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Abstract

The development of near-field optics theory is reviewed. We first recall that near-field
optics is not limited to near-field microscopy. Broadly speaking, it concerns phenomena
involving evanescent electromagnetic waves. The importance of such waves was ignored
for a long time in optical and surface physics until the emergence of scanning near-field
optical microscopes. Taking evanescent waves into account prevents the use of any simple
approximation in the set of Maxwell’s equations. The various theoretical approaches of
near-field optics are discussed from the point of view of their ability to assess evanescent
electromagnetic waves. We discuss the main results of the application of the various practical
schemes which all rely on a numerical procedure.
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1. Introduction

Some 15 years ago, the first optical topographic signals with subwavelength resolution
were recorded independently by different groups in the world. These early works were
encouraged and stimulated by speculations about the properties of evanescent and confined
fields concentrated near the surface of materials. Since this exploratory period, a broad
variety of scanning near field optical microscopes (SNOM) have been elaborated and
continuously improved. An historical presentation of this pioneering period is detailed
in the proceedings of the first near-field optics conference (Pohl and Courjon 1993).

The common feature of all SNOMs is the nanometre-sized detector able to collect or emit
photons after coupling with a subwavelength size object deposited on a surface. Depending
on the experimental design, this nano-detector can be used to transmit the collected light to
an appropriate macro-detector (for example a photomultiplier) located far from the object
(Pohl 1991, 1992). Today, many experimental configurations based on this concept of
nano-detection provide us with an increasing amount of optical information about the nano-
world. A recent comprehensive review of the experimental aspects of near-field microscopy
appeared in this journal (Courjon and Bainier 1994).

1.1. Optics in the nanoscopic and mesoscopic regimes

The adjectivemesoscopicis used to define the situations where the sizes are of the order
of the incident wavelengthλ. For visible light, it corresponds roughly to the length range
between 0.1 and 1µm. By nanoscopic, one usually means low-dimensional structures
smaller than 100 nm. If these structures can be identified with single molecules, the
nanoscopic regime also means the molecular range. However, structures smaller than 1 nm
are commonly viewed as belonging to the atomic range.

Whenλ is much smaller than the size of the scatterers, one speaks of the macroscopic
regime. Geometrical optics is a first approximation which describes the scattering of light
by macroscopic objects. On a more refined level, Kirchhoff’s diffraction theory uses a scalar
field to account for phenomena where light displays a wave character on a macroscopic scale.
Kirchhoff’s theory attributes ideal properties to the scatterers such as a perfect conductivity
or a real refractive index.

Microscopic systems are objects which are so small when compared to the incident
wavelength that the non-retarded approximation becomes applicable. This approximation
considers the scatterers as dipoles or a set of dipoles whose susceptibilities may include
dissipative effects. For visible wavelengths, this regime corresponds to the atomic range.

Near-field optics deals with phenomena involving evanescent electromagnetic waves
which becomes significant when the sizes of the objects are of the order ofλ or smaller. By
object, we also mean void structures carved in a surrounding material such as the vacuum
gap basic to ATR (attenuated total reflection) experiments or the air gap separating a local
probe and a sample surface. In view of the above classification, it is clear that near-
field optics is thus concerned with the scattering of electromagnetic waves by meso- and
nanoscopic systems. Even in the situations where atomic size structure is involved, near-
field optical detection is affected by the nano- and mesoscopic system embedding the atomic
size structure. Evanescent waves are important in near-field optics because the typical size
of the objects is comparable toλ and the decay of evanescent waves occurs within a range
given byλ.
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1.2. The theoretical challenge

Today’s theory of electromagnetic waves describes satisfactorily their interaction with
objects which are macroscopic or microscopic relative to the incident wavelengthλ.
However, the theoretical knowledge about the scattering of electromagnetic waves by
mesoscopic systems remains limited. Since many situations involve nanoscopic and
mesoscopic systems simultaneously, incomplete information about the mesoscopic range
impedes our understanding of nanoscopic systems. Most approximations are not appropriate
for studying mesoscopic systems. Unlike macroscopic systems (successfully described by
Kirchhoff theory) and microscopic systems (for which retardation is negligible), mesoscopic
systems require the detailed solution of the full set of Maxwell equations.

A numerical method for solving Maxwell equations is needed because both geometries
and dielectric responses of typical mesoscopic systems display a high degree of complexity.
However, numerical methods traditionally used in electrodynamics are not well suited
to cope with mesoscopic structures. Cumbersome procedures appear to be uncertain
and produce unreliable outputs. The main origin of their problems can be traced to
the crucial role played by the evanescent components of the field in the near-field zone
close to mesoscopic scatterers. In complete analogy with the tunnel effect for electrons,
these evanescent components can lead to optical tunnel effects. In the mesoscopic
range, the accurate treatment of evanescent waves requires one to deal carefully with the
electromagnetic boundary conditions at each interface and to include realistic dielectric
responses.

1.3. Early theoretical works

The physics of evanescent electromagnetic waves, which is the central concept used in
near-field optics, was a poorly developed research area before the mid 1960s. The analysis
of the skin depth effect at metallic surfaces by Zenneck (1907) and Sommerfeld (1909) was
probably the first recognition of the existence of evanescent electromagnetic waves. The
famous papers of Mie (1908) and Debye (1909) about the scattering of electromagnetic
waves by a sphere contained, at least in principle, the solution of the vector wave equation
in the near-field zone not only for the microscopic regime but also for the mesoscopic
one. However, these works were little exploited in the study of near-field optics. Indeed,
for coordinates located in the near-field zone, the formulae of Mie and Debye display
convergence problems which are even more difficult to solve in the mesoscopic regime.
Much later, Fano (1941) realized that the anomalies observed in the diffraction of light by
metal gratings were related to the excitation of evanescent electromagnetic modes bound to
the surface.

The classical problem of diffraction by an aperture in a perfectly conducting screen
was treated by numerous different approaches (see the review published in this journal by
Bouwkamp (1954)). In 1944, Bethe proposed a curious model involving magnetic charges
in order to extract a solution to the problem of the diffraction of light by a subwavelength
aperture. The assessment of the near-field zone at the exit of the aperture was feasible in
principle but was ignored because it was not experimentally relevant at that time. Much
later, Leviatan (1986) and Roberts (1987, 1989, 1991) applied Bethe’s theory to apertures
sizes which were significant for near-field microscopes. Such computations confirmed
unambiguously the existence of an important exponentially decaying field near the exit
of the aperture. In the approximation of a perfectly conducting screen, the generation of
this near-field may be understood qualitatively with the help of the Heisenberg uncertainty
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principle (Dürig et al 1986, Vigoureux and Courjon 1992). Let us consider the simpler
case of the diffraction of an incident plane wave eikzz propagating in thez direction by
an aperture of diametera carved in an infinitely thin screen covering thex–y plane. The
Heisenberg uncertainty

1s1ks > 1 (s = x, y) (1)

states that passage through a slit implies that the transmitted field acquires a non-zero angular
spectrum

1ks > a−1. (2)

In the case of a subwavelength aperture,k � a−1 and we find

k � 1ks. (3)

The dispersion relation

k2 = k2
x + k2

y + k2
z = ω2

c2
ε (4)

whereε is the dielectric function of the background reference medium, shows thatk2
z may

become either positive or negative. The Fourier components of the diffracted field may be
classified according to the sign ofk2

z . For positive values, the behaviour eikzz corresponds
to radiative (or propagative) waves alongz. These waves reach the far-field. For negative
values, the Fourier component takes the evanescent form e−|kz|z. The set of imaginary values
of kz defines the non-radiative waves existing in the near-field zone. Their exponental decay
prevents them from reaching the far-field (Vigoureuxet al 1989, 1992).

An important breakthrough was achieved by Levine and Schwinger (1950) who
established the non-trivial form of the free-space Green dyadic. This dyadic allowed them to
formulate a variational method of resolution to the puzzling problem of diffraction by small
apertures. As in the case of Bethe’s theory, the near-field zone at the exit of the aperture
was not assessed at that time. However, the work of Levine and Schwinger inspired the
later development of electromagnetic scattering theory (see section 4 later).

As discussed above, the assumption of a perfectly conducting screen allows one to
reproduce the generation of the near-field as a result of the Heisenberg’s uncertainty and
can account for polarization effects. However, this assumption is much too restrictive
when considering near-field optical phenomena since it hides resonance phenomena.
Indeed, according to their frequency dependent dielectric properties, localized eigenmodes
characterized by evanescent wavefunctions may be sustained by small objects and even by
surfaces. The understanding of the physical content of the dielectric function was triggered
by the work of Huang (1951). Huang brought to the fore the fact of how the parameters
driving the infra-red values of the dielectric constant of a polar crystal are closely related to
the coupling of light with vibrational eigenmodes (phonons) of the crystal. Hopfield (1958)
and Pekar (1960) introduced a similar idea for the range of visible wavelengths by invoking
the coupling of light to the excitons of the crystal. In particular, Hopfield developed the
concept of polaritons and was the first to observe their dispersion relations by using Raman
spectroscopy (Henry and Hopfield 1965). Polaritons are the polarization waves of a crystal
which are excited by incident light. They are the electromagnetic eigenmodes of condensed
matter.

