ω2
.

Je patrné, že limita ε(0,K) pro K → 0 je jiná než limita ε(ω, 0) pro ω → 0. V blízkosti počátku v rovině
ω–K se musí s permitivitou zacházet velice opatrně.

11.4 Polariton – interakce světla s krystalovou mřížkou

Nyní popíšeme interakci fotonového a fononového systému v pevné látce. Protože disperzní relace pro fo-
tony a pro optické fonony v látce se protínají, můžou tyto částice vzájemně interagovat. V místě průsečíku
je pro vzájemnou interakci možné splnit současně zákon zachování energie i hybnosti. Kvantum vázaných
polí (fotonového a fononového) se označuje polariton. Pro optické pole využijeme lineární disperzní zákon
(11.11), který upravíme dosazením elektrického materiálového vztahu (11.2) následovně

c2k2ε0E︸ ︷︷ ︸ = ω2εε0E = ω2D = ω2ε0E + ω2Pe︸ ︷︷ ︸,
Eε0(c

2k2 − ω2) = ω2Pe. (11.19)

V místě průsečíku mají obě pole stejnou frekvenci ω a vlnový vektor k⃗. Řešíme 1D případ, kdy uvažujeme
jenom jednu složku intenzity elektrického pole E a polarizace Pe.

V látce budeme řešit kmity odpovídající optickému fononu s frekvencí ωT, která je pro všechny malé
vlnové vektory konstantní, t.j. bez disperze. Polarizace v látce je úměrná posunutí kladných iontů vůči
záporným, pohybová rovnice je tedy podobná (11.7) z Drudeho modelu pro elektrony. Musíme pouze
použít správnou hmotnost jader M , náboj Q a přidat člen odpovídající harmonickému oscilátoru pro
fonony na frekvenci ωT

Mẍ+Mω2
Tx = QE.

Tento model se označuje jako Lorentzův-Drudeho. Při buzení optickým polem na frekvenci ω můžeme
předpokládat výchylky atomů na stejné frekvenci a z pohybové rovnice si vyjádříme vztah pro amplitudy

−Mω2x+Mω2
Tx = QE. (11.20)

178



Vzájemná výchylka x počtu N iontových párů v objemové jednotce, které mají náboj Q a redukovanou
hmotnost M generuje polarizaci Pe = NQx. Toto dosadíme do předchozího vztahu a dostaneme druhou
rovnici pro složky pole E a polarizace Pe z fononového systému

−ω2Pe + ω2
TPe =

NQ2

M
E. (11.21)

Fononový a fotonový systém bude interagovat v místě, kde se obě disperzní závislosti protínají. Toto
místo určíme z nulovosti determinantu obou rovnic, t.j. (11.19) pro fotony a (11.21) pro fonony,

det

∣∣∣∣∣(ω2 − c2k2) ω2

NQ2

ε0M
(ω2 − ω2

T)

∣∣∣∣∣ = 0. (11.22)

První sloupec popisuje multiplikační faktor u členu ε0E, druhý sloupec u členu Pe. Determinant vede na
řešení kořenů kvadratické rovnice v ω2

ω4 − ω2

(
c2k2 + ω2

T +
NQ2

ε0M

)
+ c2k2ω2

T = 0. (11.23)

Prozkoumejme nejprve případ k = 0. V této limitě chybí konstantní člen a existuje pouze jedno nenulové
řešení kvadratické rovnice, a to pro frekvenci

ω2
L = ω2

T +
NQ2

ε0M
. (11.24)

Toto řešení odpovídá fononu, kdežto nulové řešení ω = 0 patří fotonu. Permitivitu tohoto systému můžeme
určit z definice (11.9) dosazením (11.21) v prvním kroku a (11.24) ve druhém kroku

ε(ω) = 1 +
Pe
ε0E

= 1 +
NQ2

ε0M

(
1

ω2
T − ω2

)
=

(
ω2
L − ω2

ω2
T − ω2

)
. (11.25)

11.4.1 Disperzní vztah pro polariton

Tvar odvozeného disperzního vztahu (11.25) zajišťuje, že v oblasti frekvencí od ωT do ωL se nemůže záření
krystalem šířit, protože tu platí ε < 0. Vzniká tedy zakázaný pás optických frekvencí. Tento zakázaný pás
leží právě v rozmezí mezi příčným optickým fononem TO a podélným optickým fononem LO. Vzájemnou
interakci fotonu s fononem dostaneme obvyklým řešením kvadratické rovnice (11.23) v oblasti vzájemného
křížení.

ω2
±(k) =

1

2

(
(c2k2 + ω2

L)±
√
(c2k2 + ω2

L)
2 − 4c2k2ω2

T

)
. (11.26)

Tyto dvě disperzní závislosti jsou zakresleny červenými čarami v obr. 11.3a). Pás zakázaných frekvencí
je znázorněn žlutě a modrou čarou je vyznačen disperzní zákon pro fotony ω = noptck. Z obrázku
je zřejmé, jak se vazba mezi fotony a fonony projevuje. Mimo oblast rezonance lze disperzní křivku
označit jako fotonovou nebo fononovou. V oblasti rezonance dochází k maximálnímu míchání a ke vzniku
zakázaného pásu. Tyto závislosti se dobře shodují s experimentálním pozorováním provedeným např. na
GaP krystalu4.

Pokud budeme opět chtít započítat vliv polarizace vzniklé vzájemným posunutím iontů v mřížce a
zajistit soulad s limitou ω →∞ získanou z optických experimentů, nahradíme jedničku hodnotou ε(∞).
Tímto způsobem započítáme disperzi indexu lomu, která je vždy přítomná díky absorpci. Potom můžeme
vztah pro permitivitu přepsat na

ε(ω) = ε(∞)

(
ω2
L − ω2

ω2
T − ω2

)
.

Z tohoto posunutého vztahu potom vychází i rozdílná limita permitivity pro statické pole, ω = 0. Vzá-
jemný podíl statické a vysokofrekvenční limity ε(∞) se označuje jako Lyddaneův-Sachsův-Tellerův (LST)
vztah a jejím důsledkem je modifikace disperzního vztahu,

ε(0)

ε(∞)
=
ω2
L

ω2
T

, (11.27)

4C.H. Henry, J.J. Hopfield, „Raman scattering by polaritonsÿ, Phys. Rev. Lett. 15, 964 (1956).
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Obr. 11.3: Závislost frekvence polaritonu na vlnovém vektoru, červené čáry jsou teoretické disperzní křivky
(11.26), žlutě je znázorněn pás zakázaných frekvencí a modře disperzní relace pro foton (11.11), a) jedna
fotonová křivka, b) dvě limitní závislosti pro statickou a vysokofrekvenční permitivitu.

jak to ukazuje obr. 11.3b). Znaménka + a − označují dvě řešení kvadratické rovnice analogické k (11.26).

Někdy se LST vztah přepisuje jako ε(0) = (noptωL/ωT)
2. Využije se toho, že oblast viditelného světla

můžeme vzít jako vysokorychlostní limitu a kvadrát indexu lomu se v této oblasti rovná vysokorychlostní
permitivitě, n2opt = ε(∞). V tab. 11.2 jsou uvedeny tyto parametry pro typické krystaly.

Tab. 11.2: Parametry mřížkové reflexe různých krystalů při pokojové teplotě. Data byla
převzata z [2]. Frekvence ωT je experimentální a ωL je dopočítaná podle LST vztahu (11.27).
Obě frekvence ωT i ωL jsou v jednotkách 1011s−1.

krystal ε(0) ε(∞) ωT ωL

LiF 8.9 1.9 5.8 12.
LiCl 12.0 2.7 3.6 7.5
NaF 5.1 1.7 4.5 7.8
NaCl 5.9 2.25 3.1 5.0
KF 5.5 1.5 3.6 6.1
KCl 4.85 2.1 2.7 4.0
CsCl 7.2 2.6 1.9 3.1
AgCl 12.3 4.0 1.9 3.4

krystal ε(0) ε(∞) ωT ωL

MgO 9.8 2.95 7.5 14.
GaP 10.7 8.5 6.9 7.6
GaAs 13.13 10.9 5.1 5.5
InP 12.37 9.6 5.7 6.5
InAs 14.55 12.3 4.1 4.5
C 5.5 5.5 25.1 25.1
Si 11.7 11.7 9.9 9.9
Ge 15.8 15.8 5.7 5.7

11.5 Povrchový plazmon polariton – SPP

Povrchový plazmon představuje oscilaci elektronového plynu, která je vázaná na povrch kovového krys-
talu. Vzniká na rozhraní kovu a dielektrika a oscilace elektronů jsou svázané s elektromagnetickým polem
je tlumené na obě strany od rozhraní. Pro frekvence viditelného světla je kov oblast s komplexní permiti-
vitou jejíž reálná část je záporná. Nad povrchem je buď vzduch nebo nějaké dielektrikum třeba sklo, jehož
permitivita je kladná. Povrch kovu představuje rozhraní, kde na jedné straně je malá kladná permitivita
a na druhé straně hodně velká záporná permitivita. Díky tomu dochází k vazbě povrchového plazmonu
se světlem za vzniku polaritonu. Zkratka SPP vyplývá z anglického označení surface plasmon polariton.
Klem tohoto tématu se postupně rozvinul celý vědní obor označovaný jako plazmonika [22].

Povrchový plazmon se významně projevuje i pokud rozhraní není rovinné. Typickými příklady jsou
různé kovové nanočástice ve skle, které dokáží lokalizovat světlo i v objemu pod difrakčním limitem.
Někdy se používají mnohavrstevné kovové struktury např. mědi a niklu, které vytváří difrakční mřížku.
Povrchový plazmon často přispívá k povrchově zesílenému Ramanově rozptylu (experimentální metoda
SERS). Metoda rezonance povrchového plazmonu (SPR) se používá v biochemii pro přesnou detekci
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stopového množství dané molekuly. Takto se dělají testy na COVID-19 nebo těhotenské testy.

Již tisíciletí jsou známe technologie přidávání kovů do skla, které zajistí správnou velikost a tvar
kovových nanočástic a způsobí charakteristické zbarvení finálního skla díky SPP. Tyto techniky barvení
skla se tradičně používaly při výrobě vitráží, kdy pro jednotlivé barvy se používaly následující přísady:
fialová/ametystová – mangan, modrá – kobalt CoO, tyrkysová – měď CuO, zelená – chróm K2Cr2O7 nebo
železo, žlutá – titan, oranžová – stříbro AgNO3, červená – selen, kadmium nebo zlato. Ukázka vitráže
je i na úvodním obrázku této kapitoly. Zatímco organická barviva se s časem rozkládají a ztrácí sytost,
barvení skla pomocí SPP je založené na vytvoření zakázaného pásu pro světlo určitých barev (mezi ωT a
ωL). Barvy, které vidíme při průchodu světla tímto sklem, se s časem nemění.

Aby byla možná interakce světla s elektrony na povrchu kovu, je nutné, aby elektrické pole mělo
nenulovou normálovou složky. Je tedy vhodná pouze jedna polarizace elektromagnetické vlny označovaná
jako TM nebo p-polarizace. Kromě interakce s dopadajícím světlem lze SPP generovat i dopadem nabité
hmotné částice.

11.6 Polaron – elektron-fononová interakce

Nejčastější interakce elektronů v ideálním čistém krystalu je s fonony. To se projevuje teplotní závislostí
odporu. Nad Debyeovou teplotou je počet fononů zhruba lineárně úměrný absolutní teplotě a lineárně
s teplotou roste i měrný odpor. Efektem vyššího řádu elektron-fononové interakce je nárůst efektivní
hmotnosti elektronů v kovech ale i v dielektrikách díky tomu, že elektron svým nábojem elektricky působí
na iontové zbytky, viz úvodní obrázek této kapitoly. Díky tomu, že elektron polarizuje mřížku, označuje
se tato kvazičástice složená z elektronu a deformačního silového pole polaron. V kovalentních krystalech
je tento efekt slabý, ale u polárních solí, kde elektron interaguje opačně s kationty a s anionty, je tento
efekt značný. U soli KCl se zvýší efektivní hmotnost 2.5× proti hodnotě dané pouze pásovou strukturou.

