Basics and potential of cathodoluminescence in metamorphic petrology

Jens Götze

Institute of Mineralogy TU Bergakademie Freiberg, Germany

Content

1. Basics of luminescence

- physical basics
- instrumentation
- general applications

2. Application of CL in metamorphic petrology

- identification of minerals, mineral distribution
- primary growth structures
- secondary features

(deformation - recrystallization - fluid flow - alteration - mineral neoformation)

- examples of technical processes

3. Conclusions

Cathodoluminescence of geological materials

D.J. Marshall

Unwin-Hyman Boston

1988

Unwin-Hyman Ltd.

Springer-Verlag Berlin, Heidelberg, New York 2000

ISBN 3-540-65987-0

M. Pagel V. Barbin P. Blanc D. Ohnenstetter (Eds.)

Cathodoluminescence in Geosciences

Springer

FREIBERGER FORSCHUNGSHEFTE

C 485 Geowissenschaften

2000

Cathodoluminescence microscopy and spectroscopy in applied mineralogy

Jens Götze

TU Bergakademie Freiberg Akademische Buchhandlung Merbachstraße, PF 203 D-09599 Freiberg

ISBN 3-86012-116-2

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Boris S. Gorobets and Alexandre A. Rogojine

LUMINESCENT SPECTRA OF MINERALS

REFERENCE-BOOK

All-Russia Institute of Mineral Resources (VIMS) Moscow 2002

ISBN 5-901837-05-3

Moscow, 2002

History of cathodoluminescence

History of Cathodoluminescence

1879 *CROOKS*

Luminescence studies on crystals after bombardment with a cathode ray

1965 SIPPEL, LONG & AGRELL

First application for thin section petrography

1965 *SMITH & STENSTROM* Cathodoluminescence studies with the microprobe

1971 *KRINSLEY & HYDE* Cathodoluminescence studies with the SEM

1978 ZINKERNAGEL First CL microscope in Germany

Luminescence

= transformation of diverse kinds of energy into visible light *Luminescence* of inorganic and organic substances results from an emission transition of anions, molecules or a crystal from an excited electronic state to a ground state with lesser energy.

(Marfunin1979)

Fluorescence =Iuminescence emission with alifetime < 10-8 s</td>

Phosphorescence = Iuminescence emission with a lifetime > 10⁻⁸ s

Main processes of luminescence

- (1) absorption of excitation energy and stimulation of the system into an excited state
- (2) transformation and transfer of the excitation energy
- (3) emission of light and relaxation of the system into an unexcited condition

Excitation by energy

Schematic model of luminescence processes e-

Emission of light

Primary electron beam

Electron beam interaction with a solid

The band model

Energy levels in a band scheme for different crystal types

Electron transitions in a band scheme for different crystal types

E	Conduction band
donor	
acceptor	
	Valence band

(a) semiconductor (small interband spacing) (b) insulator (broad interband spacing)

Positions of ion activator energy levels in a band scheme for different crystal types

Electron transitions and luminescence processes in a solid

Electron transitions and luminescence in a solid with ion activation

The configurational coordinate model

Configurational coordinate diagram for transitions according to the *Franck-Condon* principle with related absorption and emission bands, respectively. (modified after Yacobi & Holt 1990)

Excitation (1) and emission (2) spectra of Mn²⁺ in calcite (after Medlin 1964)

The sensitivity of the electronic states of the Mn²⁺ ion in octahedral coordination to changes in the intensity of the crystal field splitting Dq and representation in a configurational diagram (modified after Marfunin 1979 and Medlin 1968)

How can we use

the luminescence signal ??

Visualization of the real structure of solids by CL

intrinsic

lattice defects (broken bonds, vacancies) extrinsic

trace elements (Mn²⁺, REE^{2+/3+}, etc.)

Types of luminescence centres

- rare earth elements (REE^{2+/3+})
- actinides (especially uranyl UO₂²⁺)
- heavy metals (e.g., Pb²⁺, Tl⁺)

more extended defects (dislocations, clusters, etc.)

Detection of the cathodoluminescence emission

(1) CL microscopy

- contrasting of different phases
- visualization of defects, zoning and internal structures of solids

(2) CL spectroscopy

- determination of the real structure
- detection of trace elements, their valence and structural position

CL emission spectra

The crystal field theory

(Burns, 1993)

local environment of the activator ion

- The activator-ligand distances in the different excited states and the slope of the energy levels depend on the intensity of the crystal field (expressed as crystal field splitting Δ = 10Dq)
- The stronger the interaction of the activator ion with the lattice, the greater are the Stokes shift and the width of the emission line.

The crystal field theory

local environment of the activator ion

Factors influencing values of \triangle or 10Dq are:

- type of the activator ion (size, charge)
- type of the ligands
- the interaction distance
- local symmetry of the ligand environment

etc.

