

Mechanické vlastnosti materiálů na nanometrové škále

Lokální mechanické vlastnosti

většina interakcí probíhá přes povrch

Povrchová odolnost a vnitřní integrita jsou kritické

- Pochopení odezvy materiálu/povrchu na vnější mechanické působení (namáhání)
 zásadní pro každý povrch/materiál bez ohledu na jeho primární použití/funkci
 - » R&D nových materiálů závisí na spolehlivém testování
 - > Povrchy mechanicky namáhány nejen při použití, ale i ve výrobě
 - > Zásadní pro zvýšení životnosti

Lokální vlastnosti ... Testované oblasti na pomezí nano-mikro oblasti

Klasické metody - macro/micro

http://www.kochmann.caltech.edu/research_animations.html

Hlavní faktory ovlivňující mechanické vlastnosti

Interní faktory

- > chemické složení a chemická heterogenita
- struktura a strukturní heterogenita
- > fázové složení (krystal. struktura) a homogenita
- velikost a tvar tělesa (složek, zrn)
- koncentrátory napětí (konstrukční a technologické vruby)
- » stav povrchu

» Externí faktory

- > teplota
- rychlost deformace
- > druh a časový průběh zatěžování
- okolní prostředí

Poruchy krystalové mříže

- v krystalu dojít k poruchám krystalové mřížky, neboli odchylkám od ideální \geq krystalové mřížky
- v místě poruchy (až na výjimky) dochází k termodynamické nerovnováze
- aby tato nerovnováha přešla do rovnovážného stavu, který je energetický méně \geq náročný, dochází v okolí poruchy k deformaci krystalové mřížky (např. atomy se posunují směrem k neobsazenému místu v mřížce)

Poruchy v krystalové mřížce kovu

- 1. Bodové poruchy
 - vakance, t.j. neobsazené místa v mřížce
 - intersticie cizí atomy v mezimřížkové poloze
 - substituce původní atomy jsou nahrazeny jinými
 - Čarové poruchy dislokace
 - hranové
 - šroubové
 - smíšené
 - 3. Plošné poruchy
 - hranice zrn
 - vrstvené chyby
 - plochy dvojčatění
 - 4. Prostorové poruchy
 - široké hranice zrn
 - vměstky

Z hlediska teorie plastických deformací jsou nejdůležitější čarové poruchy - dislokace

Bodové poruchy krystalové mříže

> Vakance

- neobsazený uzel mřížky, který vzniká přechodem částice z tohoto uzlu např. do intersticiální polohy
- » může docházet k tzv. difúzi vakance neboli k jejímu přemisťování v mřížce a to až na povrch
- migrace a vznik vakancí, a jiných bodových defektů mřížky, úzce souvisí s pravděpodobností udanou Boltzmannovou statistikou a tím i s teplotou

Intersteciály

- částice je jakoby "navíc" v takovém místě krystalové mřížky, ve kterém by za normálních podmínek žádná částice být neměla
- zpravidla jde o částici, která se uvolnila ze své normální polohy v mřížce (tato porucha tedy úzce souvisí s poruchou předchozí) a přešla do mezimřížové polohy
- částice v intersticiální poloze může taktéž difundovat
- interteciál může být i cizí částice

» Příměs

 vlastní částice krystalu je nahrazena částicí cizorodou

Čárové poruchy krystalové mříže

čárová porucha neboli dislokace mřížky znamená, že porušená oblast má čárový charakter

> Hranová dislokace

- > typ poruchy, při níž chybí souvislá část atomů a tím dochází k deformaci mřížky v jejím okolí
- můžeme si to představit tak, že máme pravidelný čtverec atomů složený z 10x10 atomů a uprostřed čtverce chybí např. 5 atomů v řadě za sebou, které by zde za normálních okolností byly ve svých mřížkových polohách
- vlivem toho dojde v daném místě k deformaci posunem okolních atomů směrem do mezery.
 Jinými slovy se jedná o "přímkové vakance" v mřížkových polohách

Šroubová dislokace

- deformace části mřížky, která se projeví hromadným posunem větší či menší skupiny částic oproti jejich poloze v dokonalém krystalu
- Ize si to představit tak, že máme objemovou mřížku atomů, kterou uprotřed "nastřihneme" a obě nastřižené části vůči sobě posuneme od sebe o pár atomových vzdáleností
- výsledná mřížka se jeví jako šroubovice … způsobeno zejména tím, že při růstu krystalu se preferují jisté plochy více než jiné