Míru interakce elektronu s mřížkou popisuje bezrozměrná vazebná konstanta α definovaná jako

α

2
=

deformačńı energie

ℏωL
. (11.28)

Teoreticky lze odvodit vztah, který umožňuje z konstanty α napočítat efektivní hmotnost polaronu

m∗
pol
∼= m∗

(
1− 8× 10−4α2

1− α/6 + 3.4× 10−3α2
.

)
.

11.7 Příspěvek vázaných a valenčních elektronů k permitivitě

Tato problematika se řeší obvykle časově závislou poruchovou teorií. Uvažujeme totiž elektrony vázané
v krystalové struktuře, které se nemohou volně pohybovat. Proto je pro ně vnější pole pouze slabou poru-
chou. V prvním kroku se tedy řeší stacionární energetické hladiny En a příslušné vlnové funkce elektronů
ϕn pomocí bezporuchové Schrödingerovy rovnice. Díky poruše už ale hledané řešení není stacionární, ale
elektrony můžou vlivem poruchy přecházet mezi energetickými hladinami. Vlnová funkce se tedy vyvíjí
v čase podle vztahu

Ψ(r⃗, t) = ϕ0 e
−ıE0t/ℏ +

∑
n>0

cn(t)ϕn e
−ıEnt/ℏ, (11.29)

kde E0, ϕ0 popisují základní stav a En, ϕn pro n > 0 popisují excitované stavy.

Výsledek řešení časové Schrödingerovy rovnice se označuje jako Fermiho zlaté pravidlo, které lze
formulovat následovně. „Pokud je systém pod vlivem poruchyHint ve formě harmonického pole s frekvencí
ω, potom je pravděpodobnost přechodu ze základního stavu do excitovaného stavu j za jednotkový čas
rovna následujícímu výrazuÿ

Wj ≡ |cj(t)|2/t =
2π

ℏ

∣∣∣∣∫ dV ϕ∗jHintϕ0

∣∣∣∣2 δ(ℏω + E0 − Ej). (11.30)

Diracova δ-funkce zajišťuje zákon zachování energie při absorpci fotonu. Přechod do excitovaného stavu
je tím rychlejší, čím je větší vazba mezi základním stavem a excitovaným stavem způsobená interakčním
poruchovým hamiltoniánem.
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Pokud pracujeme v aproximaci obálkových vlnových funkcí, zanedbáme změny obálkových funkcí
v objemu jedné buňky mřížky a přesný maticový element přechodu ze základního stavu do stavu j
zapíšeme jako překryvový integrál amplitudy obálkových funkcí násobený konstantou. Tato konstanta
je daná oscilující periodickou částí Blochových stavů a je stejná ve všech buňkách krystalu. Maticový
element interakčního hamiltoniánu lze tedy v této aproximaci vyjádřit pomocí překryvového integrálu
obálkových funkcí rekombinujícího elektronu a díry.

11.7.1 Optická absorpce – mezipásové optické přechody

Optická absorpce materiálu je popsaná imaginární částí komplexní permitivity. Pokud má dopadající
světlo energii větší než je šířka zakázaného pásu, potom dochází k mezipásové absorpci. Výpočet absor-
pčního spektra je objasněn na obr. 11.4. Díky tomu, že fotony s energií ≈ 1 eV mají zanedbatelný vlnový
vektor, jsou optické přechody bez přispění fononů vertikální v k-prostoru. Obrázek 11.4a) ukazuje různé
optické přechody elektronu z valenčního pásu Ev(k) do vodivostního pásu Ec(k) v různých bodech 1.BZ.
Obr. 11.4b) ukazuje energie optických přechodů (Ec(k)−Ev(k)) a c) je histogram těchto energií pro ekvi-
distantní povolené stavy vlnového vektoru k. Tento histogram odpovídá sdružené hustotě stavů, kterou
bychom zjistili například měřením absorpce. Z obrázku je patrné, že maxima ve sdružené hustotě stavů
(označeny tečkovanou čarou) odpovídají místům, kde jsou vodivostní a valenční pás spolu rovnoběžné.
Podmínku pro tyto kritické body k-prostoru můžeme tedy zapsat ve tvaru

∇k⃗[Ec(k⃗)− Ev(k⃗)] = 0. (11.31)

11.7.2 Exciton

Z optických vlastností polovodičů je známo, že absorpční spektrum není jednoduše určeno excitací volných
elektronů a děr. Elektron a díra na sebe coulombovsky působí a mohou vytvořit vázaný stav, kvazičástici
zvanou exciton. Výskyt intenzivních úzkých absorpčních čar s energií pod hranou zakázaného pásu Eg
je důkazem existence těchto vázaných stavů. Podobně jako u popisu příměsí i zde použijeme podobnost
s řešením atomu vodíku, který je řešen v učebnicích kvantové mechaniky [11]. Dynamiku elektronu a díry
na hraně pásu popíšeme efektivními hmotnostmi. V případě excitonu není ale takový rozdíl v hmotnosti
elektronu a díry, jako je tomu u elektronu a protonu v atomu vodíku. Proto je při řešení vhodné přejít
do soustavy svázané s těžištěm.

Výklad excitonů se obvykle dělí na dva limitní případy: silně vázaný exciton (Frenkelův exciton
s malým poloměrem) a slabě vázaný exciton (Mottův-Wannierův exciton s velkým poloměrem). Tyto
limitní případy jsou zobrazeny na obr. 11.5.

Ev(k)

Ec(k)

k

E

k

Ec - Ev

D(E)

Ec - Ev
a) b) c)

Obr. 11.4: Optická mezipásová absorpce: a) Obecné pásové schéma, červeně jsou vyznačeny fotoexcitované
mezipásové přechody; b) zobrazení energie optického přechodu v různých místech BZ; c) sdružená hustota
stavů jako histogram z b).
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Obr. 11.5: Excitony: a) Mottův-
Wannierův slabě vázaný, b) Fren-
kelův silně vázaný.

Slabě vázaný Mottův-Wannierův exciton s velkým poloměrem

Budeme předpokládat jednoduché pásové schéma s parabolickými disperzními závislostmi podle obr. 9.8.
Vodivostní pás pro elektron a valenční pás pro díru jsou odděleny zakázaným pásem šířky Eg. Pro popis
excitonu se zavádí vektor polohy těžiště excitonu R⃗ex a relativní polohy ρ⃗ obvyklým způsobem

ρ⃗ = r⃗e − r⃗h, R⃗ex =
mer⃗e +mhr⃗h
me +mh

, (11.32)

kde r⃗e a r⃗h označují polohu elektronu a díry. Pro exciton lze zapsat Schrödingerovu rovnici ve tvaru[
P 2

2(me +mh)
+
p2

2µ
− e2

4πε0ερ

]
ψ(ρ⃗, R⃗ex) = (E − Eg)ψ(ρ⃗, R⃗ex). (11.33)

K těžišťovým souřadnicím jsme zavedli také sdružené hybnosti a redukovanou hmotnost páru elektron-
díra.

P = −ıℏ∇R⃗, p = −ıℏ∇ρ⃗; µ =
memh

me +mh
. (11.34)

Neboť hamiltonián nezávisí na poloze těžiště R⃗, představuje hybnost P⃗ dobré kvantové číslo s vlastní
hodnotou ℏK⃗. Vlnovou funkci excitonu můžeme přepsat na tvar

ψ(ρ⃗, R⃗) = eıK⃗·R⃗exφ(ρ⃗). (11.35)

Substitucí (11.35) dostaneme (
p2

2µ
− e2

4πε0ερ

)
φ(r⃗) = ηφ(r⃗). (11.36)

Tato rovnice odpovídá řešení energetických stavů donorů (9.22), liší se pouze jinou odpovídající
hmotností. Vázané stavy excitonu mají energii η < 0, kdežto pro η > 0 získáme nezávislý elektron a díru.
Z analogie vyplývá i analogické řešení, základní stav je 1s vodíková funkce, kde se používá modifikovaný
Bohrův poloměr excitonu aex. Vazebná energie základního stavu je excitonový Rydberg

aex =
4πε0εℏ2

µe2
, Rex =

µe4

2(4πε0εℏ)2
. (11.37)

Neboť redukovaná hmotnost excitonového páru elektron-díra µ < me, je vazebná energie excitonu menší
než vazebná energie příměsi. V GaAs vyjde Rex = 4.2 meV.

Silně vázaný Frenkelův exciton s malým poloměrem

Tento typ excitonu se vztahuje na případ, kdy elektron i díra excitonu jsou vázány na jeden atom v krys-
talové mřížce. Jde tedy v podstatě o jakýsi excitovaný stav jednoho atomu v krystalu. Tato excitace ale
může díky vazbám mezi atomy v krystalu přeskakovat. Exciton se může tedy v krystalu pohybovat.

Frenkelovy excitony se vyskytují u krystalů inertních plynů. Na krystalickém kryptonu, který má
zakázaný pás šířky 11.7 eV, byl pozorován nejnižší přechod na energii 10.2 eV. Exciton má tedy u krys-
talického kryptonu vazebnou energii (11.7 − 10.2) eV = 1.5 eV. Dále se Frenkelův exciton vyskytuje u
silně iontových solí typu I-VII (alkalické halogenidy jako NaCl, NaBr). U těchto solí se exciton lokalizuje
na záporných iontech, které mají nižší elektronové excitační hladiny. Například u soli NaBr je exciton
lokalizován na iontu Br− a jeho vlastnosti jsou určené elektronovou strukturou tohoto iontu. Frenkelovy
excitony vznikají též u organických molekul nebo u fotosyntetických pigmentů, které přenášejí světelnou
excitaci do reakčního centra. Jsou tedy zodpovědné za fyzikální podstatu fungování fotosyntézy.
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Obr. 11.6: Vliv excitonů na absorpci 3D polovodiče.

Excitonová spektra

Pokud se v absorpci daného materiálu projevují excitony, objeví se ve spektru absorpce nebo luminiscence
nová ostrá maxima pod hranicí zakázaného pásu o energii odpovídající jednotlivým excitonovým hladinám

3D : ℏω = Eg −Rex/n
2.

Toto chování ukazuje obr. 11.6 pro přímý 3D polovodič. Jak je v obrázku naznačeno, i při mezipásové
absorpci na hranici zakázaného pásu je absorpční koeficient ovlivněn coulombovskou interakcí mezi elek-
trony a dírami.

Pokud by byl studovaný polovodič pouze tenkou vrstvou, byla by energie excitonové řady posunuta
díky snížení dimenze,

2D : ℏω = Eg −
Rex

(n+ 1/2)2
.

11.8 Optické experimentální metody

11.8.1 Optické mezipásové přechody

Nejjednodušší optické metody studia pevných látek jsou měření absorpce a odrazivosti. Obrázek 11.7
vlevo ukazuje typické chování absorpce polovodiče s nepřímým zakázaným pásem. Zde jde konkrétně
o germanium při teplotě 300 K a 77 K. Je zřejmé, že v energetickém spektru nastupuje nejprve pozvolně
nepřímý přechod, který má nižší energii. Poté se začne projevovat přímý přechod, který má vyšší energii,
Navíc u přímého přechodu je mnohem strmější nástup a absorpce je zde o 2-3 řády vyšší. Z obrázku
je patrný ještě jeden typický jev. Při snižování teploty, kdy jsou menší vibrace mřížky, vzroste šířka
zakázaného pásu.