The clarification brought by the concept of polariton allowed one to identify the
conditions of existence of evanescent electromagnetic eigenmodes bound to a surface (Ferrell
1958, Stern and Ferrell 1960) and to the interfaces of a thin film (Kliewer and Fuchs 1966,
Fuchset al 1966). In 1968, Otto invented and explained theoretically the attenuated total
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reflection spectroscopy (ATR) which allowed him to measure the dispersion relations of
interface polaritons (plasmon-polaritons in the original experiment) by a simple reflectivity
measurement. The principle of ATR consists in approaching a sample surface in the decay
range of the evanescent wave produced by total reflexion on a prism surface. By the
optical tunnel effect, the evanescent wave can then excite the non-radiative interface modes
of the sample. This results in the frustration of the total reflection. Today’s near-field
optical microscopes using internal illumination (STOM or PSTM devices) rely on the basic
discovery of Otto (Reddicket al 1989, 1990, Courjonet al 1989, Vigoureuxet al 1989).

The success of the polariton concept encouraged further development. Although the
subject of light scattering by small particles had already been thoroughly investigated (Mie
1908, van de Hulst 1957), electromagnetic eigenmodes of small spherical particles were
revisited from the point of view of their frequency-dependent dielectric function (Englman
and Ruppin 1966, Fuchs and Kliewer 1968). It appeared that, due to the curvature of the
particles, the distinction between radiative and non-radiative modes was not so clear as
it was in the case of planar interfaces. Nevertheless, it was rapidly recognized that the
coupling of such particles with a planar surface changed dramatically as a function of the
distance between them. This coupling can be identified as a true near-field effect since it
occurs for separation distances smaller than the wavelength so that the evanescent waves
scattered by the particle have not yet decayed.

The related phenomenon of enhanced Raman scattering of molecules adsorbed on
metallic surfaces proved to be of electromagnetic origin (Otto 1984). In the non-retarded
approximation, the particle is modelled by a point dipole and the surface plasmon is reduced
to the image dipole. The local electric field at the coordinate of the molecule is the sum of
the external field and the field due to the image dipole. This approximation reproduces the
red-shift observed in the absorption spectrum (Ruppin 1983).

The inclusion of retardation in the case of metal particles approaching a metal surface
demonstrates that a hybrid plasmon can show up as the result of the coupling of the particle
plasmon to the surface one (Takemoriet al 1987). The absorption spectrum of the sphere
is much more red-shifted than expected by the electrostatic approximation. The finite size
of the sphere makes possible the excitations of several plasmons related to higher multipole
modes of the sphere.

If a dielectric (i.e. non-absorbing) sphere is substituted for the metallic one, the
absorption can only be due to the surface plasmon of the metal surface. The incident field
excites the resonant but undamped modes of the dielectric sphere which are distributed as
evanescent waves around the sphere. As the sphere approaches the surface, a larger number
of surface plasmons with shorter wavelengths can be excited. Therefore, absorption occurs
in the frequency range located below the highest surface plasmon frequency and above
the lowest frequency which can sustain an eigenmode of the sphere. Near-field optical
microscopes using or detecting the resonance effects of small particles operate by this
principle.

Concurrent with the study of the optical properties of small particles deposited on
surfaces, several works brought to the fore the fact of how the presence of a surface alters
the light emission of dipole and multipole sources (Lukosz and Kunz 1977a, b, Lukosz 1979,
Lukosz and Meier 1981). The physical effects may also be understood as a consequence
of the coupling of the dipole or multipole source to the planar surface. In the presence of
a perfect conductor, the emitted intensity varies according to the orientation of the dipole:
a dipole placed vertically radiates more than twice the value emitted in a homogeneous
environment; for a dipole placed horizontally, the radiated intensity vanishes as the distance
to the surface is reduced to contact. As the dipole is approaching a real (absorbing) metal,
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a larger fraction of the power emitted by the dipole is dissipated in the metal so that the
far-field radiation becomes quenched. When the dipole is facing a dielectric, the power
transmitted into the dielectric increases as the distance is reduced. This is due to the
conversion of evanescent waves into radiative waves in the medium with a larger index of
refraction. The above mechanisms apply when modelling the electromagnetic coupling of
molecules to solid surfaces. They constitute the basic principles of the recent trend towards
near-field fluorescence microscopy (Betzig and Chichester 1993, Pedarniget al 1995).

1.4. Perturbative or self-consistent approach?

Understanding the optical tip–sample interaction presented surely one of the most serious
challenges for the beginning of near-field optical microscopy research. Empirical steps
contributed to the progress in designing tips which provide a good imaging quality. Different
tip designs evolved according to the type of experimental set-up. Internal illumination
devices (STOM or PSTM) exploit bare and sharply elongated optical fibres (Reddicket al
1989, Courjonet al 1989, 1990, Adamet al 1993, van Hulstet al 1992, 1993) while external
illumination scanning near-field optical microscopes (SNOM) favour metallized tips with a
subwavelength aperture at the apex (Betziget al 1986, 1987, 1991, Liebermanet al 1990).
A few wavelengths away from the apex, the general shape of such tips is usually smooth.
However, recent configurations involving tips with a tetrahedral termination (entirely or
partly coated with metal) were also successful (Fischer and Köglin 1995). Metal tips were
also found appropriate for the scanning surface plasmon microscope (SSPM) (Spechtet al
1992).

All these developments and their numerous variations were supported exclusively by
instrumental intuition since classical optical theories were ineffective in describing the basic
features of the tip–sample interaction. Moreover, the early theoretical works on near-
field optics did not approach this interaction self-consistently (Vigoureuxet al 1989). The
pioneering investigations provided insights into the field distribution behind subwavelength
apertures but without any sample present. After these exploratory studies, the first methods
applied to simulate near-field microscopes images computed the electromagnetic field
diffracted above a non-planar sample surface but ignored the presence of any probe. Such
procedures were later improved by the use of ideal probes which did not disturb the near-
field above the sample. Indeed, these probes were introduced after the computation of the
field above the bare surface basically to model devices which integrate the optical near-field
over a finite volume. Such ideal probes are thus not coupled to the sample when solving
Maxwell’s equations. Neglecting this coupling was assumed to be justified for large values
of the tip-to-sample distance and for non-resonant wavelengths. It was hoped that less
favourable situations could be handled within the first Born approximation. However, all
experiments conducted with various devices confirmed that improving the resolution requires
approaching the tip very close to the sample. Adding to this fact the recent development
towards near-field spectroscopy and the exploration of radiation pressure effects, it became
clear that a realistic computation should at least take the tip–sample coupling properly into
account. Various numerical techniques were then applied in order to include this coupling
successfully.

2. The finite-difference time domain scheme

Originally developed in the context of radar scattering in aeronautics, this method is a
Maxwell’s equations solver derived from the finite-element method. This purely numerical



664 C Girard and A Dereux

scheme was recently applied to near-field optical problems (Kannet al 1995a, b). The
technique directly solves the time-dependent Maxwell equations. This feature imposes time
averaging over a period in order to consider harmonically oscillating fields which accurately
model the time-dependence of the laser used in near-field optics. Typically, such a procedure
requires a supercomputer in order to assess even relatively simple problems. Up to now, it
has been able to reproduce some results found previously by the methods that we detail in
sections 3 and 4.

3. Theories based on matching boundary conditions

Up until now, practically all applications of near-field optics have been running under
stationary laser illumination. This experimental mode allows one to restrict the theoretical
description to electromagnetic fields which depend harmonically on time. With this
exp(−iωt) time-dependence, the Maxwell equations in the absence of any external source
read (SI units)

∇ · ε(r, ω)E(r, ω) = 0 (5)

∇ · B(r, ω) = 0 (6)

∇ × E(r, ω) = iωµ0H(r, ω) (7)

∇ × H(r, ω) = −iωε0ε(r, ω)E(r, ω). (8)

This set of equations is the starting point of amacroscopicapproach of near-field optical
phenomena where the response of matter to exciting electromagnetic fields is described by
the dielectric functionε(r, ω). Roughly speaking, the dielectric function, which is equal
to the square of the complex index of refraction, allows one to model the response of a
large number of atoms to an external electric field. It is physically meaningful to address
problems where the scatterers’ size is large enough to justify the use of such a global
property. In visible light near-field optics, it allows one to model the response of mesoscopic
and nanoscopic objects larger than about 10 nm.

A first class of numerical methods follows the traditional approach of matching
electromagnetic boundary conditions at interfaces. Such methods are typically based on
well-established techniques previously developed for other purposes. Solutions are written
as linear expansions of a set of eigenfunctions where the coefficients are the unknowns to
be found numerically (Van Labeke and Barchiesi 1992, 1993a, b, Barchiesi and Van Labeke
1993, 1994, 1995, Sentenac and Greffet 1992, Bernstenet al 1993).

3.1. Expansion in plane waves: grating and diffraction theory

Building on the results of the grating theory, the expansions in Fourier series were proposed
by Van Labeke and Barchiesi (1992) in order to model near-field phenomena above
gratings. It is well suited to the study of periodic dielectric surface profiles. Such samples
were frequently used some years ago for testing the resolution limit of near-field optical
microscopes. In order to account for non-periodic and well localized scatterers, Van Labeke
and Barchiesi (1993) later used the expansion in a continuum of plane waves typical of
diffraction theory which we summarize below.