Plošné a objemové poruchy krystalové

Plošné poruchy

- změna koordinace atomů celé roviny může vzniknout poruchou v pravidelnosti vrstvení rovin během krystalizace
- > hranice zrn

> Objemové poruchy

- stejně jako se u dislokací projevuje tendence ke shlukovámí podél rovin, tak také bodové poruchy mají tendenci ke shlukování
- vakance se mohou např. shlukovat a vytvářet větší dutiny v krystalech, které se mohou dále rozpadnout na dislokace nebo tvořit trhliny i
- intersticiální atomy se mohou shlukovat a vytvářet precipitáty různých tvarů

Dvojčatová hranice

Symetrická sklonová maloúhlová hranice

7e

Koheze

- technologické vlastnosti souvisí s kohezními meziatomovými silami
- velká kohezní síla
 - ⇔ velký modul pružnosti
 - ⇒ vysoká teplota tání
 - ⇒ malý koeficient teplotní roztažnosti
- » kohezní síly x reálná mechanická pevnost a plastické vlastnosti

Fyzikální princip koheze

- závislost U = U(r) umožňuje stanovit elastickou stlačitelnost
- > malá objemová deformace ... $r_0 \rightarrow r_0 + dr_0 \Rightarrow U(r_0) \rightarrow U(r_0 + dr_0)$
- > Taylorův rozvoj

$$U(r_{0} + dr) = U(r_{0}) + \left(\frac{dU}{dr}\right)_{r=r_{0}} dr + \frac{1}{2} \left(\frac{d^{2}U}{dr^{2}}\right)_{r=r_{0}} (dr)^{2} + ...$$

pro malé deformace lze vyšší členy zanedbat, v rovnováze je dU/dr = 0

$$dU = U(r_0 + dr) - U(r_0) = \frac{1}{2} \left(\frac{d^2 U}{dr^2} \right)_{r=r_0} (dr)^2$$

> síla potřebná na vyvolání deformace

pro malé deformace (dr/r << 1) je síla úměrná deformaci a faktorem úměrnosti je d² U/dr^2 ... elastická konstanta \Leftrightarrow platí Hookův zákon

Srovnání

teplota tavení T_m roste s E_0

modul roste se zakřivením $E \sim zakřivení u r_0$

koef. teplotní roztažnosti α klesá s rostoucí E_0

Elastické konstanty a pevnost

- ► tahového napětí $\sigma \Rightarrow$ relativní prodloužení $\varepsilon = (r r_0)/r_0$ (r_0 ... rovnovážná vzdálenost)
- > zvýšení napětí o d $\sigma \Rightarrow$ vykoná práce d $U = \sigma d\epsilon$
- > závislost napětí na deformaci $\sigma = \sigma(\varepsilon) \dots \sigma = dU/d\varepsilon$, vyjádříme-li kohezní energii jako funkci deformace
- > maximální hodnota $\sigma = \sigma^*$ vyjadřuje ideální (teoretickou) pevnost

 $\sigma^* = (dU/d\varepsilon)_{max} \sim (dU/dr)_{max}$

▶ modul pružnosti pro malé deformace ... $E = (d\sigma/d\varepsilon)_{\varepsilon \to 0}$ je roven

 $E = (d^2 U/d\varepsilon^2)_{\varepsilon \to 0} \sim (d^2 U/dr^2)_{r \to r0}$

- pevnost a elastické konstanty nejsou rovny vazbové energii U₀, ale závisí na její změně při deformaci
- > pevnost ~ maximální strmosti U
- elastické moduly ~ křivosti U v oblasti minima

Elastická a plastická deformace

Hookův zákon

d

- > tahové namáhání tyče ⇒ prodloužení tyče $\frac{\Delta l}{l} \approx \frac{F}{S} \longrightarrow \frac{\Delta l}{l} = \frac{1}{E} \frac{F}{S}$ > Hookův zákon pro deformaci v tahu
- poměrné prodloužení tyče je přibližně přímo úměrné působící síle a nepřímo úměrné příčnému jejímu průřezu
- relativní prodloužení
- › normálové napětí