Obr. 11.7: Absorpční koeficient: vlevo Ge, data jsou
z publikace R. Newman, W.W. Tyler, Solid State
Physics 8, 49 (1959). Vpravo GaAs, data jsou z pub-
likace M.D. Sturge, Phys. Rev. 127, 768 (1962). Pře-
vzato z [21].
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Optická absorpce přímých polovodičů jako je GaAs má jiné vlastnosti. To ukazuje obr. 11.7 vpravo.
Absorpce je mnohem silnější. Protože hrany pásů jsou parabolické bude nástup mezipásové absorpce daný
sdruženou hustotou stavů s odmocninovou závislostí na energii. Těsně pod hranou absorpce se zde ale
objevuje velice silná excitonová absorpce, která se u čistých polovodičů projevuje obzvláště za nízkých
teplot. Excitonový pík bývá velice ostrý, s ochlazováním ještě sílí a může se objevit jeho struktura složená
z několika píků. To odpovídá teorii probírané výše a obr. 11.6. I u přímého polovodiče dochází opět
k růstu šířky zakázaného pásu při ochlazování.

Další metodou je měření luminiscence generované excitovaným vzorkem. Pokud se jako excitační zdroj
použije optické záření (zpravidla laser), potom hovoříme o spektrech fotoluminiscence. Po absorpci fotonu
s energií větší než Eg nejsou elektron a díra na hraně odpovídajícího pásu. Rychle se ale přemístí, elektrony
na nejnižší elektronovou hladinu a díry na nejvyšší děrovou. Tomuto procesu se říká termalizace. Teprve
z těchto energetických stavů dojde k zářivé rekombinaci. Proto ve spektrech fotoluminiscence vidíme
obvykle pouze nejnižší hladiny. (PO. 11.2: Spektra fotoluminiscence), na tomto obrázku jsou ve
spektrech luminiscence vidět tři pásy. Mezipásové přechody (zelená čára) spojené s excitony jsou pro
GaAs při teplotě 10K na energii 1.515 eV. Nižší energii mají donor-akceptorové přechody (čevená čára),
které využívají příměsové hladiny v zakázaném pásu. Modře zobrazené čáry představují luminiscenci
z kvantových jam, které byly na GaAs substrátu vypěstovány. Tyto heterostruktury jsou diskutovány
v sekci 12.3.

Spektrum absorpce poskytuje tedy mnohem více informací o struktuře energetických hladin zkou-
maného vzorku. Pokud chceme experimentálně získat spektra vyšších přechodů, musíme použít jinou
metodu měření. Analogickou metodou k absorpci je měření fotovodivosti. Při této metodě musíme mít ale
vzorek opatřen kontakty. Po dopadu záření, které se absorbuje, dojde ke generaci nadbytečných elektronů
a děr, které způsobí změnu vodivosti vzorku. Je tedy třeba projíždět excitačním spektrem a v závislosti
na dopadající vlnové délce sledovat vodivost v dostatečně citlivém můstkovém zapojení. Tato metoda má
ale své slabiny, při měření za nízkých teplot jsou přívodní kontakty vodiči tepla, které narušují měření.
Fotovodivost ovlivňují tři příspěvky: 1) Mezipásové přechody dávají vzniknout současně elektronu a díře.
Excitační světlo musí mít energii větší než zakázaný pás. 2) Pro excitaci příměsí stačí energie řádu 10 eV.
Vzniká jeden volný nosič a jedna vázaná ionizovaná příměs. 3) Absorpce na volných nosičích. Ta nemění
počet vodivostních elektronů, ale excitovaný elektron může mít vyšší pohyblivost, což se ve vodivosti
projeví.

Proto byla vyvinuta další metoda analogická k absorpci, kterou je měření excitačních spekter luminis-
cence. Opět projíždíme spektrem excitačního laseru, ale měříme závislost intenzity luminiscence základní
čáry daného vzorku na vlnové délce excitačního laseru.

Pro fotovodivost nám stačí malé excitační intenzity, neboť každý absorbovaný foton přispěje k vo-
divosti. Proto pro měření fotovodivosti nám obvykle stačí halogenová lampa a monochromátor. Naproti
tomu luminiscence je všesměrová a účinnost navázání generovaného světla na detektor je v řádu procent.
Proto je pro excitační spektra luminiscence potřeba excitační laser, jehož vlnovou délku můžeme spojitě
měnit.

11.8.2 Ramanův rozptyl

Pokud na vzorek polovodiče dopadá laserový svazek s energií menší než je energie zakázaného pásu,
můžeme sledovat nepružný rozptyl tohoto záření. Posun vlnové délky záření je při tomto Ramanově roz-
ptylu5 daný interakcí fotonu s fonony. Jako Stokesův proces označujeme případ, kdy se emituje nový fonon
a vlnová délka fotonu se prodlužuje. Při anti-Stokesově procesu je fonon absorbován a vlnová délka fotonu
po rozptylu je kratší. Na tomto principu vznikla Ramanova spektroskopie jako účinný nástroj sledování
vibrační struktury polovodičů a izolátorů. O Ramanově spektroskopii a experimentálních metodách, které
souvisí s povrchovým zesílením, jsme se již bavili v sekci 11.5.

11.8.3 Rayleighův rozptyl

Anglický fyzik John W. Rayleigh při popisu rozptylu světla v zemské atmosféře v roce 1899 vyšel z před-
pokladu, že světlo rozptylují přímo molekuly vzduchu a spočítal, že intenzita rozptýleného světla silně
závisí na jeho vlnové délce (je nepřímo úměrná její čtvrté mocnině). To znamená, že modré světlo s krát-

5Sir Chandrasekhara Venkata Raman získal za tuto metodu Nobelovu cenu za fyziku v roce 1930.
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kou vlnovou délkou se rozptyluje více než světlo červené. Důsledkem této závislosti je například modrá
barva oblohy, vznikající při průchodu slunečního světla zemskou atmosférou. Nutnou podmínkou ovšem
je, aby polohy jednotlivých rozptylujících center (molekul, atomů) byly náhodné.

Rayleighův rozptyl tedy popisuje pružný rozptyl fotonů látkou, kdy nedochází k absorpci, ale pouze
k rozptylu do náhodných směrů. Při měření luminiscence nebo Ramanova rozptylu používáme jako exci-
tační zdroj obvykle laser s dostatečnou energií fotonů, tedy s modrou barvou nebo dokonce v ultrafialové
oblasti. Měřený signál je o mnoho řádů slabší než výkon čerpacího laseru. Rozptyl na nedokonalostech
rozhraní nebo na poruchách uvnitř vzorku způsobuje nepříjemný šum na pozadí měřeného signálu a je
třeba ho potlačit správnou geometrií měřící soustavy a spektrální filtrací.
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PO. 11.1: Reálná a imaginární část permitivity zlata a srříbra. Měřené body jsou zakresleny červeně,
černé čáry představují fit pomocí Drudeho modelu, převzato z knihy S.A. Maiera Plasmonics[22]. Jak je

zřejmé, pro zlato je Drudeho model použitelný do 2.4 eV a pro stříbro až do do 3.6 eV.
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PO. 11.2: Ukázka spekter fotoluminiscence měřených na dvou vzorcích heterostruktur na substrátu
GaAs při teplotě 10 K. Převzato z diplomové práce autora.
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11.9 Příklady

Př. 11.1: Thomasova-Fermiho stínící délka:
Podle tří dílčích vztahů (11.18) spočítejte stínící délku 1/ks pro měď.

Nápověda: Mezivýsledkem je koncentrace n0 = 8.47× 1022 cm−3, Fermiho energie 7.01 eV.

Př. 11.2: Spektra fotoluminiscence:
Prohlédněte si spektra fotoluminiscence na str. 188 a uhodněte, která maxima odpovídají excitonům
v GaAs, která donor-akceptorovým přechodům, a která přechodům v heterostruktuře GaAs-Ga0.7Al0.3As.

Nápověda: Heterostruktury jsou diskutovány v následující kapitole.

Př. 11.3: Značení kvazičástic:
Vraťte se k úvodnímu obrázku této kapitoly a zkuste odůvodnit mnemotechnické značení jednotlivých
kvazičástic.

Př. 11.4: Srážky kvazičástic:
Pojmenujte a popište procesy zobrazené na obr. 11.8. Zapište zákony zachování pro tyto pocesy.

a) b) c)

d) e) f)

Obr. 11.8: Diagramy zobrazující srážky kvazičástic.

Př. 11.5: Exciton v GaAs:
Spočítejte vazebnou energii a poloměr excitonu v GaAs podle (11.37). Použijte parametry GaAs: me =
0.067 m0, mh = 0.34 m0, ε = 12.5.

189



Tento studijní text vznikl s použitím zobrazených polovodičových komponent
PC: základní deska GA-8IPE100, procesor Pentium 4; notebook: Gigabyte N601.

Zeměpisná pozice: 49◦35’36.992”N, 17◦15’57.280”E.

Převzato z webu GIGABYTE: http://www.gigabyte.cz/
a z webu INTEL: http://www.intel.cz/
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Kapitola 12

Povrchy a rozhraní
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12.1 Úvod

V kapitole 9 jsme probírali vlastnosti polovodičů, ale uvažovali jsme pouze případ homogenního polo-
vodiče. Z aplikačního hlediska je ale mnohem užitečnější materiály s různými vlastnostmi kombinovat.
Nejjednodušší polovodičová součástka je dioda, která obsahuje právě jeden p-n přechod. Kombinuje tedy
dva kusy stejného polovodiče např. křemíku, ale s různým dopováním, polovina je dopovaná na p-typ a
druhá polovina na n-typ. Dva p-n přechody umožňují vytvořit tranzistor a pravidelným střídáním do-
pování vznikne tzv. n-i-p-i supermřížka. Protože je jako základ použit stále stejný polovodič, mluvíme
o homostruktuře.

Jako heterostruktury označujeme polovodičové prvky, kde se mění složení polovodiče. Typickým příkla-
dem jsou heterostruktury, kde se kombinují vrstvy složené z materiálů GaAs, AlAs a ternární Ga1−xAlxAs.
Se změnou složení se mění i pásová struktura polovodiče podél osy heterostruktury. Pokročilé metody
růstu krystalů po jednotlivých vrstvách, jako je epitaxe z molekulárních svazků, dovolují vytvořit si
v krystalu libovolný profil potenciálu tak, že se při růstu mění ve vrstvách Ga1−xAlxAs poměr zastou-
pení hliníku.

Dnešní polovodičové součástky kombinují obě výše uvedené možnosti. Tedy jak změnu materiálu,
tak změnu typu dopování. Výhodou GaAs–AlAs krystalů je nepatrný rozdíl mřížkové konstanty obou
materiálů: a(GaAs) = 5.6533 Å, a(AlAs) = 5.660 Å. Obrázek 12.1 ukazuje hodnotu šířky zakázaného
pásu vůči mřížkové konstantě. Materiály, které lze kombinovat do slitin, které se používají, jsou spojeny
čarou. Tyto slitiny se označují jako ternární polovodiče. Jedním z typických je např. Ga1−xAlxAs, kde
hodnota x tvoří poměrnou složku hliníku. Pro menší koncentrace hliníku je materiál přímý polovodič a pro
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Obr. 12.1: Hodnoty šířky zakázaného pásu
Eg jako funkce mřížkové konstanty a pro
polovodiče s různou strukturou: IV diaman-
tová (čtvereček), III-V sfalerit (plné ko-
lečko), II-VI wurtzit (kroužek). Převzato
z [21], nicméně tento obrázek naleznete
v celé řadě knih, které se zmiňují o hete-
rostrukturách.

vyšší je nepřímý. Hraniční hodnota odpovídá x = 0.35. Vhodnou volbou x lze nastavit šířku zakázaného
pásu tak, aby odpovídala vlnové délce, kde mají optická komunikační vlákna minimální absorpci. Další
ternární polovodič Hg1−xCdxTe potkáme hlavně v oblasti infračervených detektorů pro okna propustnosti
atmosféry. Pro x = 0.2 bude zakázaný pás 100meV (10 µm). Pro x = 0.3 dostaneme 200meV (5 µm).
Navíc vlnová délka 10 µm odpovídá tepelnému záření těles při teplotě 300K.