Influence of the crystal field on CL emission spectra

(1) influence of the crystal field = weak

CL emission spectra are specific of the activator ion

Influence of the crystal field on CL emission spectra

(2) influence of the crystal field = strong

Mn²⁺ activated CL of CaCO₃:

CL emission spectra are specific of the host crystal

sea lily stalk (calcite CaCO₃)

Visual and spectral detection of Mn²⁺ activated CL in natural carbonates

nerl (aragonite CaCO)

Influence of the crystal field on the broad CL emission bands in solid solutions

Position of the Fe³⁺ activated CL emission band in plagioclases in relation to the anorthite content

Instrumentation

Scanning Electron Microscope JEOL 6400 with OXFORD Mono-CL detector

Cathodoluminescence detector on a scanning electron microscope

Hot-cathode luminescence microscope HC1-LM (designed by Rolf Neuser, Bochum)

Instrumentation

cold-cathode microscope

Cathodoluminescence techniques

_	SEM-CL	CL microscopy
•	polished sample surface	 polished thin (thick) section
•	focused electron beam, scanning mode	 defocused electron beam, stationary mode
•	heated filament 20 kV, 0.5-15 nA	 heated filament ("hot cathode") 14 kV, 0.1-0.5 mA ionized gas ("cold cathode")
•	mirror optics: 200-800 nm (UV - IR)	 glass optics: 380-1200 nm (Vis - IR)
	analytical spot ca. 1 μm	 analytical spot ca. 30 μm
•	panchromatic CL images (grey levels)	 true luminescence colours
•	resolution << 1 μm	 resolution 1-2 μm
•	SE, BSE, EDX/WDX, cooling stage	 polarizing microscopy, (EDX)

Cathodoluminescence imaging

SEM cathodoluminescence

Cathodoluminescence microscony

Cathodoluminescence microscope HC1-LM

Hot-cathode luminescence microscope HC1-LM

Sample chamber

holder

Electron gun

Cathodoluminescence microscopy

Polarising microscopy

Cathodoluminescence microscopy

1. Polished thin section

2. Polished section

4. Sample holder for fluid inclusion preparates

3. Polished sample piece

5. Pressed tablet (powder samples)

Coating with conducting material

- to prevent the built up of electrical charge during electron irradiation
- coating material: C, Au, Al, Ag, Cu

for SEM-CL and "hot-cathode" CL microscopes

Documentation

Documentation

Convetional photos/slides

Nikon photo camera Kodak Ektachrome 400 HC

Advantages of CCD:

- high spatial resolution
- high sentsitivity
 - analysis of minerals with very low CL intensities
 - low accumulation time
- direct combination with image analysis

Digital micrographs

Digital video camera KAPPA 961-1138 CF 20 DXC

Spectral CL measurements

High-resolution CL spectroscopy

14 kV, 0.2 mA

data processing

High-resolution CL spectroscopy

Silica-glass fibre guide

daptation

Factors influencing CL properties/intensity

Factors influencing the CL intensity

sample preparation (sample surface, thickness, etc.)

sample coating (quality, thickness, material, etc.)

temperature

analytical conditions (acceleration voltage, beam current, vacuum, etc.)

time (especially transient CL)

Analytical parameters influencing cathodoluminescence

Variation of CL intensity with sample temperature for quartz (modified after Hanusiak & White 1975)

Variation of the intensity of quartz CL with beam current (modified after Hanusiak 1975)

Sensitizing and quenching

Interaction between two or more ions with transfer of ecitation energy from one ion to another resulting in changes of their luminescence.

Sensitizing of luminescence:

- (1) emission-reabsorption ("cascade" luminescence)
- (2) resonance radiationless
- (3) nonresonance radiationless

typopped and the second state of the second se

- (1) iorcondenination valence internation bar(selfingteenching) g. TI+, Cu+, Pb²⁺) for sensitization of Mn²⁺
 - (2) quenching by ions with intense
- (2) iochafgeatraitister bateds (e.g. Me²⁺) (to²⁺) sensitization of REE³⁺
 - (3) quenching due to lattice defects
- (3) REE^{2+/3+} for sensitization of REE³⁺
 - (4) thermal quenching

concentration quenching

luminescence emission

Intensity of the Mn²⁺ activated CL (ca. 560 nm) in dependence on the Mn content in feldspar

Concentration quenching ("self quenching") of Mn²⁺ activated CL in apatite

Mineral groups and minerals showing CL

in general all insulators and semiconductors

elements	diamond
sulfides	sphalerite
oxides	corundum, cassiterite, periclase
halides	fluorite, halite
sulfates	anhydrite, alunite
phosphates	apatite
carbonates	calcite, aragonite, dolomite, magnesite
silicates	feldspar, quartz, zircon, kaolinite

- technical products (synthetic minerals, ceramics, glasses !)
- no luminescence of conductors, iron minerals and Fe-rich phases

General applications of CL in geosciences

identification of minerals, mineral distribution and quantification

typomorphic properties
 (CL colour, CL behaviour, spectral characteristics)

crystal chemistry
(trace elements, internal structures, zoning)

reconstruction of geological processes

characterisation of technical products (also non-crystalline phases !)