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Abstract. Negative refractive index media have become a hot topic in physics due to their proposed
revolutionary properties, which would have drastic consequences in design of novel optical devices. We
show that Kramers-Kronig relations connecting the real and imaginary parts of the complex refractive
index of absorbing media are valid even though the real refractive index may take negative value at some
spectral range. In addition universal sum rules for linear optical constants of negative index media are also
valid. This means that negative refractive index media are not fundamentally different from regular media.
Hence, any spectrum measured from negative refractive index media can be analyzed using dispersion
relations and sum rules, which have so far provided information on the optical properties of materials.

PACS. 77. Dielectrics, piezoelectrics, and ferroelectrics and their properties – 78.20.Ci Optical constants
(including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients,
emissivity)

1 Introduction

Recently, the work of Veselago [1] has stimulated discus-
sion of the possibility of negative linear refractive index
materials. The issue of negative index has been a source
of many studies of so-called metamaterials. Metamateri-
als, which are structured materials and which have been
under experimental and numeric studies at microwave re-
gion, are beyond the scope of this study, since we are in-
terested in media which may possess negative linear real
refractive index at optical frequencies. Pendry [2] gave
theoretical prediction for the existence of negative linear
real refractive index medium, which could provide a per-
fect lens. Nevertheless, Garcia and Nieto-Vesperinas [3]
pointed out that dispersiveless and lossless negative re-
fractive index medium will not provide a perfect lens.
Support to the Garcia and Nieto-Vesperinas was given by
Valanju et al. [4] who claimed that causality and finite sig-
nal speed prohibit the existence of negative index medium.
However, Pokrovsky and Efros [5] have pointed out some
mistakes e.g. in the study of Valanju et al. [4]. Further-
more, Pokrovsky and Efros suggested that any medium
may be described by both positive and negative linear
refractive index. Recently, Zhang et al. [6] gave strong
evidence on negative refraction at optical spectral region
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using crystals. Peiponen et al. [7] suggested that a neg-
ative index could be accomplished also using nonlinear
optical properties of homogeneous or nanostructured me-
dia. In the regime of linear optics of positive refractive
index the validity of Kramers-Kronig (K-K) relations [8]
has been proved for nanocomposites [9]. Since causality
is fundamental physical property that implies the validity
of the K-K relations we may expect that K-K relations
and sum rules [10,11] are valid also for negative linear
real refractive index of homogeneous medium, which may
be nanostructured. Since the K-K relations and sum rules
are fundamental tools in practical analysis of optical spec-
tra both from optically linear [12] and nonlinear media
[13,14] one can expect that optical spectroscopy of nega-
tive index media will have importance in basic studies and
engineering of such materials.

2 Kramers-Kronig relations and sum rules
for negative linear real refractive index

We approach the problem of analyzing the optical proper-
ties of negative refractive index media from the perspec-
tive of basic classical theory of electromagnetism. We con-
sider the angular frequency dependent permittivity ε(ω)
and permeability µ(ω) of a nanostructured medium. The
material parameters have to be treated as complex valued
functions, where the imaginary parts are related to en-
ergy loss processes. Our starting point is the definition of
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the complex refractive index, by the assumption of time-
dependence exp(−iωt) of fields, as follows [8]:

N(ω) = n(ω) + iκ(ω) =
√

ε(ω)µ(ω)

=
√

[ε1(ω) + iε2(ω)][µ1(ω) + iµ2(ω)], (1)

where ω is frequency, n(ω) is the real refractive index, κ(ω)
is the extinction coefficient and ε1,2(ω) and µ1,2(ω) have
their usual meanings presenting the real and imaginary
parts of the permittivity and permeability, respectively.
An issue in the literature of negative index media has been
the choice of the sign of the square root in equation (1),
i.e. minus sign for negative index media. The sign conven-
tion of the real parts of the permittivity and permeability
of homogeneous media [15] and uniaxial medium [16] have
been discussed in the literature. Here we wish to treat a
rather general case, namely we allow the switching of the
sign of the real refractive index between negative and pos-
itive values as a function of wavelength. Therefore, we do
not explicit spell out the sign in front of the square root
in equation (1) since it may be positive for some spec-
tral region and negative for another region, depending on
the signs of the real parts of the permittivity and perme-
ability. Actually, the property of switching the refractive
index between negative and positive values would have en-
gineering applications, for instance, in optical switching,
and optical computing.