12.1.1 Výroba heterostruktur

Jak bylo zmíněno, vrstevnaté heterostruktury se vyrábějí metodami epitaxe, t.j. růstu po jednotlivých
atomárních rovinách. Epitaxních technologií je dnes již mnoho druhů. Můžeme je rozdělit do tří skupin
podle média, z něhož krystal roste:

■ epitaxe z molekulárních svazků MBE (Molecular Beam Epitaxy),

■ kapalná epitaxe LPE (Liquid Phase Epitaxy),

■ plynná epitaxe, do této skupiny se řadí epitaxe z organokovových sloučenin MOVPE (MetalOrganic
Vapour Phase Epitaxy).

Metoda, kdy na sebe podle potřeby nanášíme vrstvy tak, aby vznikla požadovaná struktura energetických
pásů v prostoru, se nazývá pásové inženýrství.

12.2 P-N přechod

Nejjednodušší polovodičovou součástkou je dioda, která má pouze jeden p-n přechod. Typickou vlastností
p-n přechodu je to, že propouští elektrický proud pouze v jednom směru a proto se používá k usměrňování.
Pokud ale využijeme i optické vlastnosti p-n přechodu, můžeme ho využít pro detekci nebo generaci světla.

Přechod p-n se vytváří na jednom krystalu změnou dopování. Dopováním, které se provádí např.
iontovou implantací požadovaného prvku, se může změnit typ vodivosti polovodiče z p-typu na n-typ nebo
obráceně. K vymezení oblasti, na které se má v polovodičovém substrátu změnit dopování, se využívají
techniky litografie. Tyto technologické aspekty jsou již nad rámec tohoto studijního textu. Pro náš výklad
postačí, když si představíme vznik p-n přechodu tak, že k sobě přitiskneme dva kusy polovodiče, jeden
dopovaný na p-typ a druhý na n-typ. Reálně se takto vyrobit dioda nedá, neboť kontakt obou částí by
vždy obsahoval příliš mnoho defektů.

Obrázek 12.2a) znázorňuje dva oddělené kusy polovodiče, levý je polovodič p-typu a pravý je n-typu.
Pokud jsou obě části polovodiče ze stejného materiálu a liší se pouze dopováním, musí díky zákonu
působení aktivních hmotností (9.16) platí následující vztah mezi koncentracemi elektronů a děr

n2i = nnpn = nppp. (12.1)
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Obr. 12.2: Schéma p-n přechodu: a) dva kusy polovodiče před nábojovým přesunem; b) ustálení rovno-
váhy; c) prostorový profil hustoty náboje, elektrického pole a potenciálu.

Koncentrace elektronů se značí n a koncentrace děr p, index znamená dopování polovodiče. Např. pn
označuje koncentraci děr v polovodiči typu n, jde tedy o minoritní nosiče. Naproti tomu koncentrace nn
a pp označují majoritní nosiče.

Na obr. 12.2b) je znázorněno vytvoření rovnováhy na p-n přechodu. Rovina přechodu má souřadnici
x = 0. Na rozhraní obou kusů polovodiče je po spojení skok koncentrace nosičů. Díry jsou vlevo od
rozhraní majoritními nosiči, ale vpravo minoritními s koncentrací o několik řádů nižší. Díky tomu začnou
difundovat díry doprava a elektrony budou difundovat doleva. Vzájemně ale elektrony s dírami na rozhraní
zrekombinují a tím vznikne po obou stranách rozhraní oblast prostorového náboje. Vlevo od rozhraní ve
vrstvě šířky xp zmizely díry a zůstaly zde pouze ionizované akceptory se záporným nábojem. Napravo
v n-typu vznikne zase oblast odhalených ionizovaných donorů s kladným nábojem.

Na obr. 12.2c) je zobrazeno prostorové rozložení hustoty náboje a z něho odvozené elektrické pole,
které je v oblasti homogenní hustoty náboje lineární funkcí souřadnice. Maximální elektrické pole je na
p-n rozhraní v bodě x = 0. V oblasti lineárního vzestupu pole je elektrický potenciál V (x) kvadratický.
Během nábojového přesunu a vzniku oblasti prostorového náboje se zvyšuje vnitřní elektrické pole, které
urychluje elektrony doprava a díry doleva. Rovnováha nastane tehdy, když driftový proud generovaný
vnitřním elektrickým polem vyváží difuzní proud daný spádem koncentrace nosičů. Vzniklá oblast pro-
storového náboje má šířku w0 = xn+xp a na potenciálu se vytvoří celkový schod výšky V0. Tato veličina
se označuje jako difuzní potenciál. Po ustálení termodynamické rovnováhy již přechodem neteče žádný
proud.
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12.2.1 P-N přechod v rovnováze

Je dobře si uvědomit, že izolovaný kus polovodiče je nábojově neutrální. Ke vzniku prostorového náboje
dojde jen díky kontaktu různě dopovaných částí. Koncentrace majoritních nosičů a díky (12.1) i minorit-
ních nosičů je daná koncentrací majoritních dopantů podle následujících vztahů (v závorkách jsou typické
hodnoty)

pp = Na (1016 cm−3), nn = Nd (1017 cm−3),

np =
n2
i

Na
(105 cm−3), pn =

n2
i

Nd
(104 cm−3).

(12.2)

Tyto vztahy vyplývají z předpokladu úplné ionizace dopantů v oblasti prostorového náboje.

Prostorové rozložení hustoty náboje Q(x) z obr. 12.2c) je následující

Q(x) =


−eNa pro −xp < x < 0

eNd 0 < x < xn
0 jinde

. (12.3)

Při nábojovém přesunu se musí zachovávat celkový náboj, z čehož můžeme odvodit podmínku celkové
neutrality

Naxp = Ndxn. (12.4)

Význam tohoto vztahu celkové nábojové neutrality můžeme též formulovat tak, že při rekombinaci nosičů
zmizí současně vždy na jeden elektron právě jedna díra. Tato rekombinace může být zářivá, to znamená,
že energetický rozdíl stavu elektronu a díry se uvolní ve formě optického kvanta – fotonu.

Použijeme Gaussův zákon z Maxwellových rovnic pro výpočet elektrického pole:

dE(x)

dx
=
Q(x)

ε
. (12.5)

Přímou integrací dostaneme elektrické pole. Okrajovou podmínkou řešení je nulovost pole mimo oblast
prostorového náboje šířky w0 = xn + xp. Průběh elektrického pole vyjde

E(x) =


− eNa

ε (x+ xp) pro −xp < x < 0
eNd

ε (x− xn) 0 < x < xn
0 jinde

. (12.6)

Maximální elektrické pole je tedy přesně na rozhraní p-n přechodu (x = 0). Jeho velikost je E(0) =
−eNaxp/ε. Toto elektrické pole vytváří pro nabité nosiče (elektrony a díry) dodatečný potenciál V (x),
který lze dopočítat z definice

E(x) = −dV (x)

dx
. (12.7)

Mimo oblast prostorového náboje, kde je elektrické pole nulové, je potenciál konstantní. Tvar potenciálu
v oblasti prostorového náboje získáme integrací vztahu (12.7). Zvolíme-li si integrační konstantu tak, že
je V (0) = 0, dostaneme průběh potenciálu zobrazený na obr. 12.2c), který má analytický tvar

V (x) =

{
eNa

2ε (x2 + 2xxp) pro −xp < x < 0

− eNd

2ε (x2 − 2xxn) 0 < x < xn
. (12.8)

Zbývá už jen vyčíslit velikost difuzního potenciálu V0

V0 = V (xn)− V (−xp) =
e

2ε
(Nax

2
p +Ndx

2
n) =

e

2ε

(
NaNd
Na +Nd

)
w2

0. (12.9)

Nyní použijeme Ohmův zákon (7.27) a definici pohyblivosti (9.19). Celkový proud můžeme rozdělit na
část, kterou přenášejí díry jh a část, kterou přenášejí elektrony je. Každou tuto složku můžeme napsat jako
součet difuzního proudu jdif generovaného gradientem koncentrace a driftového proudu jE generovaného
elektrickým polem. V termodynamické rovnováze jsou celkové proudy nulové

jdifh + jEh =−eDh
dp(x)

dx
+ eµhp(x)E(x) = 0, (12.10)

jdife + jEe =+eDe
dn(x)

dx
+ eµen(x)E(x) = 0.
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Tyto vztahy můžeme přepsat s využitím definice potenciálu (12.7)

Dh

µh

1

p(x)

dp(x)

dx
= E(x) = −dV (x)

dx
, (12.11)

De

µe

1

n(x)

dn(x)

dx
= −E(x) =

dV (x)

dx
.

Integrací přes šířku oblasti prostorového náboje získáme

Dh

µh

xn∫
−xp

1

p

dp

dx
dx = −V0,

De

µe

xn∫
−xp

1

n

dn

dx
dx = V0. (12.12)

V roce 1905 publikoval Albert Einstein článek, kde vysvětlil Brownův pohyb částic v kapalině pomocí
kinetické teorie. Z této teorie mimo jiné vyplývá vztah mezi difuzními a driftovými koeficienty. Speciální
případ Einsteinovy relace nám dává poměry veličin

Dh

µh
=
De

µe
=
kBT

e
, (12.13)

kde T samozřejmě označuje absolutní teplotu vzorku. Pomocí Einsteinovy relace můžeme vyjádřit difuzní
potenciál z koncentrací dopantů

V0 =
kBT

e
ln

(
pp
pn

)
=
kBT

e
ln

(
nn
np

)
=
kBT

e
ln

(
NaNd
n2i

)
. (12.14)

Je třeba si uvědomit, že difuzní potenciál V0 na p-n přechodu nelze měřit přímo voltmetrem na kontaktech
diody. Voltmetrem se totiž měří pouze rozdíly v chemickém potenciálu, který je ale podél p-n přechodu
v termodynamické rovnováze konstantní. Dále je potřeba zdůraznit, že vlivem difuzního potenciálu se
pásová struktura (vodivostní a valenční pás) posouvají o potenciální energii, která je rovná −eV0.

12.2.2 P-N přechod s přiloženým napětím

Nás bude samozřejmě nejvíce zajímat chování p-n přechodu po přiložení vnějšího elektrického napětí
V . Díky konečné vodivosti celého polovodičového krystalu s p-n přechodem se toto napětí rozloží podél
celé osy x̂. V našich úvahách budeme ale uvažovat přivedení vnějšího napětí až na p-n přechod, viz
obr 12.3. U typických elektrických součástek se vzdálenost mezi kontaktem a oblastí prostorového náboje
minimalizuje a pokles napětí mimo p-n přechod je potom zanedbatelný.

Díky nesymetrii se přechod bude chovat různě pro obě různé polarity přiloženého napětí. Vnější
přiložené napětí způsobí rozposunutí Fermiho meze na obou koncích vzorku o hodnotu eV . Podle zna-
ménkové konvence je přiložené napětí kladné, pokud je přidaný potenciál na straně dopované na p-typ
vyšší, než na straně n-typu. Lapidárně řečeno na p-kontaktu je plus a na n-kontaktu je mínus. Napětí
přiložené v tomto směru se označuje jako napětí v propustném směru, opačný případ se označuje jako
závěrný směr. Ze znaménkové konvence potom vyplývá, že celkový napěťový rozdíl na p-n přechodu je
vždy V0 − V .