3.1.1. Diffracted field around surface corrugations.The method starts from the totally
reflected electromagnetic waveE0(r, ω) incident on a glass–air plane interface defined by
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z = 0. The diffracted fieldEd(r, ω) due to the surface corrugations is determined within
the Rayleigh hypothesis by assuming the following plane wave expansion,

Ed(r, ω) =
∫ ∫

dkx dky Fd(k, ω)eik·r (9)

wherek = (kx, ky, kz) represents the cartesian components of the different wave vectors
associated with the field diffracted by the corrugated surface andr = (x, y, z). The two-fold
integral runs overkx andky . Since the dispersion relation (4) must hold, the diffracted field
generally contains both radiative and evanescent waves. Indeed, according to the Heisenberg
uncertainties introduced in section 1.3, we know that the dispersion1ks (wheres = x, y)
is directly related to the lateral size of the surface corrugations with respect to the incident
wavelengthλ. When we deal with a sample that displays subwavelength details, the Fourier
expansion (9) is mainly composed of evanescent components so that the resulting diffracted
field Ed(r, ω) turns out to be confined around the surface corrugations.

Figure 1. Schematic illustration of a sample limited by an arbitrary surface corrugation function
Z = 0(x, y). In the simulation described in figures 2 and 3 this system is illuminated in total
internal reflection (TIR).

3.1.2. Perturbative diffraction theory.The evaluation of the field amplitudesF (k, ω) is
known as a rather difficult task. It requires the introduction of the Fourier transform of the
function describing the surface profile0(x, y) (cf figure 1):

0(x, y) =
∫ ∫

dkx dkyγ (kx, ky)e
i(kxx+kyy). (10)

The application of the standard boundary conditions at the surfacez = 0(x, y) leads
to a complex relation between the incident and the diffracted field. This difficulty is
reduced by working within the perturbative approximation introduced by Agarwal (1977),
Toigo et al (1977) and Elson (1975) to study the far-field diffraction and the scattering
properties of metallic corrugated surfaces. While applying the boundary conditions, this
approximation consists of expanding the exponential function contained in (9) as a power
series ofkz0(x, y):

ei(kxx+kyy+kz0(x,y)) = ei(kxx+kyy)[1 + ikz0(x, y) + · · ·]. (11)

For surface corrugations with a weak amplitude, this expansion may be limited to first
order. In this case, the diffracted amplitudes are proportional to the Fourier transform of
the surface profileγ (kx, ky) and depend linearly on the zeroth-order fieldE0(r, ω):

Fd(kx, ky, ω) ≈ i(ε′ − ε)γ (kx − qx, ky − qy)A(kx, ky) · E0(r, ω) (12)

whereqx andqy represent the(x, y) components of the incident wave vector. In this linear
relationA(kx, ky) is the 3× 3 transfer matrix defined by

A(kx, ky) = ω2/c2

kz + k′
z

1 − 1

k′
z + ε′kz

( k2
x kxky kxkz

kykx k2
y kykz

k′
zkx k′

zky k′
zkz

)
(13)
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where1 represents the identity matrix andk′
z is az component of the wave vectors diffracted

inside the sample characterized by the dielectric functionε′:

k′2
z = ω2

c2
ε′ − k2

x − k2
y. (14)

The total optical field generated near the surface protrusions is thus given by a correction
to the result associated with a perfectly flat sample:

E(r, ω) ≈ E0(r, ω) + i(ε′ − ε)

∫ ∫
dkx dky exp(ik · r)

×γ (kx − qx, ky − qy)A(kx, ky) · E0(r, ω). (15)

At this stage, the field may be determined numerically by using standard fast Fourier
transform (FFT) routines. As within any scheme working in reciprocal space, the structural
information about the object is thus contained in the Fourier transformγ (kx, ky) of the
surface profile0(x, y). Consequently, for a given observation distanceZ0, the accuracy of
the results will depend on the number of spatial harmonics introduced in the FFT.

The method has a relatively low cost in term of computer time so that it is certainly
an interesting tool to help the interpretation of massive amounts of near-field microscope
images. Nevertheless, we have to emphasize that such an approximation has a range
of validity restricted to surface corrugations of weak amplitude when compared with the
incident wavelength. Figures 2 and 3 present two different numerical calculations based
on this method. The system is a two-dimensional glass grating illuminated in total internal
configuration. We note a strong variation of the optical energy distribution as a function
of the polarization mode. For the small grating height investigated here, these results are
in fairly good agreement with those issued from the accurate diffraction gratings theory
developed by Nevière et al (see, for example, Goudonnetet al 1995). More recently
several other experimental configurations were investigated with similar methods (Barchiesi
and Van Labeke 1995, Van Labeke and Barchiesi 1995, Bernstenet al 1993). Also, some
important issues concerning the problem of image reconstruction (inverse scattering) has
been addressed in this context (Garcia and Nieto-Vesperinas 1993, 1994, 1995).

3.2. Expansion in multipoles

Inspired by a technique originally developed for antenna design at longer wavelengths
(Hafner and Bomhodt 1993), Novotnyet al (1994, 1995) and Novotny and Pohl (1995)
applied the expansion of the solutions on multipolar eigenfunctions to study near-field
optical phenomena.

These multipolar eigenfunctionsFn(r, ω) do satisfy the vector wave equation for the
eigenvalueqn:

−∇ × ∇ × Fn(r, ω) + q2
nFn(r, ω) = 0. (16)

According to early studies on the representation of electromagnetic fields in terms of scalar
fields (Hansen 1937, Stratton 1941, Green and Wolf 1953, Morse and Feshbach 1953,
Bouwkamp and Casimir 1954), they can be constructed from the eigenfunctionsψn(r, ω)

of the scalar Helmholtz equation:

∇2ψn(r, ω) + q2
nψn(r, ω) = 0. (17)

Since ∫
dr ψ∗

n(r, ω)ψn′(r, ω) = δn,n′ (18)
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Figure 2. Iso-intensity lines calculated above a lamellar grating. The geometry of the grating
is represented by rectangular-shaped surface protrusions. The system is lighted in the TIR
configuration with an incident angleθ = 45◦, a wavelengthλ = 632 nm and an optical index
n = 1.5. The calculation has been performed with the perturbative approach as described in
section 3.1.2: (a) p-polarized illumination mode; (b) s-polarized illumination mode (by courtesy
of D Barchiesi and D Van Labeke).
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these eigenfunctions form an orthonormal basis set in the Hilbert space. The simplest form
is obtained in cartesian coordinates:

ψn(r, ω) ≡ ψ∗
k(r, ω) = 1√

8π3
exp(ik · r). (19)

Three-dimensional multipolar wavefunctions are formulated in spherical coordinates:

ψn(r, ω) ≡ ψσ,l,m,qn
(r, ω) ≡ P m

l (cosθ)zl(qnr)

{
cosmφ

sinmφ

}
(20)

where P m
l (cosθ) stands for the associated Legendre polynomials andzl(qnr) for the

spherical Bessel functions. The indexσ distinguishes between even (e) and odd (o)
functions. Cylindrical symmetry characterizes the multipole functions used in two-
dimensional geometries:

ψn(r, ω) ≡ ψσ,m,qn
(r, ω) ≡ Bm(κρ) exp(iqn,zz)

{
cosmφ

sinmφ

}
(21)

where theBm are Bessel functions,κ =
√

q2
n,x + q2

n,y andρ =
√

x2 + y2.

A first family of vector eigenfunctions is found by applying the gradient operator to the
scalar functions (C is a normalization factor which depends on the coordinate system):

Ln(r, ω) = C∇ψn(r, ω). (22)

A second set of eigenfunctions is built as follows,

Mn(r, ω) = C∇ × ψn(r, ω)a (23)

wherea is a constant vector of unit length, sometimes called the ‘piloting vector’. The last
group of eigenfunctions is given by

Nn(r, ω) = C

k
∇ × ∇ × ψn(r, ω)a. (24)

Thanks to the property of the piloting vector and to the orthonormalization of the
scalar eigenfunctions, the setsLn(r, ω), Mn(r, ω), Nn(r, ω) are mutually orthogonal in
the Hilbert sense. One can easily prove that the three above sets of vector eigenfunctions are
sufficient to build the following completeness relationship valid for an infinite homogeneous
system:∑

n

[Ln(r, ω)L∗
n(r

′, ω) + Mn(r, ω)M ∗
n (r′, ω) + Nn(r, ω)N ∗

n (r′, ω)] = 1δ(r − r′). (25)

The first family of eigenfunctions,Ln(r, ω), are longitudinal eigenfunctions which
correspond to physical solutions of the wave equation only ifk = 0. This is only possible
if ε = 0, which occurs at longitudinal optical frequencies in polar materials or at the plasma
frequency in metals. For other frequencies, these eigenfunctions have no physical meaning
even if they are mathematically required to build the completeness relationship. Therefore,
after dividing the space into subdomains where the index of refraction is constant, the
multiple multipole method performs the expansion of the electric field in each subdomain
α only on the sets of the transverse eigenfunctionsMn(r, ω) andNn(r, ω):

Eα(r, ω) =
∑

n

[aα
nMn(r, ω) + bα

nNn(r, ω)]. (26)
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Figure 3. The same as figure 2, but with a smaller lateral extension of the surface structures
(by courtesy of D Barchiesi and D Van Labeke).