E udává jak velké by muselo být napětí, aby se zkušební tyč
 prodloužila na dvojnásobek své původní délky, za předpokladu linearity
 E … Youngův modul pružnosti v tahu [Pa]

Moduly pružnosti

Látka	E [GPa]	G [GPa]	K [GPa]	Látka	E [GPa]	G [GPa]	K [GPa]
Al	70,7	26,4	73	dural	72,5	27,5	75
Si	95	33	313	litina	110	44	73
Cu	123	45,5	138	mosaz	99	36,5	118
Pb	16	5,6	43	ocel	204	79	161
Pt	170	61	256	SiO ₂	73	31	37
Ag	79	29	101	kaučuk	0,0015	0,0005	0,083
Au	78,5	276	167	polystyren	3,2	1,2	3,1
Fea	212	82	172	sklo	50-110	20-25	38-36
U	180	72	120	plexisklo	3,3	1,2	3,7
diamant	1120	520	435	H ₂ O led	9,3	3,5	9,1
bronz	97-102	33-37	112	NaCl	38,5	15,2	25

Tvrdost vs. modul pružnosti

- modul pružnosti (elastické konstanty) … intrinzická fyzikální charakteriska materiálu definována přímo atomovými vazbami a prostorovým uspořádáním atomů
- **tvrdost** není intrinzická charakteristika materiálu … souvisí s mechanismy plastické deformace probíhajícími v materiálu \Rightarrow

odráží tedy jak strukturní i deformační mechanismy

existují práce jak předpovědět tvrdost krystalů na základě jejich struktury ...
 např. vliv anizotropie

Tvrdost

- zkoušky tvrdosti patří mezi nejstarší a nejrozšířenější zkoušky kovů a jiných technických materiálů
- Jedná se prakticky o zkoušky nedestruktivní, neboť funkční a vzhledové porušení zkoušených dílů je obvykle bezvýznamné
- Tvrdost je obecně definována jako vlastnost, jež se projevuje odporem proti pružné, nebo plastické deformaci tělesa, nebo oddělování části povrchu, nebo jejich kombinaci
- Tvrdost je definována jako odpor, který klade materiál proti vnikání cizího tělesa

- > více než 100 existujících zkušebních metod zkoušení tvrdosti
- > 1Newton (1kp=9,80665N)

Historie – posledních 200 let

» Vývoj metod již téměř 200 let

- 1. Mohs, F.: Grundniss der Mineralogie, Dresden 1822
- ². Brinell, J.A.: J. Iron and Steel Inst., **59**, (1900), 243
- ^{3.} Meyer, E.: Zeits. D. Vereins Deutsch Ingenieure. **52**, (1908), 645.
- 4. Tabor, D.: The Hardness of Metals, Oxfordpress, 1951.

Zkoušky tvrdosti - dělení

Dělení podle aplikace zátežné síly

- » statické
 - » Vickers, Rockwell, Brinell, Knoop
- > dynamické
 - » Shoreho skleroskop

Dělení podle principu

- > vrypové
 - Mohs
- > odrazové
 - Shore
- vnikací (vtisková)
 - > Vickers, Rockwell, Brinell, Knoop

Rozsah makro	Rozsah mikro	Rozsah nano
2N ≤ <i>P</i> ≤ 30kN	2N ≥ <i>P</i> ; <i>h</i> ≥ 2 μm	<i>h</i> ≤ 0,2 μm

ČSN EN ISO 14577 - Kovové materiály-Instrumentovaná vnikací zkouška stanovení tvrdosti a materiálových parametrů.

Zkoušky tvrdosti - dělení

Odrazové metody

- tvrdost definována velikostí odrazu závaží s kulovitě vybroušeným diamantovým hrotem, který dopadá z definované výšky
- hodnota tvrdosti HSh (podle Shoreho) je dána výška odskoku

Vrypové metody

- při malém zatížení se tvrdým hrotem vytvoří na zbroušeném povrchu materiálu vryp
- » míra tvrdosti je síla, potřebná k vytvoření vrypu širokého 0,01 mm