Propustný a závěrný směr

Po přiložení napětí V v propustném směru dojde ke snížení napětí na přechodu na V0−V . Tím dojde i ke
snížení interního elektrického pole a ke zúžení oblasti prostorového náboje w < w0. Pásová struktura p-n
přechodu se částečně narovná. Pokud by přiložené napětí splňovalo podmínku V0 = V , byly by vodivostní
a valenční pásy zcela narovnané a oblast prostorového náboje by se zúžila k nule.

V rovnováze se vyrovnává driftový proud způsobený vnitřním elektrickým polem difuzi nosičů s růz-
nou koncentrací na stranách přechodu. Naproti tomu, po přiložení napětí v propustném směru budou na
hranici prostorového náboje koncentrace minoritních nosičů o ∆n a ∆p nad rovnovážnou hodnotou daleko
od přechodu. Proto budou tyto nerovnovážné nosiče difundovat dále z oblasti prostorového náboje. Jde
tedy o difuzi nekompenzovaných minoritních nosičů, elektronů doleva do p-typu a děr doprava do n-typu.

Pro napětí v závěrném směru dojde k opačnému jevu. Protože přiložené napětí je záporné, celkové
napětí na přechodu V0 − V vzroste. Vzroste interní elektrické pole a oblast prostorového náboje bude
širší než v rovnováze w > w0.
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Obr. 12.3: Pásové schéma p-n přechodu: a) v rovnováze bez vnějšího napětí; b) s napětím v propustném
směru; c) s napětím v závěrném směru.

I-V charakteristika p-n přechodu

Při odvozování tvaru potenciálu podél p-n přechodu s přiloženým polem můžeme postupovat analogicky
jako v předchozích odstavcích. Díky vnějšímu napětí se změní okrajové podmínky řešení. Mezi Fermiho
hladinou v p-typu EFp a n-typu EFn bude nyní rozdíl EFp −EFn = −eV . Pro šířku oblasti prostorového
náboje můžeme přímo zapsat vztah analogický k (12.9) následovně

w =

√
2ε

e

(Na +Nd)

NaNd
(V0 − V ), (12.15)

x′p =

√
2ε

e

Nd
Na(Na +Nd)

(V0 − V ), x′n =

√
2ε

e

Na
Nd(Na +Nd)

(V0 − V ).

Nyní si vyjádříme koncentrace minoritních nosičů na hranici modifikované oblasti prostorového ná-
boje integrací (12.12) v nových integračních mezích. Z exponenciálního poklesu koncentrace v oblasti
prostorového náboje získáme

n(−x′p)
np

=
p(x′n)

pn
= exp

(
eV

kBT

)
. (12.16)

Zvýšenou koncentraci minoritních nosičů na krajích oblasti prostorového náboje můžeme vyjádřit pomocí
přiloženého napětí

∆np = np

(
eeV/kBT − 1

)
, ∆pn = pn

(
eeV/kBT − 1

)
. (12.17)

Protože mimo oblast prostorového náboje je elektrické pole nulové, můžeme získat proud p-n přechodem
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jako prostý součet difuzního proudu (12.10) elektronů a děr na hranicích této oblasti

j = jdife (−x′p) + jdifh (x′n) = eDe
∆np
Ln

+ eDh
∆pn
Lp

. (12.18)

Při odvození tohoto vztahu jsme derivaci koncentrace podle souřadnice nahradili podílem zvýšené
koncentrace minoritního nosiče a tomu odpovídající difuzní délkou (Ln, Lp). Nyní dosadíme koncentrace
nosičů z (12.17) a integrací proudové hustoty přes příčnou plochu dostaneme finální I-V charakteristiku
ideálního p-n přechodu (závislost proudu na přiloženém napětí)

I = I0

(
eeV/kBT − 1

)
. (12.19)

Tvar této závislosti je zakreslen červenou čarou na obr. 12.4, I0 značí maximální hodnotu závěrného
proudu, na které se saturuje proud v závěrném směru u ideálního p-n přechodu. U reálných součás-
tek dojde při překročení určitého závěrného proudu k průrazu, který ale naším jednoduchým modelem
nepopíšeme. Tento jev se používá u Zenerových diod ke stabilizaci napětí.

V

I

-I0

Obr. 12.4: Červeně je zakreslena I-V charakteristika
ideálního p-n přechodu podle (12.19). Modře je za-
kreslena I-V charakteristika p-n přechodu s optickou
excitací nadbytečných nosičů. Žlutě je označena ob-
last možných pracovních bodů fotovoltaického prvku
s p-n přechodem při určitém osvětlení.

Modrou čarou je v obr. 12.4 zakreslena ještě jedna velmi důležitá křivka. Je to I-V charakteristika p-n
přechodu, na který dopadá světlo a optickou excitací dochází ke generaci nadbytečných nosičů proudu.
Touto modrou závislostí je tedy popsán fotovoltaický prvek s p-n přechodem. Průsečík s vodorovnou osou
určuje fotovoltaické napětí naprázdno bez zátěže a průsečík se svislou osou udává zkratový proud. Žlutě
podbarvená plocha pak označuje oblast možných pracovních bodů daného fotovoltaického prvku.

12.2.3 LED, laser, detektor

Pro aplikace polovodičů jsou typické dvě oblasti. V elektronice dominují elektrony a v této oblasti se řeší
hradla pro logické operace, binární spínače, analogové obvody, zesilovače. Ve fotonice jsou dominantní
fotony a je zapotřebí prvků, které jsou schopné zajistit následující funkce: přenosové obvody, transformace
signálu z elektronů na fotony, detekce záření. Všechny tyto fotonické funkce mohou zajistit strukturované
polovodiče využívající p-n přechod nebo tranzistor.

P-N přechod může sloužit jako dioda LED, laserová dioda, nebo fotodioda pro detekci optického
záření. Z pohledu optiky dochází v aktivním materiálu polovodiče ke třem procesům:
Absorpce: Je to dominantní proces u fotodetektorů, kde se absorbuje záření s energií větší než šířka
zakázaného pásu Eg a vznikne elektrický signál.
Spontánní emise: Je to dominantní proces u LED diod. Při rekombinaci nosičů injektovaných do p-n
přechodu se vyzáří energie odpovídající Eg.
Stimulovaná emise: Je dominantní u laserových diod. Injekce nosičů je taková, že dojde k inverzi
populace. Pro dosažení laserování musí stimulovaná emise převážit nad spontánní emisí. Toho se dosahuje
vysokou proudovou hustotou v polovodiči s p-n přechodem.

12.3 Heterostruktury

Heterostruktury1 vznikají kombinací vrstev různého polovodiče podél osy růstu. Zvolíme si značení os tak,
že osa růstu je shodná s osou ẑ. Označme si polovodič na jedné straně heteropřechodu jako A a na druhé
1E. Hulicius, B. Velický, „Heterostruktury, které slouží všemÿ, Vesmír 80, 32 (2001).
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straně B. Pásová struktura obou polovodičů je různá, a proto se pásy podél osy růstu heterostruktury
mění. U reálných heteropřechodů není rozhraní mezi materiály ideálně rovinné a na rozhraní se vlastnosti
nemění skokem. Pro zjednodušení výpočtů ale budeme skokovou změnu struktury a pásových schémat
předpokládat.

Typ I

A B A

z

E Typ II

A B A

Typ III

A B A

Obr. 12.5: Prostorový profil vodivostního (modrá čára) a valenčního pásu (červená čára) pro tři základní
typy heterostruktur s vrstvami A-B-A.

12.3.1 Metoda obálkové vlnové funkce

Podle napojení vodivostního a valenčního pásu na rozhraní rozlišujeme několik typů heterostruktur.
Základní tři typy jsou zobrazeny na obr. 12.5. U typu I je polovodič B kvantovou jámou, kde se lokalizují
elektrony i díry. Příkladem této struktury je AlAs-GaAs-AlAs. V heterostruktuře typu II se lokalizují
elektrony a díry v různých vrstvách. Jako příklad uveďme Ge-Si-Ge. U heterostruktur typu III dochází
k tunelování nosičů mezi vodivostním a valenčním pásem. Zde jako příklad poslouží heterostruktura
s posloupností vrstev GaSb-InAs-GaSb.

Kombinace polovodičů GaAs–Ga0.7Al0.3As je příkladem heterostruktury I. typu. Oba tyto polovodiče
krystalizují ve sfaleritové kubické struktuře, navíc je důležité, že tyto materiály mají prakticky stejnou
mřížkovou konstantu a, relativní rozdíl je menší než 0.1 %. Pokud jsou vrstvy heterostruktury úzké,
může být i větší rozdíl mřížových konstant vyrovnán vznikem malého mechanického napětí ve vrstvách.
Zakázaný pás GaAs je užší než u AlAs. Pokud v heterostruktuře vrstvu GaAs obložíme z obou stran
vrstvami Ga1−xAlxAs, budou se volné elektrony i díry hromadit ve vrstvě GaAs, která působí jako
jáma pro oba typy nosičů. Elektrony padají v pásovém schématu dolů a díry nahoru. Změna velikosti
zakázaného pásu na rozhraní GaAs–Ga1−xAlxAs je daná empirickým výrazem ∆Eg = 1247x meV. Tento
skok pásů se rozdělí mezi vodivostní a valenční pás v poměru 60/40. Např. pro x = 0.3 dostaneme skok
vodivostního pásu ∆Ee = 225 meV, a skok valenčního pásu ∆Eh = 150 meV. Připomeňme, že zakázaný
pás GaAs je při pokojové teplotě 300 K roven Eg = 1.42 eV.

Vlnovou funkci elektronu v materiálech obou polovodičů lze zapsat v Blochově tvaru, eık⃗·r⃗ uk⃗(r⃗).
Pokud budeme hledat elektronovou vlnovou funkci rozkládající se přes několik vrstev heterostruktury,
můžeme předpokládat, že rychle kmitající periodická část Blochovy vlnové funkce uk⃗(r⃗) je stejná ve všech
vrstvách v celé heterostruktuře. Většinou nás tato oscilující část vlnové funkce v prvním přiblížení ne-
zajímá. Na přechodu tedy řešíme spojitost obálky χ(z) oscilující Blochovy vlnové funkce. Tato obálková
vlnová funkce χ(z) vznikla z harmonické funkce, která odpovídá rovinné vlně. Chová se tedy tak, že
v ohraničené kvantové jámě osciluje a v bariéře se exponenciálně tlumí.

Pro obálkovou vlnovou funkci potom řešíme odpovídající stacionární Schrödingerovu rovnici

− ℏ2

2m∗△χ(z) + U(z)χ(z) = Eχ(z). (12.20)

Výpočet provedeme stejně pro elektrony i pro díry, pouze za efektivní hmotnost m∗ dosadíme správnou
hodnotu, která je navíc v různých vrstvách různá, viz tab. 12.1. Potenciál U(z) popisuje profil vodivostního
nebo valenčního pásu. Obrázek 12.6 ukazuje výsledek výpočtu nejnižší energetické hladiny a obálkové
vlnové funkce pro elektron a těžkou díru. Pokud do potenciálu zahrneme elektrické pole přiložené ve
směru osy ẑ, můžeme sledovat Starkův jev. Díky posunu vlnových funkcí základních stavů elektronu a
díry vlivem elektrického pole do opačných stran kvantové jámy dojde ke zmenšení rozdílu energie hladiny
elektronu a hladiny díry. Díky tomu se sníží i energie fotonu, který se při rekombinaci elektronu a díry
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vyzáří. Tato energie je v obrázku zakreslena modrou šipkou.