In order to remedy the poor convergence of the above expansion for geometries far from
the spherical (respectively cylindrical) geometry, the principle of the multiple multipole
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method consists of using several different originsrj in the multipole expansion:

Eα(r, ω) =
∑

j

∑
n

[aα
n,jMn(r − rj ) + bα

n,jNn(r − rj )]. (27)

The unknowns coefficientsaα
n,j andbα

n,j are then found from the electromagnetic boundary
conditions on the interfaces between adjacent subdomains by a least-squares minimization.
This optimization requires one to discretize the curves describing the interfaces. This
discretization has some impact on the highest possible degree of a multipole centre.

Of course, due to the splitting of the geometry in subdomains and to the existence
of several originsrj , completeness and orthonormalization relationships over the entire
composite system are not achieved anymore. Therefore, to avoid mutual dependences, the
method relies on semi-empirical rules to fix the separation between the originsrj .

The multipole functions used in the basis set of the multiple multipole method are rather
short range so that they affect their close neighbourhood. The method is thus better suited to
account for localized geometries than the expansion in plane waves. It is also well designed
to describe complicated structures such as cylindrical waveguides coated with a realistic
metal whose dielectric function is complex (Novotny and Hafner 1994) or the scattering
inside sharpened cylindrical tips used in near-field microscopy. From a mathematical point
of view, the idea of spreading a set of multipole functions and adjusting the coefficients is
similar to quantum mechanical techniques used for computing electronic structures such as
the linear combination of atomic orbitals (LCAO). The multipoles in electrodynamics thus
play a role similar to the atomic orbitals in quantum mechanics. However, the situation is
somewhat clearer in electron physics where the atomic orbitals are centred on each nucleus,
whereas a physical meaning is lacking in the mathematical procedure (Regli 1992) which
distributes the coordinates of the multipoles centres in electrodynamics.

Figures 4 and 5 display examples of numerical simulations performed using the MMP
methods (Novotny and Pohl 1995).

4. Scattering theory

From a mathematical point of view, scattering theory (also known as the field susceptibility
or Green dyadic technique) is developed upon the Green function theory applied to the wave
equation where a source term is introduced. It simply casts the most general analytical
solution of the inhomogeneous wave equation as an integral equation where the kernel is a
Green function (Newton 1966, Keller 1986, 1988a, b). Scattering theory has been used for a
long time in quantum mechanical problems. In electrodynamics, it has also been exploited
extensively to solve engineering problems involving external sources of currents where the
solution in the source region is not required. The application to the study of phenomena
where the solution in the source region (such as in near-field optics) is of primary importance
was hindered by the apparently divergent nature of the Green dyadic in the source region.
As will be shown in section 4.3, this divergence is related to depolarization effects. These
are well understood today so that an unambiguous renormalization procedure is available.

Several variants of electromagnetic scattering theory where applied successfully to
the modelization of near-field optical phenomena. Although the Green function may be
expanded in Fourier or multipoles series, most variants preferred a discretization in the
direct space since near-field optical phenomena occur on a subwavelength scale.
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Figure 4. Examples of 3D near-field calculations performed with the MMP method (by courtesy
of L Novotny (Novotny and Pohl 1995)). The physical system is the tip of an aperture SNOM
consisting of a cylindrical part and a tapered part. The probe is excited by a waveguide mode
of wavelengthλ = 488 nm and there is a factor three between two successive lines.

4.1. Propagator or Green dyadic

This section outlines how the Green dyadic (or field susceptibility) method associated
with the localized perturbation theory deals efficiently with the resolution of the self-
consistent optical tip–sample interaction. A detailed account of this theory and its numerical
implementation may be found in (Girardet al 1993, Dereux and Pohl 1993, Martinet al
1995a). A discussion of the convergence and stability of the algorithm is reported in Martin
et al (1994). Therefore, this section will focus more on the physical content of the formulae
introduced in the above-mentioned references.

With the usual exp(−iωt) time-dependence, the vector wave equation issued from
Maxwell’s equations (SI units),

− ∇ × ∇ × E(r, ω) + ω2

c2
ε(r, ω)E(r, ω) = 0 (28)

may be cast as

− ∇ × ∇ × E(r, ω) + q2E(r, ω) = V (r, ω)E(r, ω) (29)

with

q2 = ω2

c2
εref. (30)

Any complicated behaviour due to the anisotropy or to the low symmetry of the geometrical
shape of the original dielectric tensor profileε(r, ω) is described as a difference relative to
the reference systemεref:

V (r, ω) = ω2

c2
(1εref − ε(r, ω)). (31)
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Figure 5. Contours of constant|E|2 on three perpendicular planes near the aperture of the
SNOM probe described in figure 4 (by courtesy of L Novotny (Novotny and Pohl 1995)). The
arrows indicate the time-averaged Poynting vector. The polarization is in the planey = 0. The
transmission through the probe is increased when a dielectric substrate is approached (b).

As introduced in Dereux and Pohl (1993) and Girardet al (1993), the solution of (29)
is obtained from the implicit Lippmann–Schwinger equation

E(r, ω) = E0(r, ω) +
∫

D

dr′ G0(r, r′, ω)V (r′, ω)E(r′, ω). (32)

In scattering theory, the first termE0(r, ω) is referred to as the incident field while the
second term is called the scattered field obtained from the integration over the domainD

whereV (r′, ω) is non-zero.D defines the volume of the scatterer relative to the reference
system. Electromagnetic theory traditionally qualifiesD as the source region.

To solve the Lippmann–Schwinger equation, we need to know the analytical solution
E0(r, ω) satisfying

− ∇ × ∇ × E0(r, ω) + q2E0(r, ω) = 0 (33)

and the associated Green dyadic defined by

− ∇ × ∇ × G0(r, r′, ω) + q2G0(r, r′, ω) = 1δ(r − r
′
). (34)

The reference structureεref is usually a homogeneous background material or a semi-infinite
surface system. For homogeneous media, the analytical form ofG0(r, r′, ω) is known from
early studies (Morse and Feshbach 1953, Levine and Schwinger 1950). Its general form
may be deduced as follows. We first seek a solution (temporarily written asG

′
0 for a reason

which will appear later) of (34) as an expansion over the vector eigenfunctions already
defined in the previous section when devising the expansion in multipoles:

G
′
0(r, r′, ω) =

∑
n

Ln(r, ω)X∗
n(r′, ω) + Mn(r, ω)Y ∗

n (r′, ω) + Nn(r, ω)Z∗
n(r′, ω). (35)



Near-field optics theories 673

According to the completeness relationship (25), we can find out the unknownsX∗
n(r′, ω),

Y ∗
n (r′, ω) andZ∗

n(r′, ω) by backsubstitution of (35) in (34), so that

G
′
0(r, r′, ω) =

∑
n

Ln(r, ω)L∗
n(r

′, ω) + Mn(r, ω)M ∗
n (r′, ω) + Nn(r, ω)N ∗

n (r′, ω)

q2 − q2
n

. (36)

The above expansion is known as the spectral expansion of the Green dyadic. However,
as mentioned in the previous section, the longitudinal wavefunctions are not physical in a
homogeneous medium. One might think that discarding the longitudinal wavefunctions out
of the spectral expansion would provide the appropriate cure in order to findG0(r, r′, ω).
This would be a mistake since it does not take care of the singular behaviour ofG0(r, r′, ω)

as r → r
′
. Indeed, when introduced in (34), the resulting Green dyadic expansionGt

0
containing only transverse eigenfunctions cannot build up the longitudinal part of1δ(r−r

′
)

which exists ifr → r
′
. Indeed, if

Gt
0(r, r′, ω) =

∑
n

Mn(r, ω)M ∗
n (r′, ω) + Nn(r, ω)N ∗

n (r′, ω)

q2 − q2
n

(37)

we have

−∇ × ∇ × Gt
0(r, r′, ω) + q2Gt

0(r, r′, ω) = Dt(r − r
′
) (38)

where

Dt(r − r
′
) =

∑
n

[Mn(r, ω)M ∗
n (r′, ω) + Nn(r, ω)N ∗

n (r′, ω)]. (39)

A longitudinal part must then be added toGt
0 in order to buildG0:

G0(r, r′, ω) = Gt
0(r, r′, ω) + Gl

0(r, r′, ω). (40)

Gl
0 must satisfy

−∇ × ∇ × Gl
0(r, r′, ω) + q2Gl

0(r, r′, ω) = Dl(r − r
′
) (41)

where

Dl(r − r
′
) =

∑
n

[Ln(r, ω)L∗
n(r

′, ω)]. (42)

The longitudinal character ofGl
0 allows one to conclude that

Gl
0(r, r′, ω) = 1

q2
Dl(r − r

′
) (43)

so that

G0(r, r′, ω) = Gt
0(r, r′, ω) + Gl

0(r, r′, ω). (44)

In Cartesian coordinates, the normalization factor in the vector wavefunctions is given
by C = k−1. Some algebra leads to

G0(r, r′, ω) =
∫

dk

[
1 − 1

q2
kk

]
eik·(r−r

′
)

8π3(q2 − k2)
. (45)

Integration by the method of residues yields

G0(r, r′, ω) =
[

1 − 1

q2
∇∇

]
g(r, r′, ω) (46)
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where g(r, r′, ω) is the Green function associated with the scalar Helmholtz equation.
g(r, r′, ω) is given by a spherical wave emitted atr

′
(Economou 1983):

g(r, r′, ω) = exp(iq|r − r
′ |)

4π |r − r′ | . (47)

The last two equations are interpreted as follows. The dyadic Green function is not the
direct extension of the scalar Green function. Indeed, at large distances (mathematically at
infinite distances), one must pay attention to satisfying the Sommerfeld radiation condition
which states that the electromagnetic fields are purely transverse. The negative terms inside
the brackets of the last two equations take care of discarding any longitudinal components
of the field at infinity.