The very basic principle of causality of the response of
any material to an external electromagnetic field (in the
case of electromagnetic radiation both electric and mag-
netic field propagate simultaneously in the medium) en-
sure that both permittivity and permeability, which both
are holomorphic functions in the upper half of the com-
plex frequency plane, obey K-K relations. The appearance
of the poles in the lower half of the plane is due to the
choice of the present time dependence of the field. If the
field is chosen to oscillate as exp(iωt), then the poles are
located in the upper half plane, and then ε and µ are
treated as holomorphic functions in the lower half plane.
In the present case we assume an isotropic insulating ef-
fective medium. Then, one may ask if K-K relations can
also be given for the complex refractive index? The answer
is yes and this matter has been dealt with in the litera-
ture [17,18]. Actually, a great deal of the present knowl-
edge of complex linear refractive index of transparent and
opaque media is based on the utilization of transmission
and reflection spectroscopies, and appropriate K-K rela-
tions that couple the real refractive index and extinction
coefficient, and also reflectance and phase. In the case of an
anisotropic medium the expressions for K-K relations that
involve complex refractive index were studied by Ginzburg
and Meiman [19]. The critical point in the derivation of the
K-K relations for the complex refractive index of isotropic
media is the holomorphicity of the function given in equa-
tion (1) (the sign convention either plus or minus has no
role with regard to the holomorphism of the complex re-
fractive index). It is important that the function

√
εµ has

no zeros in the upper half plane, which would essentially
be the branch points of this function. Fortunately, there

are no such branch points, and Räty et al. [20] have given
a rigorous proof of the holomorphicity of the complex re-
fractive index and the validity of the K-K relations for
the complex refractive index for nonmagnetic media. The
argumentation of the absence of branch points in the case
of

√
εµ follows the same outlines as those presented in the

book of Räty et al. [20].
Next we deal with the validity of K-K relations and

sum rules for the peculiar linear real refractive index which
takes both negative and positive values at the infinite an-
gular frequency space. For the sake of simplicity and clar-
ity we assume that the relative permittivity and perme-
ability of the medium (for metals the DC conductivity
term has to be taken into account) can be described by
single resonance Lorentzians as follows:

ε(ω) = 1 +
ω2

pe

ω2
0e − ω2 − iγeω

(2)

and

µ(ω) = 1 +
ω2

pm

ω2
0m − ω2 − iγmω

, (3)

where ωpe/m are the plasma frequencies, ω0e/m are the
resonance frequencies and γe/m are the corresponding line
widths. The symbol “e” is related to electric and the sym-
bol “m” to magnetic. The fundamental reason why we use
the above Lorentzian model is because of the crucial prop-
erties of holomorphicity in the upper complex ω-plane, be-
cause of the sufficiently fast asymptotic fall off (ω−2) of
the quantities ε(ω) − 1 and µ(ω) − 1, and because of its
symmetry properties with respect of conjugation of the
variable ω [8,11,18,21]. We emphasize that the theory be-
low is not restricted to the Lorentzian model but holds
more generally, and to systems that may involve multiple
resonances instead of a single resonance. Rigorous theory
of the sufficient asymptotic behavior and the holomorphic-
ity of the optical constants is based on the quantum me-
chanical treatment and the use of Kubo theory [13,22].

From equations (2) and (3) we can find under which
conditions the real parts of the permittivity ε1(ω) and
permeability µ1(ω) are negative. Reminding that the in-
dex “e” refers to the quantities related to the permittivity
and the index “m” to those related to the permeability,
we obtain that under the condition:

ω2
pe/m > γ2

e/m + 2γe/mω0e/m, (4)

that the physical quantity under investigation is negative
in the interval [ωle/m, ωue/m], where:

ωle/m =

[
2ω2

0e/m + ω2
pe/m − γ2

e/m

2

−
(ω4

pe/m + γ4
e/m − 2ω2

pe/mγ2
e/m − 4γ2

e/mω2
0e/m)

1
2

2

] 1
2

, (5)



K.-E. Peiponen et al.: Kramers-Kronig relations and sum rules of negative refractive index media 63

0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

8

10

12

ω

Re{ε(ω)}
Im{ε(ω)}
Re{µ(ω)}
Im{µ(ω)}

a) b)

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

4

5
Re{N(ω)} = n(ω)
Im{N(ω)} = κ(ω)

ω

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

∫
ω 0
[n

(ω
)
−

1]
d
ω

c)

10
−2

10
−1

10
0

10
1

10
2

0

0.4

0.8

1.2

1.6

ω

4 π

∫
ω 0
ω
κ
(ω

)d
ω

d)

ω2
pe + ω2

pm

Fig. 1. a) Real (solid lines) and imaginary (dotted lines) parts of complex permittivity and permeability, and b) corresponding
refractive index (solid line) and extinction coefficient (dotted line), convergence of the c) average index sum rule, and d) the
f-sum rule. The horizontal axis is logarithmic in figs. c) and d). The model parameters are ω0e = 1, ωpe = 1, γe = 0.1 ω0m = 1.2,
ωpm = 0.8, and γm = 0.05.