Polovodič GaAs AlAs Ga1−xAlxAs
me 0.0665 0.15 0.0665 + 0.0835x

mh 0.34 0.76 0.34 + 0.42x

Tab. 12.1: Efektivní hmotnosti
elektronů a děr.

Obr. 12.6: Černá čára představuje profil vodivostního a valenčního pásu pro kvantovou jámu GaAs šířky
10 nm obklopenou Ga0.7Al0.3As. Pásy jsou nakloněny vyznačeným elektrickým polem. V tomto potenciálu
jsou spočítány první dvě hladiny pro elektrony a těžké díry podle (12.20). Modrou šipkou je zakreslena
vzdálenost základní elektronové a děrové hladiny.

Rovnice (12.20) představuje obvyklou Schrödingerovu rovnici s jednoduchým potenciálem. Hledáme
tedy vlastní stavy energie E a jim odpovídající obálkové vlnové funkce χ(z). Kvantování energie dosta-
neme jako obvykle z okrajových podmínek. V bariéře se musí vlnová funkce exponenciálně tlumit. Na
každém rozhraní materiálu A-B musí být spojitá vlnová funkce, což odpovídá spojitosti pravděpodobnosti
výskytu dané částice (elektronu, díry). Spojitá ale musí být i derivace dělená efektivní hmotností, což
odpovídá spojitosti rychlosti šíření dané částice a potažmo spojitosti elektrického proudu.

χA = χB,
1

mA

dχA

dz
=

1

mB

dχB

dz
.

Pro konstantní potenciál budou řešením harmonické funkce, jak to vychází v Kronigově-Penneyově mo-
delu, který se řešil v sekci 8.8. Pokud jsou ale pásy nakloněné, budou řešením Airyho funkce. To se
diskutuje v příkladu 12.4 a jedna z Airyho funkcí Ai(z) je zakreslena v obr. 12.11 pro elektron i pro díru.

12.3.2 Optické vlastnosti kvantových jam

Excitace kvantové jámy na obr. 12.6 znamená, že je hladina ve vodivostním pásu obsazena elektronem
a hladina ve valenčním pásu těžkou dírou. Pokud má dojít k zářivému přechodu, dojde k rekombinaci
tohoto excitovaného páru elektronu a díry. Účinnost přechody určuje překryvový integrál elektronové a
děrové obálkové funkce Pro nulové elektrické pole mají vlnové funkce sudou a lichou symetrii. χ(z).

■ Pokud je změna kvantového čísla hladiny ∆i = 0 (případně vyšší sudé číslo) bude přechod povolený
a silný.

■ Pro ∆i = 1 bude přechod zakázaný a v optických spektrech buď nebude vidět vůbec, nebo bude
jen velmi slabý.

Pro optické přechody v jámách platí, že při zužování jámy dochází vlivem prostorového omezení ke
zvyšování energie přechodu (modrý posun). Spektrum absorpce má schůdky odpovídajíc postupnému
přidávání stále vyšších energetických hladin. Projevují se přechody elektronů na hladiny těžkých, ale
i na hladiny lehkých děr, které nejsou degenerované. Prostorové omezení elektronů a děr do prostoru
kvantové jámy zesiluje excitonové přechody, které jsou spektrálně úzké a jsou patrné i při pokojové
teplotě. Rekombinace je v jámě efektivnější a proto jsou výhodné pro výrobu fotonických součástek jako
LED a laserové diody.
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12.4 Supermřížky

Supermřížkou označujeme polovodič, ve kterém je vyrobena periodická struktura složení (kompozice)
nebo dopování. Supermřížku můžeme tedy získat periodickým opakováním jedné kvantové jámy. Pokud
budeme mít sadu kvantových jam, jejichž vlnové funkce nejsou lokalizované v jedné jámě, řešíme pro obál-
kovou vlnovou funkci problém, který je ekvivalentní Kronigovu-Penneyovu modelu, který jsme probírali
v sekci 8.8 na str. 121 a následujících.

12.4.1 Kompoziční supermřížka

Obálkové vlnové funkce vlastních stavů kompoziční sumermřížky mají evanescentní charakter ve vrstvách
bariér. Protože původně ostré energetické hladiny jedné kvantové jámy se začnou překrývat se stavy
v sousední jámě, dojde k rozšíření energetických hladin do pásů, které se někdy označují jako podpásy.
Šířka těchto podpásů roste: a) při zužování šířky jámy; b) při zužování šířky bariéry; c) díváme-li se
pro dané šířky jam a bariér na energeticky vyšší podpásy. Šířka podpásů klesá též s rostoucí efektivní
hmotností částic.

Obr. 12.7: Závislost polohy a šířky elektronových energetických podpásů supermřížky na šířce jámy (šířka
bariéry je stejná jako šířka jámy). Převzato z [23].

Jak roste šířka podpásů při současném zužování jam i bariér ukazuje obr. 12.7. Obrázek je převzat
z knihy autorů C. Weisbuch a B. Vinter z roku 1991, která je jednou z prvních a velmi dobrých textů
popisujících kvantové heterostruktury a supermřížky [23]. Každý stav v supermřížce je popsán vlnovým
vektorem k⃗ se složkou podél osy růstu kz a složkou kolmou k⊥. Dalším kvantovým číslem n je ozna-
čeno pořadí příslušného podpásu, který odpovídá číslu původní hladiny v jednoduché kvantové jámě.
Na obr. 12.7 jsou u těchto čar symboly E1, E1, atd. Na pozadí obrázku je zakreslen potenciál hrany
vodivostního pásu, z čehož jasně plyne podobnost s Kronigovým-Penneyovým modelem. Pokud dochází k
tunelování bariérami, rozšíří se energetické hladiny na podpásy. Vzniká periodické opakování potenciálu
s periodou d odpovídající součtu šířky jámy a bariéry. Z toho plyne že původní 1.BZ s šířkou 2π/a, kde a
označuje mřížkovou konstantu, se zúží na šířku 2π/d. Energetické pásy, které leží mimo tuto zúženou BZ
se musí do této zóny překlopit. KP model s periodickým potenciálem tedy dává vzniknout minipásům
dovolených a zakázaných energií.
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Obr. 12.8: Dopovaná n-i-p-i supermřížka: a) Prostorové schéma uspořádání vrstev; b) profil pásů v reálném
prostoru v rovnováze a c) při optické excitaci nadbytečných nosičů.

12.4.2 Dopované n-i-p-i supermřížky

Polovodičovou supermřížku lze získat také střídáním dopování, kdy vzniká tzv. n-i-p-i struktura2. V této
struktuře se střídají oblasti dopované na n-typ a na p-typ. Mezi tyto silně dopované oblasti se často
vkládají nedopované (intrinsické) vrstvy, viz obr. 12.8. Výhodou dopovaných supermřížek je automatická
rovnost mřížkových konstant všech vrstev. Zvláštní zájem o dopované supermřížky pramení též z možnosti
ovládání elektronové struktury přiloženým elektrickým polem, což je možné díky tomu, že elektrony a
díry jsou lokalizované v různých vrstvách supermřížky.

Prostorové rozložení ionizovaných příměsí ve vrstvách dopované supermřížky vytváří periodický po-
tenciál zakreslený na obr. 12.8. Ten modifikuje průběh krajů pásů tak, že elektrony a díry jsou v krystalu
prostorově odděleny. Modelovat různé průběhy lze volbou koncentrace dopování a šířkou dopovaných a
nedopovaných vrstev. Důsledkem vzájemného oddělení nosičů je především prodloužení doby života do
rekombinace o mnoho řádů. Díky tomu lze dosáhnout velkého zvýšení koncentrace nosičů i malou optickou
excitací či slabou injekcí a dostat se daleko od termodynamické rovnováhy. Takto lze na daném vzorku
měnit koncentrace nosičů v širokém rozsahu. Prostorové oddělení kladných a záporných nosičů také vede
k částečné kompenzaci potenciálu prostorového náboje ionizovaných příměsí. Jak vzrůstá koncentrace
nosičů, klesá amplituda modulace potenciálu supermřížky a stoupá efektivní šířka zakázaného pásu. Tím
je současně ovlivněno tunelování a tedy i doba života nosičů.

Výpočty energetických hladin∗

Obrázek 12.8b) zobrazuje energetický diagram n-i-p-i struktury v reálném prostoru v základním a excito-
vaném stavu. Modulace hran vodivostního a valenčního pásu lze vypočítat integrací Poissonovy rovnice

d2V (z)

dz2
= −Q(z)

ε
. (12.21)

Takto získáme vztah

2V0 =
e

2ε

[
(dnNd + dpNa)di +Nd

(
dn
2

)2

+Na

(
dp
2

)2
]
, (12.22)

kde dn, dp a di označují šířky vrstev typu n, p, resp. intrinsických. Za předpokladu celkové nábojové ne-
utrality lze psát dnNd = dpNa. Pohyb nosičů v podélném směru je kvantován potenciálem supermřížky,
což vede ke vzniku tzv. podpásů. Neboť v tomto případě pracujeme v oblasti minima i maxima s harmo-
nickým potenciálem, můžeme zapsat odpovídají nejnižší energie harmonického oscilátoru s kvantovým

2G.H. Döhler, P. Ruden, „Properties of n-i-p-i doping superlittices in III-V and semiconductorsÿ, Surface Science 142,
447 (1984).
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)
. (12.23)

Energie jsou měřeny z extrému ve středu dopované oblasti. Hodnoty ℏω odpovídají formálně energiím
plazmonů v dopovaném prostorovém polovodiči, kde je koncentrace elektronů Nd, nebo děr Na.

Velikost efektivního zakázaného pásu Eef
g je definovaná jako rozdíl extrémů hladin energie,

Eef
g = Eg − 2eV0 + Ee + Eh. (12.24)

Její hodnota je určena převážně velikostí modulace potenciálu 2eV0 a závisí tedy lineárně na dopování
a kvadraticky na šířce aktivních vrstev. Pro jisté speciální nastavení lze docílit podmínky Eef

g = 0. V
tomto případě se bude supermřížka chovat jako polokov. V tomto extrémním případě nebo v případě op-
tické excitace vzorku, je nutné pro výpočet pásové struktury použít self-konzistentní výpočet. V mnoha
případech aplikací ale vystačíme s přibližným výpočtem, např. lze přijmout zjednodušení, že elektrony
v jámě v n-typu zarovnají dno vodivostního pásu v okolí extrému a díry analogicky zarovnají dno vale-
nčního pásu. Modulace, která byla v základním stavu 2eV0, se takto změní na 2eV1. V efektivní energii
zakázaného pásu (12.24) pouze nahradíme V0 hodnotou V1.

Doba života nosičů je konečná díky tunelování a tepelně indukovaným vertikálním přeskokům. Který
z obou procesů převáží, záleží na dopování. Pro GaAs za pokojové teploty převládne tunelování, pokud
Nd = Na > 3× 1018 cm−3.

Při absorpci světla n-i-p-i strukturou relaxují elektrony (díry) do minima vodivostního pásu (ma-
xima valenčního pásu) s časy ∼ps. Efektivita tohoto procesu je díky pomalosti konkurenční rekombinace
značná. Z důvodu dlouhé doby života závisí počet indukovaných nosičů na intenzitě a době expozice.
Rychlost spínání těchto efektů je nepřímo úměrná intenzitě osvětlení, časy vypínání jsou též dlouhé, ale
existují způsoby, jak odezvu zhasnout rychleji.