For a surface system, the expression of the propagator is somewhat more elaborated
(Agarwal 1975, Metiu 1984, Girard and Bouju 1992).

4.2. The Huygens–Fresnel principle revisited

The implicit character of this Lippmann–Schwinger equation ensures the self-consistency
of the solution. This may be understood by revisiting the Huygens–Fresnel principle. The
various Kirchhoff theories are themselves a mathematical translation of the Huygens–Fresnel
principle. After an abstract discretization of the scatterer into elementary sources, this
fundamental principle states that the scattering of light may be explained by the coherent
sum of the fields emitted by each elementary source. It is easily checked that this basic
feature is embedded into (32) if we assume that we know the value of the field attributed to
each elementary source insideD. Moreover, one should notice that Huygens described the
field emitted by each elementary source as spherical waves similar to (47). Relatively to
the Lippmann–Schwinger equation (32), the different look of Kirchhoff integrals originates
simply from the use of the Green theorem to transform the volume integrals into surface
integrals.

One of the basic approximations in classical diffraction theories substitutes the incident
field E0(r

′, ω) into the values of the field in the source regionE(r′, ω). This procedure to
solve (32) is known as the first Born approximation in scattering theory. The improvement
brought by the self-consistent solution is thus related to the accurate determination of the
field value in the source region. We discussed in Girard and Bouju (1991) and Dereuxet
al (1991) how the discretization of the Lippmann–Schwinger equation (32) allowed one to
obtain the total field in the source region through the solution of∑

j

[1δ(ri − rj ) − G0(ri , rj , ω)V (rj , ω)wj ]E(rj , ω) = E0(ri , ω). (48)

wherewj is the volume (surface or length according to the dimensionality of the problem)
of the mesh. In this linear system of equations, allri andrj belong to the source region
so that computation of the diagonal elementsG0(ri , ri , ω) is required. At first sight, this
may cause some trouble sinceG0(ri , rj , ω) looks singular in equation (46) whenri → rj .
A proper renormalization procedure to be explained in the next section is needed to resolve
this singularity.

4.3. Renormalization procedure and the depolarizing dyadic

In the derivation of equation (32) from the vector wave equation, the commutation of
the integration over the perturbation domain

∫
D

dr′ and the application of−∇ × ∇× was
assumed. Although this permutation is regular in most cases, it is not correct when the
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integrand is singular like a spherical wave (Yaghjian 1980). In the source region, when
r → r

′
, the interchange of the linear operators

∫
D

dr′ and−∇×∇× in front of a cylindrical
or a spherical wavefunction supplies a point source term as proved in classical textbooks
(Born and Wolf 1964). Moreover, this extra source term depends critically on the shape
of the mesh used in the discretization procedure. This somewhat confusing feature has
hindered the use of the Green dyadic technique in numerical applications. Yaghjian clarified
this matter and tabulated the corrective terms for various discretization meshes (Yaghjian
1980). We now introduce this correction by discussing further the physical meaning of the
self-consistent step which occurs in the numerical scheme. In order to be more intuitive, let
us imagine that the perturbation is made of a single discretization mesh centred aroundri .
Equation (48) allows one to find the electric field inside this meshE(ri , ω) as a function
of the applied fieldE0(ri , ω):

[1 − G0(ri , ri , ω)V (ri , ω)wi ]E(ri , ω) = E0(ri , ω). (49)

Due to the finite size of the mesh, this evaluation must include the correction arising from the
polarization of the mesh. In other words, the self-consistent step (49) must be in agreement
with

E(ri , ω) = E0(ri , ω) − Lα

P (ri , ω)

ε0
(50)

where α = 1, 2, 3 according to the dimensionality of the problem andP (ri , ω) is the
polarization vector which is related to the dielectric property of the mesh through

P (ri , ω)

ε0
= [ε(ri , ω) − 1εref]E(ri , ω). (51)

The resulting field depends critically on the depolarizing dyadicLα associated with the
shape of the mesh (Yaghjian 1980, Kittel 1976). Here, we quote only the results which
arise in Cartesian coordinates. When addressing the scattering of electromagnetic waves by
multilayers, the shape of the discretization mesh is a very thin plate so that

L1 =
( 0 0 0

0 0 0
0 0 1

)
. (52)

In two-dimensional problems, considering infinitely long square rods along thex direction
implies the following structure of the depolarizing dyadic:

L2 =
 0 0 0

0 1
2 0

0 0 1
2

 . (53)

In three-dimensional scattering, the depolarizing dyadic associated with a cubic mesh reads

L3 =
 1

3 0 0
0 1

3 0
0 0 1

3

 . (54)

Equation (50) evolves then as[
1 − c2

ω2
LαV (ri , ω)

]
E(ri , ω) = E0(ri , ω) (55)

which is clearly not included in (49). Indeed, although equation (55) is related to the shape
of the mesh, it does not depend on its sizewi whereas the matrix to be inverted in (49)
depends onwi . Thus, for a vanishing value of the mesh sizewi , equation (49) does not
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take any depolarization effect into account. In order to include the depolarization properly,
we need to modify the definition of the Green dyadic as follows:

G0(r, r′, ω) =
[

1 − 1

q2
∇∇

]
g(r, r′, ω) + Lαδ(r − r

′
)
c2

ω2
. (56)

The renormalization procedure outlined above is applied to discretize a large piece of
continuous matter. It is based on the bulk dielectric properties of the discretized material
which are known to be accurate so as to take particles larger than about 10 nm into account
(Bohren and Huffman 1983). The introduction of smaller particles (clusters, molecules
or even atoms) in the computational scheme is possible provided that its polarizability be
known from some other source like an experimental measurement or a quantum mechanical
calculation. In this case, the corrective delta function term of (56) must not be included (i.e.
Lα = 0) since the polarizabilities obtained by these means account for the depolarization
effect inside the particles.

Let us point out that the computational procedure introduced in Dereux and Pohl (1993)
and Girardet al (1993) deliberately avoids any step involving matching boundary conditions.
The ability of the method in dealing with scatterers of arbitrary shapes and dielectric
responses is of course a fundamental advantage when studying the optical interaction
between elongated probe tips and non-planar samples. Not only does this feature enable
the handling of arbitrary shaped objects made of continuous matter but, as explained in the
preceding paragraph, it also allows one to treat discrete particles in the same framework.
This will be a fundamental advantage when addressing the optical interaction of tips with
particles whose shapes are intrinsically not sharp. This approach is thus ready to include
fuzzy quantum systems (electron gas inside a metallic cluster, molecules or atoms). This is
better understood by discussing briefly the relationship between the Green dyadic technique
and the concept of field susceptibility (Agarwal 1975).

4.4. Alternative derivation of the Lippmann–Schwinger equation: the field-susceptibility
method

Another meaningful equivalent approach may be applied to derive Lippmann–Schwinger
equation for optical fields. This alternative derivation is based on the concept of field
susceptibility that describes the response of the optical field itself to an infinitesimal
fluctuating volume of polarized matter. As illustrated in the fundamental paper of Agarwal
(1975), starting from themicroscopicMaxwell equations expressed in terms of both charge
and current densities is a direct route to derive the classical expression of the free-space
field susceptibility. Let us consider a physical system characterized by its time-dependent
charge densityρ(r, t) and its current densityj(r, t). In theω-space, the Maxwell equations
read

∇ · E(r, ω) = ρ(r, ω)

ε0
(57)

∇ · B(r, ω) = 0 (58)

∇ × E(r, ω) = iωµ0H(r, ω) (59)

∇ × H(r, ω) = −iωε0E(r, ω) + j(r, ω). (60)

The vectorial wave equation for the electric field is readily obtained by taking the curl of
equation (59). After some straightforward algebraic manipulations, one gets the well known
result

1E(r, ω) + q2
0E(r, ω) = ∇ ρ(r, ω)

ε0
− iωµ0j(r, ω) (61)
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whereq0 = ω/c.
We now express both charge and current densities in terms of the local polarization

P (r, ω) of the material system:

ρ(r, ω) = −∇ · P (r, ω) (62)

and

j(r, ω) = −iωP (r, ω). (63)

We now rewrite the non-homogeneous equation (61) as follows:

1E(r, ω) + q2
0E(r, ω) = q2

0
P (r, ω)

ε0
+ ∇

[
∇ · P (r, ω)

ε0

]
. (64)

Let E0(r, ω) be the solution of the following homogeneous equation,

1E0(r, ω) + q2
0E0(r, ω) = 0 (65)

the general solution of (64) is the sum of the homogeneous fieldE0(r, ω) plus a particular
solution Em(r, ω). This particular solution can be derived from the knowledge of the
free-space scalar Green function (47)