ωue/m =

[
2ω2

0e/m + ω2
pe/m − γ2

e/m

2

+
(ω4

pe/m + γ4
e/m − 2ω2

pe/mγ2
e/m − 4γ2

e/mω2
0e/m)

1
2

2

] 1
2

, (6)

where the symbols “l” and “u” denote the lower and up-
per limits of the angular frequencies. In the special but
relevant case of γe/m = 0, condition (4) is automatically
satisfied and we obtain the following simple expression for
the upper and lower boundaries of the interval:

ωle/m = ω0e/m, (7)

ωue/m =
√

ω2
0e/m + ω2

pe/m. (8)

Hence, we can have both ε1(ω) < 0 and µ1(ω) < 0 overlap,
and therefore we get a negative refractive index in their
intersection [ωl, ωu] = [ωle, ωue]

⋂
[ωlm, ωum].

In our numerical simulations we choose the model pa-
rameters as shown in Figure 1 in order to obtain a non-
empty interval [ωl, ωu] where both the real parts of per-
mittivity and permeability are negative. In Figure 1a we
show the real and imaginary parts of complex permittiv-
ity and permeability, and in Figure 1b the real refractive
index and the extinction coefficient calculated with the
aid of equations (1–3). We observe from Figure 1b that
the real refractive index takes negative value at a specific
angular frequency range, whereas the imaginary part is
always positive. The double peak structure in Figure 1b
is due to electric and magnetic resonances, respectively.
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We then checked the K-K relations that connect
the real and the imaginary part of the refractive in-
dex [11,18,21]:

n(ω′) − 1 =
2
π

P

∞∫

0

ωκ(ω)
ω2 − ω′2 dω, (9)

κ(ω′) = −2ω′

π
P

∞∫

0

n(ω) − 1
ω2 − ω′2 dω. (10)

The above relations hold also in the case of negative re-
fractive index for a frequency range ω ∈ [ωl, ωu]. We per-
formed our inversion using a limited but very wide spectral
interval ω ∈ [0, ωmax = 1000ω0e]. To estimate the success
of the data inversions we checked the difference between
ntrue − nKK and κtrue − κKK. The error was within the
precision of the numerical integration. That is to say we
got good match between the true and inverted curves.

Hence, K-K relations (9) and (10) provide universal
means to gain information on optical constants of media
either characterized as positive or negative refractive index
media.

Sum rules can be applied to test the validity of theoret-
ical models, the self-consistency of measured optical spec-
tra, and the efficacy of the optical data inversion obtained
with dispersion relations. Sum rules require the knowledge
of the optical constants of the medium at the whole semi-
infinite spectrum. The crucial fact in the derivation of the
sum rules in optical spectroscopy is the validity of the
K-K relations and the convergence of the dispersion rela-
tion integrals. Because K-K relations hold for a linear re-
fractive index, which is now allowed to take both negative
and positive values, the famous average index Altarelli-
Dexter-Nussenzveig-Smith (ADNS) sum rule [10] is valid

∫ ∞

0

[n(ω) − 1] dω = 0. (11)

A numerical integration of equation (11) with ωmax =
1000ω0e also confirmed the validity of the average index
sum rule. In Figure 1c is shown the curve for the inte-
gral (11) as a function of the upper integration limit. For
the estimation of the validity of the sum rule (11) we also
performed the following test [10]:

I =

∫ ωmax

0 [n (ω) − 1] dω
∫ ωmax

0
|n (ω) − 1| dω

(12)

and obtained the value of 0.0003 for ωmax = 1000ω0e. We
also tested the validity of the f-sum rule, which has much
importance in optical spectroscopy since it gives estimate
of the electron density of the medium:

∫ ∞

0

ωκ(ω)dω =
π

4
[
ω2

pe + ω2
pm

]
. (13)

The excellent convergence of (13) as a function of the up-
per integration limit is presented in Figure 1d.

3 Conclusions

In this paper we have shown that classical Kramers-Kronig
dispersion relations and sum rules are valid in the case of
negative index media. This was possible by coupling classi-
cal dispersion theory and electromagnetism. As an exam-
ple, in the regime of linear optics, we studied the simple
case of a single resonance Lorentzian model for the linear
permittivity and permeability. We confirmed the valid-
ity of the K-K relations by numerical simulations to hold
also for the cases where the refractive index is permitted
to take negative values. Thus, once relatively wide range
spectrum from negative index media can be recorded the
machinery of the K-K relations may be employed if opti-
cal data inversion in needed. We wish to emphasize that
in the event of finite frequency spectral data K-K relations
may not provide exact data on optical constants. However,
multiply subtractive K-K relations [23–25] are reliable in
such a case, but they require the knowledge of the opti-
cal constants at some anchor points. This should not be a
problem even in the case of negative index medium. In ad-
dition we confirmed that the ADNS and f-sum rule hold
regardless of the negativity of the real refractive index.
Thus K-K relations and sum rules are universal properties
covering also the case of negative refractive index media.

The present study proves that there are no conflicts
with the causality and negative refractive index since the
origin of K-K relations and sum rules relies on the princi-
ple of causality.

Finally, we remark that in the case of multi-resonance
system the spectral ranges of negative refractive index is⋃

i,j [ωle, ωue]i
⋂

[ωlm, ωum]j .
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