Vliv elektrického pole na n-i-p-i supermřížku∗

Elektrické pole lze na n-i-p-i strukturu přiložit pomocí různých kontaktů. Podélného pole je možno dosáh-
nout pomocí tzv. sendvičového uspořádání (obr. 12.9a)). Toto pole způsobí, že efektivní zakázaný pás se
štěpí na dva příspěvky Eef+

g a Eef−
g . To je nezávislé na tom, zda je krystal v základním, nebo excitovaném

stavu. Protože se modulace pásů mění přímo přiložením napětí Vz a není spojena se změnami koncentrací
nosičů ve vrstvách, je odezva ultrarychlá, čehož lze využít u elektrooptických spínačů.

Pokud napětí přiložíme na selektivní kontakty Vnp, můžeme jím přímo měnit velikost modulace pásů.
Selektivní kontakty jsou ohmické vůči vrstvám jednoho charakteru dopování a jejich výroba vyžaduje
kombinovat speciální litografickou metodu s růstem vrstevnatého vzorku. Obrázek 12.9b) ukazuje, že ze
selektivních kontaktů lze injektovat nosiče nebo je naopak z vrstev odsát, tak se vyrovná rozdíl kvazi

Vz

Vnp

z

Eg

Eg
ef Eg

ef+

z

Eg
ef

+ eVnp

a) b)

Obr. 12.9: Dva způsoby přiložení elektrického napětí na dopovanou n-i-p-i supermřížku: a) Napětí podél
osy růstu Vz, pásová struktura se nakloní, jak je naznačeno žlutým klínem. b) Napětí Vnp aplikované
pomocí selektivních kontaktů mezi n-typové a p-typové vrstvy mění modulaci n-i-p-i potenciálu.
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Fermiho hladin vnějšímu napětí Vnp. Časová konstanta těchto změn je pro GaAs se vzdálenosti kontaktů
10 µm řádově ∼ns.

12.5 Nové součástky

Technologie popsané v této kapitole se používají pro výrobu moderních elektronických a fotonických sou-
částek. LED diody všech barev dnes potkáváme snad skoro všude, používají se pro barevnou signalizaci
i osvětlení. Díky zvýšené svítivosti a menší spotřebě proti žárovkám je dnes vídáme i v semaforech nebo
v reflektorech automobilů. Polovodičové lasery se používají pro vláknové komunikace, pro zápis a čtení
v CD a DVD mechanikách, v laserových tiskárnách, v laserových ukazovátkách a na mnoha dalších mís-
tech. Polovodičové lavinové fotodiody jsou díky novým technologiím dnes schopné detekovat jednotlivé
fotony s pravděpodobností větší než 50 %. Polovodičové fotovoltaické články se zase používají pro zís-
kávání elektrické energie. Na heterostrukturách jsou založeny polovodičové vysokofrekvenční součástky,
které pracují v mobilních telefonech a navigacích.

Polovodiče s heterostrukturami dovolují vyrábět tunelovací součástky, které by jinak nemohly fun-
govat. Za výzkum v této oblasti byla v roce 2000 udělena Nobelova cena3. Celá elektronika navazuje
samozřejmě na výzkum tranzistorového za který byla udělena Nobelova cena už v roce 1956. Tranzistor
se dvěmi p-n přechody má ale svá omezení plynoucí z konstrukce založené na homopřechodech. Hete-
ropřechody umožňují vyrobit mnohem rychlejší součástky a my se zaměříme pouze na tu nejjednodušší
součástku a tou je rychlý tranzistor HEMT (High-Electron-Mobility Transistor) [21, 24].

12.5.1 HEMT

Obr. 12.10: Pásové schéma modulačně dopovaného
heteropřechodu GaAs-Ga1−xAlxAs. Na heteropře-
chodu se vytvoří ve vodivostním pásu trojúhel-
níková kvantová jáma, která se zaplní elektrony
uvolněnými ionizací donorů v n-dopované bariéře.
První dvě energetické hladiny v jámě jsou označeny
E0 a E1. Převzato z [21].

Obrázek 12.10 ukazuje základní princip konstrukce rychlého tranzistoru HEMT. Modulační dopování
zde znamená, že základní polovodič GaAs je nedopovaný (Fermiho mez je v prostředku zakázaného
pásu). Po přechodu do Ga0.7Al0.3As dojde skokově k nárůstu šířky zakázaného pásu, ale dopování je
stále minimální (spacer layer). Poté následuje vrstva silně dopovaného Ga0.7Al0.3As, a proto se zde
Fermiho mez musí dostat k donorové hladině těsně pod krajem vodivostního pásu. Fermiho hladina je
konstantní v celém průřezu tranzistorem, který je v termodynamické rovnováze. K této konstantní hladině
se tedy přibližují energetické pásy. K ohybu energetických pásů dochází díky nábojovému přesunu, který
generuje vnitřní elektrické pole.

Pohyb elektronů v trojúhelníkové kvantové jámě je kvantován pouze ve směru osy z. V rovině xy
se mohou elektrony pohybovat volně a vytváří 2D metalickou vodivostní vrstvu. Pohyblivost těchto
elektronů je typicky velmi vysoká µ ≈ 1×107 cm2/Vs. Nepohyblivé ionizované příměsi jsou od 2D vodivého
kanálu oddělené vrstvou spaceru, a proto nenarušují volný pohyb elektronů 2D ve vrstvě. Koncentraci
elektronů ve vodivostním kanálu je ale možné ovlivnit napětím přiloženým na elektrodu, která zajistí
posun trojúhelníkové jámy nad Fermiho mez. Tyto součástky se pak souhrnně nazývají FET (Field-
Effect Transistor). Ty se obvykle používají v obvodech zpracovávajících signály s GHz rychlostmi.

3Žores Ivanovič Alferov [�ores Ivanoviq Alferov ] a Herbert Kroemer jsou nositelé Nobelovy ceny za fyziku z roku
2000 za vývoj polovodičových heterostruktur používaných ve vysokorychlostní elektronice a optoelektronice.
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12.6 Příklady

Př. 12.1: Šířka oblasti prostorového náboje:
Uvažujte p-n přechod v GaAs s koncentrací dopování v jednotlivých částech: Na = 2 × 1017 cm−3,
Nd = 1× 1017 cm−3. Permitivita pro GaAs je ε = 13.1 a ni = 1.79× 106 cm−3. Spočítejte šířky oblastí
xp, xn a w0 při pokojové teplotě 300 K. Dále spočítejte velikost difuzního potenciálu a srovnejte s šířkou
zakázaného pásu.

Př. 12.2: Závěrný proud p-n přechodem:
Odvoďte velikost konstanty I0 ze vztahu (12.19). Namalujte diodovou I-V charakteristiku pro křemíkovou
diodu s plochou 50 µm2 s koncentrací dopování v jednotlivých částech: Na = Nd = 1018 cm−3. Doby
života obou nosičů jsou stejné τ = 1 µs, difuzní koeficienty se liší, Dn = 35 cm2/s, Dp = 12.5 cm2/s.

Př. 12.3: Změna šířky prostorového náboje s napětím v propustném směru:
Navážeme na př. 12.1 a zde spočítaný difuzní potenciál V0. Spočítejte podíl šířek oblasti prostorového
náboje w/w0, kde w je šířka oblasti prostorového náboje po přiložení propustného napětí 0.3 V.

Př. 12.4: Franzův-Keldyshův jev:
Vlivem vnějšího elektrického pole přiloženého na polovodič dojde k posunu absorpční hrany pod hodnotu
Eg a pro vyšší energie bude spektrum absorpce oscilovat. Vysvětlete fenomenologicky tento jev pomocí
překryvu vlnových funkcí elektronu a díry rozposunutých prostorově ve směru elektrického pole.

Nápověda: Použijte pásové schéma a obálkové vlnové funkce zakreslené na obr. 12.11.

EEg

Obr. 12.11: Pásová struktura polovodiče nakloněná elektrickým polem. Obálková vlnová funkce elek-
tronu je zobrazena modrou čarou a díry ve valenčním pásu červenou čarou. Šipkou je znázorněna šířka
zakázaného pásu Eg.

Př. 12.5: Šířka zakázaného pásu jako funkce mřížkové konstanty:
Zkuste dohledat obr. 12.1 ve více než dvou zdrojích a zkuste vysvětlit jejich rozdíly.
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Ilustrace od Tonyho De Saullese z knihy Nicka Arnolda Zrádné síly (2004).
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Příloha A

Napětí

A.1 Elastické napětí

Pokud budeme uvažovat homogenní materiály, ve kterých se šíří vlny s vlnovou délkou λ > 10 nm (s frek-
vencí ω < 1011 Hz), můžeme zanedbat atomární strukturu látky. Pro elastické napětí lze použít klasický
Hookův zákon. Budeme chtít popsat deformaci, aniž bychom řešili detaily, zda jde o jev izotermický,
nebo jev adiabatický. Při deformaci se posune vybraný atom z místa popsaného vektorem R⃗ na místo R⃗′.
Posunutí popíšeme tenzorem malé deformace ϵij ve složkách

R′
i = (δij + ϵij)Rj ,

kde δij značí Kroneckerovo delta. Označíme-li si objem vzorku před deformací V a po deformaci V ′,
potom můžeme vyjádřit relativní změnu objemu při deformaci popsané tenzorem ϵij jako

V ′ − V
V

≈ ϵxx + ϵyy + ϵzz.

Nyní si definujme tenzor napětí Fkl jako zobecněnou sílu působící na krystal. Jde o sílu působící ve
směru osy k na rovinu kolmou na osu l. Pro příklad uveďme Fxy je síla působící ve směru osy x̂ na rovinu
kolmou na osu ŷ, jde tedy o tečnou složku působící smyk.

A.1.1 Hookův zákon

Hookův zákon říká, že v elastické oblasti je deformace úměrná působícímu napětí. Pro výše zavedené
tenzory můžeme Hookův zákon zapsat dvěma způsoby

ϵij = SijklFkl, Fkl = Cklijϵij . (A.1)

Koeficienty lineární závislosti mezi napětím a deformací představují tenzory čtvrtého řádu,
←→
S se označuje

jako elastická poddajnost (angl. compliance) a
←→
C je tuhost (angl. stiffness). Jednotkou tuhosti je N/m2

nebo J/m3, poddajnost má jednotky inverzní. Díky linearitě se redukuje počet prvků maticového zápisu
tenzoru tuhosti/poddajnosti na (6× 6).

Díky symetrii krystalu se redukuje počet maticových prvků ještě výrazněji. Pro nejběžnější případ
kubického materiálu má Hookův zákon tvar

Fxx
Fyy
Fzz
Fyz
Fzx
Fxy


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





ϵxx
ϵyy
ϵzz
ϵyz
ϵzx
vxy


, (A.2)

kde nenulové členy matice tuhosti jsou pouze tři různé koeficienty: C11, C12 a C44.
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A.1.2 Elastická vlna ve směru osy [100]

Pokud je vlnový vektor šířící se vlny q⃗ = (1, 0, 0), můžeme si zapsat pohybovou rovnici pro výchylku u
ve směru osy x̂ následovně

ρ
∂2u

∂t2
=
∂Fxx
∂x

+
∂Fxy
∂y

+
∂Fxz
∂z

, (A.3)

kde ρ značí hustotu materiálu. Uvažujme podélné harmonické kmity. Výchylku zapíšeme jako

u = u0 e
ı(qx−ωt).

Vlnová délka těchto kmitů je λ = 2π/q. Použijeme definiční vztah pro nenulovou složku deformace
ϵxx = ∂u/∂x. Dosazením do (A.3) dostaneme disperzní vztah

ω2ρ = C11q
2. (A.4)

Odtud můžeme snadno určit rychlost podélné vlny ve směru [100] jako

v =
ω

q
=

√
C11

ρ
. (A.5)

Zcela analogicky je možné dostat pro příčné vlnění, které se šíří podél osy x̂, následující

ω2ρ = C44q
2, v =

√
C44

ρ
. (A.6)

Obdobně by bylo možné pokračovat i pro další směry vyšší symetrie v kubickém krystalu. Pro obecný
směr šíření, kdy se musí pracovat s celými tenzory, je výpočet podstatně méně přehledný.
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Příloha B

Statistická rozdělení

B.1 Tři statistická rozdělení

Na tomto místě zopakujeme tvar statistických rozdělovacích funkcí, které se využívají při popisu identic-
kých částic ve statistické fyzice. Tvar těchto funkcí je zakreslen v obr. B.1.