Em(r, ω) =
∫

S0(r, r′, ω) · P (r′, ω) dr′ (66)

whereS0(r, r′, ω) defines the free-space dyadic field susceptibility

S0(r, r′, ω) = (q2
0 + ∇∇)g(r, r′, ω). (67)

At this stage it is interesting to note that the free space Lippmann–Schwinger equation can
be deduced from these last relations. First, we write the complete solution of equation (64)
as the sum of both homogeneous and inhomogeneous solutions:

E(r, ω) = E0(r, ω) + Em(r, ω) (68)

Second, we introduce the usual constitutive equation for a local medium:

P (r, ω)

ε0
= χ(r, ω) · E(r, ω). (69)

Finally, by substituting this expression into (66), and the resulting formula into (68), we
find the implicit equation

E(r, ω) = E0(r, ω) +
∫

S0(r, r′, ω) · χ(r′, ω) · E(r′, ω) dr′ (70)

which recovers the result of section 4.1 for an arbitrary particle in free space. Indeed, the
kernels appearing in equations (32) and (70) are identical,

G0(r, r′, ω)V (r′, ω) = S0(r, r′, ω)χ(r′, ω). (71)

since, in the case ofcontinuous matterwhere the dielectric susceptibilityχ(r′, ω) is related
to the dielectric function according to

χ(r′, ω) = ε(ω) − 1 (72)

which is consistent with the fact that a simple constant factor is the only difference between
the Green dyadic and the field susceptibility:

S0(r, r′, ω) = −q2
0G0(r, r′, ω). (73)

Now, if we introduce a somewhat more complicated surrounding such as, for example,
the presence of an extended medium (the surface of a semi-infinite material, a macroscopic
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sized particle and so on), we just have to replace the free-space dyadicS0(r, r′, ω) by the
following (Girard and Bouju 1991, Kelleret al 1992, 1993),

S(r, r′, ω) = S0(r, r′, ω) + Ss(r, r′, ω) (74)

where the new contributionSs(r, r′, ω) accounts for the dynamical response of such
extended system.

The factorization on the right-hand side of (71) was originally introduced to deal with
atoms or molecules adsorbed on a surface. Indeed, if one considers, for example, a system
formed ofp individual molecules,χ(r, ω) can be expressed as

χ(r′, ω) =
p∑

i=1

α(i)(ω)δ(r′ − ri ) + · · · (75)

whereri represents the position vectors of the molecules andα(i)(ω) defines their optical
dipolar polarizabilities. For more details about this factorization and its application to
molecular near-field optics, we refer the reader to section 6.

However, the most important feature of all variants of scattering theory is the correct
description of the self-consistent coupling between all scatterers which raises the numerical
implementation to the rank of an accurate predictive procedure. In order to illustrate this
versatility, we review the results of numerical applications to the study of optical tip–
sample interactions arising in different contexts: optical near-field distributions, near-field
spectroscopy and radiation pressure effects.

4.5. Near-field distributions

Near-field distributions obtained by scattering theoretical calculations where the
discretization procedure is applied on pertubation volumes have been obtained by several
groups (Girardet al 1993, Greffetet al 1995, Carminati and Greffet 1995a, b, Martinet al
1995a, b).

The traditional way of exploiting scattering theory by transforming volume integrals into
surface integrals has been applied to near-field optical problems by Carminatiet al (1994)
and Nieto-Vesperinas and Madrazo (1995). These authors established an exact numerical
method that can account for the interaction of the near-field scattered by a rough surface
placed in an interaction with a local probe.

Our first numerical applications of the Green function technique will be presented in
the framework of the total internal reflection configuration. In this mode, the transparent
glass surface bearing the object (surface defect) is illuminated by a monochromatic optical
field of frequencyω0 so that total reflection may occur at the surface of the material. From
the experimental point of view, this illuminated mode corresponds to the STOM/PSTM
configuration (Reddicket al 1989, Courjonet al 1989, 1990, Adamet al 1993, van Hulst
et al 1992, 1993, Jianget al 1991). Let us consider the three-dimensional (3D) localized
surface protrusion schematized in figure 6. Depending on its own dimensions with respect
to the incident wavelength, such an object will behave as a more or less efficient obstacle
to the propagation of the surface wave. The behaviour of the normalized field intensity
defined by

I = |E|2
|E0|2 (76)

is described in figure 7. In this ratio,|E|2 represents the intensity of the self-consistent
field and|E0|2 the intensity of the incident field (i.e. in the absence of the surface defect).
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The calculation ofI is performed in an observation plane parallel to the reference system,
placed a distanceZ0 = 70 nm above the square-shaped surface defect. This observation
plane is introduced merely for the convenience of data visualization, since the field can be
computed for any arbitrary position outside and inside the system by using the Lippmann–
Schwinger equation (70). In the internal reflection set-up described in figure 6, the zeroth-
order solutionE0(r, ω) is the evanescent field created by total reflection at the surface
Z = 0. Such an illumination configuration eliminates propagating waves along thez

direction. It may be seen in figure 7 that the structure of the large scale 2000× 2000 nm2

calculated image is very complex. It displays a complicated standing field pattern currently
observed in the STOM configuration, namely strong confined field effects observed just
above the scatterer, scattering along its lateral sides and usual interference patterns due to
the interaction between the travelling surface wave and the reflected wave by the surface
defect. In particular, this 3D perspective view indicates that at 10 nm from the top of
the object the enhancement factor of the field intensity reaches 2.1. As described in
the experimental works of van Hulst and collaborators, for larger objects generally the
interference phenomenon dominates and makes the detection of subwavelength features
difficult (van Hulstet al 1992, 1993).

Figure 6. Perspective representation of the square-shaped surface protrusion used in the
simulation of figure 7. The system, of optical indexn = 1.5, is illuminated in total reflection,θ0

represents the incident angle and the incident wavelength in vacuum is equal to 620 nm. Three
geometrical parametersa, c and h have been introduced to define the spatial extension of the
protrusion:a represents the external length of the pattern,c the length of the internal side and
h its height.

4.6. Transition from the mesoscopic to the nanoscopic regime: confinement of light near
surface defects

We have proved with the simulation of figure 7 that, first, the electromagnetic field is
more and less confined around surface structures and, second, that the relation between
the object profile and the resulting spatial field distribution may be very complex. In
fact, the study of the gradual transition between mesoscopic and nanoscopic regimes is of
interest for experimentalists working in SNOM since it might allow one to precisely find
the fundamental difference between pure topographic signals and artefacts originating from
interference and scattering phenomena. In order to get more insight about this important
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Figure 7. Perspective view of the normalized electric field intensityI (X, Y ) = |E|2/|E0|2
calculated above the scattering system schematized in figure 6. The sizes of the object are
mesoscopic:a = 750 nm,c = 450 nm andh = 60 nm. The calculation is performed in the
p-polarized mode. For the convenience of the data visualization, the numerical dataI (X, Y )

have been calculated in the observation plane located at distanceZ0 = 70 nm from the flat
surface.

Figure 8. Geometry of a 3D object composed of several identical square-shaped glass
protrusions. The dielectric parameters are the same than those used in the previous application
(cf figure 6). The centre of each pad is located at the nodes of an hexagonal pattern of sideP2.
P1 represents the dimension of each individual protrusion. The system is illuminated in internal
reflection configuration andk represents the surface wave vector. The height of the pads ish

(from Girardet al 1995a); (a) side view, (b) top view.

question, we consider a second application with a more complex system composed of seven
identical square-shaped pads (cf figure 8). The dielectric parameters are the same as those
used in the previous application.

We present in figure 9 a first simulation by illuminating this system in TM polarization
(see figure 8). Each dielectric pad is 100 nm high and has a section of 0.25× 0.25 µm2

and the calculation is performed in the planeZ0 = 120 nm. In order to emphasize both



Near-field optics theories 681

Figure 9. 3D perspective view of the normalized electric field intensityI (X, Y ) = |E|2/|E0|2
calculated above the scattering system schematized in figure 8. The observation plane is located
at a distanceZ0 = 120 nm above the flat surface. This large scale calculation 7× 7 µm2 has
been performed in the p-polarized mode. The parametersP1 andP2 are equal to 250 nm and
1750 nm, respectively, and the pads are 100 nm high (from Girardet al 1995a).

interference and scattering effects occurring around the obstacles, we have used a large
computational window 7×7 µm2. Due to the large spacing between each individual scatterer
(1.75 µm), the resulting field pattern is a complex mixture of interference phenomena due
to multiple reflections between the different pads. As expected, when the number of defects
per unit area increases, the standing wave pattern arising from the multiple scattering effects
gives rise to the well known ‘speckle pattern’ phenomenon.

Now, we study in figure 10 the evolution of the image upon reduction of the different
geometrical parametersP1, P2 and H defined in figure 8. The two commonly used
polarization modes TE and TM are simultaneously considered in figure 10. Three different
typical sizes are successively investigated. In the first example (figure 10(a)) we start in
the mesoscopic range (P1 = 250 nm,P2 = 1750 nm andh = 100 nm). In the two other
examples (figures 10(b) and (c)), a reduction factor equal to two and four is applied and
the position of the observation plane is reduced in the same proportion.