Vnikací metody

- nejrozšířenější metoda založena na vtlačování indentoru (kulička, kužel, jehlan
 ...) z tvrdého materiálu (kalená ocel, diamant, ...) do zkušebního vzorku
- měří se velikost vtisku (plocha, hloubka nebo úhlopříčka)
- nejpoužívanější a nejznámější jsou zkoušky podle Brinella, Rockwella a Vickerse

Mohsova stupnice tvrdosti

» Friedrich Mohs (1822)

» materiálem s vyšším číslem lze udělat vryp do materiálu s číslem nižším

						10	u	iamant	
Moh's Hardness Scale									
1	2	3	4	5	6	7	8	9	$ 10\rangle$
			S			All y		M	
TALC very soft, like chalk	GYPSUM easily scratched with a nail	CALCITE difficult to scratch with a nail	FLUORITE cannot be scratch with a nail	APATITE about the hardness of teeth	MICRO- CLINE suitable for gems	QUARTZ scratches glass	TOPAZ harder than quartz	RUBY harder than to- paz	DIAMOND hardest material known to man

Látka	Chemický název	Chemický vzorec
mastek	kyselý metakřemičitan hořečnatý	$H_2Mg_3(SiO_3)_4$
sůl kamenná	chlorid sodný	NaCl
kalcit (vápenec)	uhličitan vápenatý	CaCO ₃
fluorit (kazivec)	fluorid vápenatý	CaF ₂
apatit		Ca(PO ₄) ₃
živec (ortoklas)	křemičitan hlinitodraselný	KAISi ₃ O ₈
křemen	oxid křemičitý	SiO ₂
topaz		Al ₂ SiO ₄
korund	oxid hlinitý	Al_2O_3
diamant	uhlík	С

Vtisková zkouška tvrdosti

- > hrot (definovaný tvar a rozměry) zatěžován normálovou silou F
- ▹ hrot vniká do povrchu do hloubky $h \Rightarrow$ vtisk má plochu A
- plocha A a síla F definují tlak pod hrotem, který je kompenzovaný tvrdostí materiálu

čím tvrdší materiál, tím menší A

TVRDOST=
$$\frac{P_{\text{max}}}{A}$$

 klasicky je tvrdost určována na základě rozměrů reziduálního vtisku

VTISKOVÉ METODY ZKOUŠENÍ TVRDOSTI

- nejrozšířenější jsou statické vnikací metody
- » metody Brinell, Vickers, Knoop měřítkem tvrdosti velikost plastické deformace
- metody Rockwell měřítkem tvrdosti velikost elasticko plastické deformace
- > Tvrdost je u vnikacích metod definována jako
- odpor materiálu proti vnikání cizího tělesa

- > Tvrdost u vnikacích metod je definována jako
 - A_c ...kontaktní plocha ... plocha vtisku (metody Brinell,Vickers, Martens)
 - A, ...průmět kontaktní plochy ... plocha průmětu vtisku (Knoop, Mayer)
- u metod Rockwell je tvrdost určována přímo z trvalé hloubky vtisku

Indentory - vnikací tělesa

- Tvrdost je u vnikacích metod definována jako odpor materiálu proti vnikání cizího tělesa
- pro provedení testu tvrdosti je třeba aby indentor byl alespoň o 20% tvrdší než vzorek (pro vytvoření plastické deformace)
- » obvykle jednoduchého geometrického tvaru … koule, kužel, jehlan
 - jednoduchost a reprodukovatelnost výroby
 - optimální využití vlastností materiálu vnikacího tělesa tvar vnikacího tělesa
 Vickers respektuje tvar krystalu diamantu a tak i jeho maximální tvrdost
- > kužel a jehlan (pyramidy) ⇒ stanovování tvrdosti nezávislé na velikosti použité zkušební síly (podobnost vtisků)
 - na rozdíl od sféry

 a_{t} značí úhel který svírají stěny hrotu, *a* úhel mezi osou pyramidy a jejími stěnami, A_{d} je povrch a A_{p} je průřez hrotu