(E- ) / kBT

f
f
f

Obr. B.1: Tři používané statistické funkce: Fermiho-Diracova fFD pro fermiony, Boseho-Einsteinova fBE

pro bosony a klasická statistická Maxwellova-Boltzmannova fMB.

Střední počet fermionů ve stavu na energii E dává Fermiho-Diracova statistika

fFD(E) =
1

e(E−µ)/kBT + 1
. (B.1)

Protože na jedné hladině nemohou být současně dva fermiony, jsou hodnoty funkce fFD v intervalu od
nuly do jedné. Proto můžeme tuto funkci interpretovat jako pravděpodobnost obsazení dané energetické
hladiny.

Statistiku bosonů popíšeme Boseho-Einsteinovým rozdělením. To můžeme zapsat analogicky s (B.1)
jako

fBE(E) =
1

e(E−µ)/kBT − 1
. (B.2)

Jak ukazuje modrá křivka v obr. B.1, toto rozdělení je definované pro energie větší než µ. Odčítání energie
se většinou volí tak, že chemický potenciál µ je roven nule. Pro bosony není žádné omezení na počet stavů
na jedné energetické hladině. Proto může funkce fBE(E) nabývat hodnot větších než jedna a pro energii,
která se blíží k nule, dokonce diverguje.
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Pokud se pohybujeme na energiích o 2kBT nad µ, potom můžeme obě výše uvedená rozdělení na-
hradit limitou, kdy zanedbáme jedničku ve jmenovateli. Tato limita se shoduje s klasickým statistickým
Maxwellovým-Boltzmannovým rozdělením

fMB(E) =
1

e(E−µ)/kBT
= A e−E/kBT . (B.3)

Konstanta A je daná normalizací.
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Seznam použitých symbolů

V následujícím seznamu je uvedeno značení veličin a zkratky pojmů, které se v textu častěji používají.
Velikost fyzikálních konstant je uvedena s takovým počtem platných cifer, že chyba je menší než polovina
poslední cifry. Většina uvedených fyzikálních konstant je dnes definována přesně, a tato přesná hodnota
slouží k zafixování vzájemného poměru fyzikálních veličin. Volba fixovacích konstant byla zvolena s ohle-
dem na maximální kompatibilitu s předchozí definicí. Zdrojem konstant je seznam z webové stránky NIST
(National Institute of Standards and Technology) [25], což je instituce, která má zajišťovat dostupnost
aktuálních informací o všech fyzikálních konstantách. Na těchto stránkách je zaznamenán i historický
vývoj v této oblasti.

Symboly v latince

značka popis
1D jednodimenzionální, jednorozměrný
2D dvoudimenzionální, plošný
3D trojdimenzionální, prostorový
x̂, ŷ, ẑ osy kartézského souřadnicového systému
a mřížková konstanta 1D, čtvercových nebo kubických mřížek
aB Bohrův poloměr, aB = 0.529 178 Å
aex poloměr excitonu
An plocha magnetické orbity v k-prostoru
a⃗1, a⃗2, a⃗3 elementární mřížkové vektory
b⃗1, b⃗2, b⃗3 elementární mřížkové vektory reciproké mřížky
AG⃗ amplituda rozptylu
A⃗ vektorový potenciál
B⃗ vektor magnetické indukce
c rychlost světla ve vakuu, c = 299 792 458m/s (přesně)
Cp silové konstanty
←→
C tuhost
Cmn operace symetrie n-četná osa rotace zopakovaná m-krát
CV , cV tepelná kapacita, měrná tepelná kapacita
d vzdálenost krystalových rovin
D degenerace Landauovy hladiny
De, Dh difuzní koeficient elektronů, děr
D⃗ vektor elektrické indukce
D hustota stavů
e Eulerovo číslo, e = 2.718 281 828
e elementární náboj, e = 1.602 176 634× 10−19 C (přesně)
eV elektronvolt, energie, kterou získá elektron přechodem potenciálu 1 V
E⃗ elektrické pole
E energie
Eat energie základní hladiny jednoho atomu
Ec(k), Ev(k) vodivostní a valenční energetický pás
Eg šířka zakázaného pásu
Ekoh kohezní energie krystalu
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EF Fermiho energie
f statistické rozdělení (např. fFD, fBE)
fj atomový rozptylový faktor
F⃗ síla
Fkl tenzor napětí
G⃗ mřížkový vektor reciproké mřížky (celočíselná kombinace vektorů b⃗)
ℏ redukovaná Planckova konstanta, ℏ = 1.054 572 613× 10−34 J s

Planckova konstanta, 2πℏ = 6.626 075 15× 10−34 J s (přesně)
H hamiltonián
Hat hamiltonián jednoho atomu
H⃗ vektor magnetické intenzity
ı imaginární jednotka (ı =

√
−1)

i operace symetrie inverze
I operace symetrie identita; nebo proud
j⃗ hustota proudu
J⃗ tok, proud
kB Boltzmannova konstanta, kB = 1.380 649× 10−23 J/K (přesně)
k⃗ vlnový vektor (elektronu, často vybraný z 1.BZ)
K⃗ vlnový vektor v rozšířeném pásovém schématu
l střední volná dráha
L délka vzorku
Ln, Lp difuzní délka elektronů, děr
L Lorentzovo číslo
m hmotnost elektronu
m0 klidová hmotnost volného elektronu, m0 = 0.910 938 370× 10−30 kg
m∗ efektivní hmotnost nosiče v pásu
me,mh efektivní hmotnost elektronů, děr
M hmotnost atomárního jádra
Mn klidová hmotnost neutronu, Mn = 1.674 927 498× 10−27 kg
n koncentrace elektronů
nopt optický index lomu
N počet elementárních buněk krystalu
NA Avogadrova konstanta, NA = 6.022 140 76× 1023 mol−1 (přesně)
Na, Nd koncentrace akceptorů, resp. donorů
p hustota děr v polovodiči∑′
j p

−?
ij mřížkové sumy

∑′
j p

−6
ij a

∑′
j p

−12
ij

p⃗ hybnosti elektronu
P⃗ hybnosti jádra
P⃗e vektor polarizace
q̃ náboj elektronu q̃ = −e, resp. náboj díry q̃ = e
Q náboj kationtu (aniontu) v soli
q⃗ vlnový vektor fononu
QT absolutní termoelektrická síla
r⃗ polohový vektor elektronu
rs Wignerův poloměr, poloměr koule s jedním valenčním elektronem
R⃗ polohový vektor atomárního jádra
RH Hallův koeficient
Ry Rydberg, energie základní hladiny atomu vodíku, Ry = 13.605 672 6 eV
Rex excitonový Rydberg
s⃗ spin
S⃗ element plochy
Sn plocha magnetické orbity v reálném prostoru
Smn operace symetrie n-četná nevlastní osa rotace zopakovaná m-krát
SG⃗ strukturní faktor
←→
S poddajnost
t čas
T teplota
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TF Fermiho teplota
T⃗ mřížkový translační vektor přímé mřížky (celočíselná kombinace vektorů a⃗)
u⃗kl vektor výchylky atomu z rovnováhy
uk⃗ periodická část Blochovy vlnové funkce
U potenciál pro elektrony
UG⃗ koeficienty rozvoje potenciálu
V potenciál jader
v⃗ vektor rychlosti
v⃗f , v⃗g fázová, resp. grupová rychlost
V0 difuzní potenciál p-n přechodu
Vc objem elementární buňky krystalu
Vck objem celého krystalu
w,w0 šířka oblasti prostorového náboje p-n přechodu
Wj pravděpodobnost přechodu do stavu j
z počet nejbližších sousedů v mřížce
Z atomové číslo
Z∗ valence

Symboly v řecké abecedě

značka popis
α Madelungova konstanta; silová konstanta nejbližších sousedů
β převrácená hodnota součinu Boltzmannovy konstanty a teploty, β = 1/kBT
δ Diracova δ-funkce
δij Kroneckerovo delta
ϵij tenzor malé deformace
ε relativní dielektrická konstanta (permitivita)
ε0 permitivita vakua, ε0 = 8.854 187 81× 10−12 F/m
ε, σ parametry Lennard-Jonesova potenciálu inertních plynů
θ Braggův úhel rozptylu
Θ Debyeova teplota
λ vlnová délka světla; tepelná vodivost
λB magnetická délka elektronu
µ chemický potenciál
µ0 permeabilita vakua, µ0 = 4π × 10−7 H/m
µe, µh pohyblivost elektronů a děr
µB Bohrův magneton
π Ludolfovo číslo, π = 3.141 592 653 6
Πe,Πh Peltierův koeficient pro elektrony a díry
ρ měrný odpor; hustota; hustota volného náboje
σ měrná vodivost
σh, σv, σd operace symetrie různě orientované roviny zrcadlení
τ doba života, relaxační doba, časová konstanta
φ,ψ vlnová funkce
Φ(kl, k′l′) tenzor silových konstant
Φn magnetický tok plochou orbity v reálném prostoru
ψk⃗(r⃗) Blochova vlnová funkce
ω kruhová frekvence (ℏω je energie fotonu nebo fononu)
ωc cyklotronová frekvence (elektronu v magnetickém poli)
ωD Debyeova frekvence
ωT, ωL frekvence příčného a podélného optického fononu
ωp plazmová frekvence elektronů v kovu
Ω objem primitivní reciproké buňky
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Jednotky a veličiny v soustavě CGS

V některých knížkách se stále ještě používá značení v soustavě CGS. Proto je vhodné na tomto místě
uvést převodní vztahy do soustavy SI, podobně jak to mají autoři Yu a Cardona na zadní předsádce
knihy [14].

veličina SI jednotka koeficient konverze CGS jednotka
SI→CGS CGS→SI

délka metr [m] 102 10−2 centimetr [cm]
hmotnost kilogram [kg] 103 10−3 gram [g]
energie Joule [J] 107 10−7 erg
náboj Coulomb [C] 3× 109 1/3× 10−9 statcoulomb
potenciál Volt [V] 1/300 300 statvolt
odpor Ohm [Ω] 1/9× 10−11 9× 1011 statohm

veličina hodnota v CGS výpočet z SI konstant
náboj elektronu 4.803 205× 10−10 esu 10 ec
hmotnost elektronu 9.109 384× 10−28 g 103m0

energie 1 eV 1.602 177× 10−12 erg 107 e

Pro převod vzorců, které najdete v literatuře v CGS, použijte následující tabulku (viz Appendix
Jacksonovy knihy [26]). Například pokud se bude ve vzorci vyskytovat c, nahradí se hodnotou 1/

√
ε0µ0.

veličina (podobně pro další) výraz v CGS nahradit výrazem v SI
rychlost c 1/

√
ε0µ0

elektrická intenzita (potenciál, napětí U) E⃗
√
4πε0 E⃗

elektrická indukce D⃗
√
4π/ε0 D⃗

náboj (proud j⃗, polarizace P⃗ ) ρ 1/
√
4πε0 ρ

magnetická intenzita H⃗
√
4πµ0 H⃗

magnetická indukce B⃗
√
4π/µ0 B⃗

vodivost (kapacitance) σ σ /(4πε0)
permitivita ε ε/ε0
permeabilita µ µ/µ0

odpor (impedance, induktance) R (4πε0) R
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