The evolution of the field pattern raises the following comments.
(i) First, when the object displays mesoscopic dimensions (see figures 9 and 10(a)),

the field distribution is dominated by interference phenomena, so that the field lines do not
follow the profile of the square-shaped protrusions.

(ii) Second, as the dimensions of the 3D objects enter the subwavelength range (see
figures 10(b) and (c)), the interference pattern around the objects progressively collapses and
the field intensity distribution tends to become perfectly symmetrical thereby reproducing
the symmetry of the pads. Under such conditions, and in TE polarization, a highly localized
field occurs just above the edges located in a perpendicular direction to the incident fieldE0.
In fact, when we deal with such subwavelength sized objects, the importance of retardation
effects decreases dramatically, so that the symmetry of the field distribution is only governed
by both the orientation of the incident field and the profile of the object itself. Actually,
these features may help us to get more insight into the complex contrast phenomenon
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Figure 10. A sequence of 3D mapsI (X, Y ) =
|E|2/|E0|2 describing the evolution of the standing
field pattern observed around the topographic object
described in figure 8. For the same incident wavelength
λ = 620 nm, the volume occupied by this object is
progressively reduced. (a) We start in the mesoscopic
range withP1 = 250 nm, P2 = 1750 nm andZ0 =
135 nm. The heighth of each pad is 100 nm, the
computational window 3.5 × 3.5 µm2 is centred around
the structure and the two usual polarization modes have
been treated. (b) Same calculation, but after reduction
of all the lengths by a factor two:P1 = 125 nm,
P2 = 875 nm andZ0 = 67.5 nm and the heighth of
each pad is 50 nm. (c) The reduction factor now reaches
four: P1 = 67.5 nm,P2 = 437.5 nm andZ0 = 33.75 nm
and the heighth of each pad is 25 nm (from Girardet
al 1995a).

observed in the TE mode. The field distribution is now governed by the depolarization
effects which result from the conservation of the normal component of the displacement
vectorD(ω) = ε(ω)E(ω) when crossing the surfaces of the dielectric protrusions. Due to
the rapid variation of the dielectric constant between air and glass, this conservation imposes
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a sharp variation of the field near the interfaces perpendicular toE0.
A completely different behaviour is observed with the TM mode. In this polarization

the surface wave is mainly dominated by theZ component of the incident field. The main
resulting effect is, as expected, a better image–object relation in the subwavelength range.
One can observe that, when the size of the square-shaped protrusions is gradually reduced,
the field intensity distribution around the objects tends to reproduce their profiles.

Figure 11. Schematic view of a two-dimensional model of SNOM: a silicon nitride AFM tip
placed above a glass prism sample (by courtesy of Boujuet al (1996)). The incident focused
optical wave has a FWHM of 2.5µm, a wavelength of 0.633µm and is in the s-polarized mode.

5. Applications of scattering theory

5.1. Tip–sample interaction and coupling to the far-field

In SNOM devices the use of a pointed detector allows the convertion of the non-radiative
optical fields concentrated near the surface irregularities into radiative fields detectable in the
far-field region. The amount of optical energy converted by such devices depends mainly on
the size of the region of interaction with the confined optical fields described in the previous
section. It is also very sensitive to the object parameters, the illumination conditions and to
tip design. The tip–sample coupling can be included in the Green dyadic formalism without
any formal difficulty. This can be done merely by adding a second perturbation in the
self-consistent scheme described in section 4.1. In particular, the discretization procedure
already used for taking into account the surface protrusions can be extended to the tip-
apex of the detector. The conversion mechanism will then be analysed theoretically using
the theory described previously. In fact, the knowledge of the effective field distribution
inside the perturbation (tip-apex+ surface defect) is sufficient to describe the far-fieldEfar

crossing a given surface6 located inside the wave zone of the detector. As described in
Girard et al (1994b), outside the source region the Lippmann–Schwinger equation may be
applied once more to derive the field radiated by the tip extremity. This numerical scheme
has been used in Girardet al (1994b) to study the influence of the detector geometry and
of the probing distance on image formation of subwavelength 3D topographic objects.

In this review, in order to illustrate the tip–sample coupling phenomenon simultaneously
with the concommitant optical non-radiative transfer effect occurring around the contacting
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Figure 12. Illustration of the tip–sample optical interaction between a 2D silicon nitride tip and
a glass prism. The parameters are described in figure 11 (by courtesy of Boujuet al (1996)).
This simulation has been performed with a two-dimensionnal numerical code built with the
Green function technique (see section 3.1). In this example the tip touches the surface of the
prism.

zone, we report in figures 11–13 numerical computerized works on a two-dimensional
model of a silicon nitride tip facing a glass sample (see figure 11). In fact, during the past
few years, a lot of NFO probe designs have been proposed (Courjon and Bainier 1994):
nano-apertures, sharpened optical fibres and, more recently, tetrahedral silicon nitride tips
supported by cantilevers which are well known in AFM. The main advantage of this last
probe is that one can rely on the force measurement to control accurately the tip–sample
distance which, otherwise, is badly defined in usual SNOM configurations. A large lens
or an optical fibre placed above the cantilever collects the far-field radiated by the SiN tip
(see figure 11). Figure 12 represents the iso-intensity lines inside the entire SiN tip–sample
system. It may be seen that when the tip touches the prism, a frustration of the surface
wave occurs. In other words, the presence of the SiN probe allows the conversion of a non-
radiative optical wave into a radiative one. A direct consequence of this coupling between
the probe and the sample is the strong attenuation of the reflected wave. As expected, other
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Figure 13. Another illustration of the effect of tip–sample coupling (by courtesy of Bouju
et al (1996)). The full curve represents the integrated far-field intensity as a function of the
tip–sample distance. The square dot located at the right-hand corner of the figure represents
the integrated far-field value calculated without silicon nitride tip. The integration range in the
far-field zone varies between−25◦ and 25◦.

simulations indicate that when the tip is pushed higher the coupling between the tip and the
microprism dramatically decreases (see figure 13). In order to simulate the experimental
signal, the far-field intensity has been integrated around the angleθ (see figure 11). This
calculation has been performed for various tip positions along thez-axis direction. The
calculated approach curve represented in figure 13 is compared to the exponential decay of
a pure evanescent wave whose amplitude is fitted to the self-consistent calculation. We note
that such a self-consistent calculation restores the modulations generated by the coupled
electromagnetic modes of the tip–sample system (Boujuet al 1996, Castiauxet al 1995).

5.2. Particular conditions for the validity of the Born approximations

As discussed earlier in this review, the Born approximation is generally not expected to
work. However, it may be valid in some circumstances which have been cast mathematically
by Carminati and Greffet (1995a, b). The Born approximation was found to be valid for
low-relief surfaces such that the largest vertical stepsh are much smaller than the incident
wavelengthλ and for small dielectric contrasts such that1ε = sup|ε(r, ω) − εref| � 1.

For a localized defect, these conditions may be detailed as follows,

π1εhS
λ2d

� 1 (77)

whereS is the area of the defect andd is the distance of observation of the scattered field.
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The case of an extended surface profile was also analysed in terms of the Fourier
transform of the surface profile. Different validity criteria evolve according to the content
of the Fourier spectrum of the surface profile. For low-frequency profiles, the criterion is
given by

2π1εh

λ
� 1. (78)

The validity of the Born approximation for high-frequency profiles is strongly dependent
on the polarization of the incident wave and on the distance to the plane of observation.
In brief, the approximation holds if the observation distance is large and it is also more
accurate for TE polarized incident waves.

5.3. Nanometre-scale optical spectroscopy

The simulations briefly presented in this section illustrate the ability of the Green dyadic
technique to account for near-field spectroscopy of three-dimensional objects. A detailed
discussion of this matter has been published recently (Girard and Dereux 1994).

The three-dimensional geometry considered in this application is depicted in figure 14.
The incident beam is totally reflected at the prism surface. The perturbation of this surface
system consists of small metallic spheres of nanometre size. The glass tip scans the surface
at a constant heightZp. This tip is a 70 nm high pyramidal volume whose apex is rounded
in order to achieve a 20 nm curvature radius.

Figure 14. STOM set-up used for the spectroscopy of metal clusters.

Spectroscopic effects occur when the dielectric response of the observed particles show
a strong dispersion as a function of the incident wavelength. For visible wavelengths, metals
display this characteristic which gives rise to the phenomenon of plasmon resonances. In
classical far-field optics, plasmon resonances of small metallic particles are well known
phenomena. In near-field optics, they were used by Fischer and Pohl (1989) as the principal
ingredient of a particular near-field optical microscope. The calculations in Girard and
Dereux (1994) anticipated the near-field imaging of these resonances, a research area where
very recent experimental developments have been reported (Krennet al 1995).

The dielectric response of metallic clusters with a radius below 15 nm cannot be
approximated by bulk dielectric function values. For the calculations displayed in this
section, we have therefore used a somewhat more elaborate model for the polarizability of
the metallic spheres obtained by extending the method of Newns (1970) to an electron gas
inside a spherical well. A model of multipolar polarizabilities as a function of the size of the
metal particle can be described from the knowledge of the interband electronic transitions
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of the bulk metal. Such a model includes depolarization effects so that, not onlyL3 = 0,
but also the discretization of the metal spheres is no longer required.