	Vickers	Berkovich	Mod. Berkovich	Cube-conner
$\alpha_{\rm t}$	136°	141,9°	142,3°	90°
α	68°	65,03°	65,27°	35,264°
$A_{\rm d}/h^2$	$4\frac{\sin a}{\cos^2 a}$	$3\sqrt{3}\frac{\sin a}{\cos^2 a}$	$3\sqrt{3}\frac{\sin a}{\cos^2 a}$	9/2
	≅ 26,43	≅ 26,43	≅ 26,97	= 4,5
A_{-}/h^{2}	$4\tan^2 a$	$3\sqrt{3}\tan^2 a$	$3\sqrt{3}\tan^2 a$	$3\sqrt{3}/2$
11.	≅ 24,504	≅ 23,96	≅ 24,494	≅ 2,598
$A_{\rm s}/A_{\rm r}$	$1/\sin a$	$1/\sin a$	$1/\sin a$	$1/\sin a = 3/\sqrt{3}$
u·-p	≅ 1,0785	≅ 1,1031	≅ 1,1010	≅ 1,7320

Indentory pro vysokoteplotní měření

Wheeler, J.M. and J. Michler, Invited Article: Indenter materials for high temperature nanoindentation. Vol. 84. 2013. 101301.

Tvrdost podle Vickerse

- > 1924 Smith a Sandland (Vickers Ltd)
- vtlačování diamantového indentoru (pravidelný čtyřboký jehlan se čtvercovou základnou a s daným vrcholovým úhlem 136°± 0,5°)
- Derating position

- » měřena je úhlopříčka reziduálního vtisku
- tvrdost podle Vickerse je vyjádřená jako poměr zkušebního zatížení k ploše povrchu vtisku, jenž se uvažuje

$$HV = \frac{2F\sin\frac{136^{\circ}}{2}}{d^{2}} = 1,8544\frac{F}{d^{2}}\frac{[kp]}{[mm^{2}]} \qquad HV = 0,102 \times 1,8544\frac{F}{d^{2}} = 0,1891\frac{F}{d^{2}}\frac{[N]}{[mm^{2}]}$$

F zkušební zatížení v kp nebo N
 d aritmetický průměr úhlopříček d₁, d₂ v mm

Indentační praskání - Vickers

INDENTAČNÍ LOMOVÁ HOUŽEVNATOST KIC

- rovnice pro K_{IC} podle Chicota:
 - Radial-median cracks

$$K_{E(R-M)} = 0.0154 \left(\frac{E}{H_{v}}\right)^{1/2} \left(\frac{L}{c^{3/2}}\right)$$

Palmqvist cracks

$$K_{I\!\!E(P)} = 0,0089 \bigg(\frac{E}{H\nu} \bigg)^{2/5} \bigg(\frac{L}{al^{1/2}} \bigg) \label{eq:KEP}$$

> Intermediate cracks $K_{E(M-M)} = (0,0074 - 0,0043q) f\left(\frac{E}{H_{\gamma}}\right) \frac{L}{a^{q}c^{1.5-q}}$

$$K_{c} = \alpha \left(\frac{E}{H}\right)^{1/2} \left(\frac{L_{\max}}{C^{3/2}}\right)$$

L ... Normálová síla aplikovaná na indentor

Chicot D., Duarte G., Tricoteaux A., Jorgowski B., Leriche A., Lasage J.: Material Science and Engineering A 257, 65 (2009) F. Rickhey, K.P. Marimuthu, J.H. Lee, H. Lee, J.H. Hahn, Evaluation of the fracture toughness of brittle hardening materials by Vickers indentation, Engineering Fracture Mechanics 148 (2015) 134-144.

Měření lokálních mechanických vlastností

ΠΠΠΠΠ

- komplexní analýza mechanických vlastností v malých objemech
- Nano-mechanické a nano-tribologické testy
 - Nanoindentace (instrumentovaná vtisková zkouška)
 - > do 500 °C (700 °C in Ar, 950 °C ve vakuu)
 - Nano-compresní test
 - Nano-scratch test
 - > Testy opotřebení
 - Nano-dynamický testsy

Materiálové charakteristiky

- Tvrdost
- Elastický modul
- › Lomová houževnatost
- Creep (tečení)
- > Adheze
- > Koheze
- Reziduální pnutí
- Dynamické únavové vlastnosti
- Otěruvzdornost opotřebení
- Teplotní stabilita

NanoTest[™] koncept

- Keramické kyvadlo
- speciální zavěšení
- magnet + cívka
- senzor posunutí
- síla aplikována v horizontálním směru

Vysokoteplotní setup

- Teplotní štít
- vzorek na vyhřívaném držáku
- Vyhřívaný indnetor (diamond, c-BN, ...) \Rightarrow isothermal contact
- PID regulátor + termočlánky

Aplikace - NanoTest

Materiály

- > Tenké vrstvy
- Mikroskopické objekty
- > Objemové materiály
- Biomateriály

> Efekty

- > Fázové transformace
- Záporná tuhost
- Incipient plasticity
 - Dislocation burst

> Velikost vzorku

- > max. 50x50x50 mm
- ≻ min. 50x50x50 μm
- minimální velikost 10x10 µm

Princip nanoindentace

Geometrické závislosti elast. zatěžování

Nanoindentační křivka

 W_{Total} ... Celková indentační práce $W_{Total} = W_{Plastic} + W_{Elastic}$ $W_{Elastic}$... Elastická energie (elasticky uložená energie) $W_{Plastic}$... Spotřebovaná plastická energie (nevratná) \Rightarrow na vytvoření plastického vtiskuIndex plasticity... $W_{Plastic}/W_{total}$ (souvisí s opotřebením a houževnatostí)

Creep - vtiskové tečení

- > Dwell period
- > velký vliv na H a E
- > u kovů chyba *E* až 50%
- > eliminace
 - \Rightarrow delší dwell period
 - \Rightarrow rychlé odlehčení

 $C_{\rm IT} = \frac{h_2 - h_1}{h_1} 100$

Dwell time (s)	Hardness (GPa)	Reduced modulus (GPa)	Dwell time (s)	Hardness (GPa)	Reduced modulus (GPa)
10	0.139 ± 0.01^{a}	2.61 ± 0.02	10	0.259 ± 0.03^{a}	3.11 ± 0.04
60	0.132 ± 0.01	2.42 ± 0.01	60	0.248 ± 0.02	2.96 ± 0.04
180	0.125 ± 0.01	2.34 ± 0.01	180	0.235 ± 0.04	2.91 ± 0.03
600	0.119 ± 0.02	2.34 ± 0.02	600	0.214 ± 0.00	2.91 ± 0.05

Faktory ovlivňující nanoindentační měření

- » tvarová funkce hrotu
- > tvar vtisku
 - » pile-up
 - sink-in
- vliv substrátu
- korekce nanoindentačních dat
 - » poddajnost přístroje
 - › teplotní drift

Fázové přechody indukované tlakem

Hot stage indentation

- Real high temperature properties (in situ measurement)
 - up to 650 °C in Ar with c-BN indenter
 - H drops to 77% for SiC at 300 °C, small further softening
 - SiCN (40at.%) to 69% at 300 °C, gradual softening
- E decreases up to 500 °C and increases at 650 °C ⇒

 ¹SRO prevails over softening processes
- ▶ H and E after 650 °C almost identical as after 30 min. at 700 °C \Rightarrow Thermal stability

In-situ high temperature testing

Real performance of the films

Vrypová zkouška - Scratch test

- Komplexní metoda pro ohodnocení adhezních a kohezních vlastností tenkých vrstev optických, ochranných či funkčních
- > Diamantový indentor je tažen po povrchu vzorku při zvyšující se normálové síle (nebo konstantní)
 - » Rockwell, ve speciálních případech i Berkovič nebo cube corner (hrana krychle)
- > 2 přístupy
 - ST je jednopřejezdový vryp s postupným zatěžováním...nebo varianta MPW 3-přejezdový test ve schématu topografie-scratch-topografie
 - MPWR je vícepřejezdový test po stejné trase, kdy je maximální zátěžné síly dosaženo již na počátku a pak je udržována konstantní

Scratch test - vyhodnocení

- Velmi komplikované napěťové pole
- Akustická emise, frikční sonda
- Kritickou zátěž lze určit několika způsoby
 - prudká změna penetrační hloubky sondy
 - náhlá změna frikční síly mezi hrotem a povrchem
 - detekce peaků signálu z akustické emise

Módy poruch při scratch testu

Analýza scratch testu

Nanodiamantová tenká vrstva dopovaná borem

Nano - Impact test™

- Dynamická zkouška
- Vzorek umístěn na vibrujícím, funkčním generátorem buzeném, držáku

Impulse test a Dynamická tvrdost

- Modifikace Impact testu
- Vzorek statický
- Impulsní pohyb hrotu