Plasmon resonances are very sensitive to slight variations of the dielectric environment
so that approaching a glass tip has unavoidable consequences on the detected spectrum.
Near-field spectroscopy of metallic nanospheres is thus a typical example of strong tip–
sample interactions (Girardet al 1993). Upon approaching the sample, the principal features
of the tip–sample interaction are slight red-shifting and broadening of the resonance peak.
These behaviours show up simultaneously as a dramatic increase of the intensity which
reveals the presence of an enhanced electric near-field (figure 15).

A typical near-field spectroscopic effect shows up as illustrated in figure 16. The iso-
intensity curves account for the detection above a small cluster of nine metallic particles.
The sphere located at the lower left is made of silver while the others are made of gold.
At an incident frequency which is far from the localized plasmon of a silver particle
(figure 16), the image recorded above the nine spheres follows the square symmetry of
the deposited structure. The intensity recorded around the aggregate displays a larger
gradient in the direction orthogonal to the incident surface wave vector which is aligned
along they direction. When the incident frequency is tuned to the plasmon frequency of
the silver sphere, the intensity is considerably enhanced close to this silver sphere. The
resonating particles distort the field above the gold spheres so that the square symmetry
of the aggregates is no longer recognizable. This optical resonance effect is interesting to
discriminate between different kinds of metallic particles.

Pinceminet al (1994) investigated further aspects of the near-field detection of plasmons
associated with subsurface particles.

5.4. Radiation pressure effects

The last aspect of the optical tip–sample interaction that we review in this paper deals
with the force which results from light pressure effects. Indeed, it was recently proved that
multiple scattering of light between two sufficiently close objects is able to induce an optical
binding force between the two objects (Burnset al 1989, Dereuxet al 1991). Obviously,
this situation is typical of any probe tip approaching a sample so that questions about light
pressure effects arose in the context of near-field microscopy. It was then roughly estimated
that the magnitude of this light induced force should be experimentally accessible (Depasse
and Courjon 1992). Accurate calculations accounting for a complete description of the
phenomenon were published recently (Dereuxet al 1994, Girardet al 1994).

Our discussion copes with electrically neutral objects which are kept sufficiently far
from each other to avoid the overlap of electron wavefunctions. When the tip approaches
the surface under laser beam illumination, the long-range interaction energy includes the
van der Waals dispersion energy and the optical binding energy induced by the incident
light beam (cf figure 17).

The van der Waals dispersion energy is due to quantum zero-point fluctuations of the
coupled charge densities inside the probe tip and the substrate. Its computation may be
achieved within a framework similar to the Lippmann–Schwinger formalism but where the
evaluations are performed for imaginary frequencies.

The calculation of the optical binding energy induced by the incident beam requires that
the spatial and temporal shape of the external field be specified. In the case of harmonically
oscillating fields, the optical binding energy is given by the sum of the time-averaged
inductive energies experienced by the sample and the probe tip. In Girardet al (1994a),
we show that these inductive energies are obtained by integrating the electric field intensity
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Figure 15. Study of the behaviour of the detected intensity as a function of the incident field
frequency. The object is a single metallic particle of 15 nm radius located at the origin of the
absolute frame. The approach distance is maintained constant (Zp = 32 nm): (a) gold sphere;
(b) silver sphere.

|E(r)|2 multiplied by the linear susceptibility over the volumes of the substrate and the
tip. The optical binding force is then deduced by a straightforward partial derivative with
respect to the coordinateZp of the probe tip apex.

In the numerical applications of figure 18, a 400 nm high tetrahedral tip made of glass
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Figure 16. Constant heightZp = 11 nm iso-intensity curves detected by a probe tip scanning
an array of gold spheres deposited on a glass substrate. A silver sphere is introduced at the
lower left-hand corner of the array. All spheres have a radius of 5 nm. (a) The frequency of the
incident field isω = 2 eV. (b) Image simulated at the resonance frequency of the silver particle
ω = 3.34 eV.

terminated by a 40 nm curvature radius approaches a flat glass substrate. The incident
p-polarized plane wave illuminates the tip–sample junction in external reflection (from the
vacuum) with a mean power of 15 mWµm−2. We computed that the force arising in
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Figure 17. Geometry used in the numerical application of figures 18 and 19. The shape of the
tip is tetrahedral like those currently used in scanning force microscopy. The tip aperture angle
used in the simulation is equal to 90◦. Zp represents the tip–sample approach distance and the
junction is lit in external configuration.

Figure 18. Optically-induced force as a function of the approach distanceZp and for various
angles of incidence. The refraction index of both tip and substrate is equal to 1.5: (?) θ0 = 56.5◦
(the Brewster angle); (�) θ0 = 50◦; (♦) θ0 = 60◦.

this circumstance is of the order of a few piconewtons which is within the range of the
experimental resolution of today’s resonant scanning force microscopes. We also observed
a critical dependence of the optical binding force on the angle of incidence. This variation is
understood as follows. If we consider the glass surface alone, the electromagnetic field in the
vicinity of the surface is reduced to the interference pattern arising from the superposition
of the incident and the reflected fields. We call this pattern the zeroth-order solution in
the description of the multiple scattering in the tip–sample junction. This zeroth-order



Near-field optics theories 691

solution is perturbed by the optical near-field which shows up when approaching the tip.
However, the optical field gradients imposed by the zeroth-order solution still dominate.
The observation of the the optical binding force due only to the multiple scattering between
the substrate and the tip is thus better observed in the absence of any reflected field. Such
a situation occurs in the vicinity of the Brewster angle (56.5◦). Finally, we note that the
magnitude of the force increases with the index of refraction of the tip (see figure 19). This
last phenomenon also demonstrates the near-field origin of the optical binding force since
it was significant for approach distances below 50 nm.

Figure 19. The same as figure 18, but calculated with different values of tip optical index: (+)
npr = 1.8; (?) npr = 2; (�) npr = 2.2.

6. Perspectives: from classical to quantum electrodynamics

Since the pioneering works performed in the ATT group by Betzig and Chichester (1993)
concerning the observation of single molecules by near-field optical detection, an increasing
interest has been devoted to this new single molecular detection (SMD) technique. These
contributions raised several important questions concerning the mechanisms underlying such
experiments: How does the macroscopic surrounding formed by the tip–sample junction
modify the behaviour of the embedded quantum system? In particular, what kind of relation
between image and object may be expected by measuring the lifetime changes of a molecular
aggregate attached to the probing tip?

From a theoretical point of view, this new experimental methodology is challenging
because of the limited number of predictive models able to describe the modification of
the intrinsic spectroscopic properties of molecules in the presence of mesoscopic structures
dressed with complex optical surroundings. In fact, the presence of any microscopic system
(here the molecules) placed in interaction with a mesoscopic environment breaks down the
symmetry. This makes the application of a standard boundary conditions based method
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extremely difficult. This difficulty can be overcome by a combination of microscopic and
macroscopic descriptions, where the response function of the dielectric surrounding medium
is derived from an appropriate iterative numerical algorithm (Girardet al 1995b).

Let us consider a single molecule trapped inside a confined geometry. For example, it
may be the junction formed by the tip of a scanning near field optical microscope (SNOM)
facing the surface of a sample. When such a low symmetry system is submitted to an
external excitation, different kinds of phenomena may be expected.

—First a highly-confined optical field may be observed in the gap. The magnitude
and the shape of the field depends both on the sharpness of the detector and the chemical
properties of the junction (metal, semiconductor or dielectric).

—Second, the intrinsic polarizability of the molecule is modified. This effect then
introduces a significant modification of the lifetime of the excited molecule which is always
accompanied by a small shift of the corresponding occupied state. These spectroscopic
changes can be understood by saying that the molecule is ‘dressed’ by the surroundings, or
in other words, that the molecule responds with aneffective polarizabilityαeff(ω) depending
on its location with respect to the material system.

6.1. Spectroscopic properties of a single molecule in confined geometry

The decay of the excited molecule will be considered from the point of view of
electromagnetic theory. All effects originating from some specific chemical interactions
between the molecule and the substrate will be neglected.

The lifetime of an excited molecule located near spherical and planar surfaces has been
the subject of many experimental and theoretical researches for the past 20 years (Drexhage
et al 1968, Metiu 1984).

In the case of a planar surface, the variation of the lifetime excited state depends on the
distance between the molecule and the surface in a complex manner. First, at a very large
distance, the variation displays an oscillatory regime due to interference phenomena. In
the near zone, we observe a strong decrease of the lifetime due to the non-radiative energy
transfer between the excited molecule and the surface. There are actually some similarities
between such phenomena and the non-radiative optical energy transfer occurring in the
optical tunnelling effect. Indeed, both of them are governed by the evanescent optical
fields.

Now let us examine how the intrinsic response properties of the molecule are perturbed
by the surroundings.

6.2. Response of the isolated molecule

In the framework of quantum theory, the dynamical polarizabilityα0(ω) of a physical system
(atom, molecule, small metallic particle and so on) can be expressed as follows:

α0(ω) = 1

h̄

∑
r

(
2ωr0µ

0rµr0

ω2
r0 − ω2 − iω0r0

)
(79)

where µr0 represent the matrix elements of the polarization molecular operator between
the fundamental state and the excited states. Moreover,0r0 represents the natural lifetime
widths of the molecule.

In what will follow, we will restrict ourselves to the case of a two-level molecular
system (Metiu 1984). In a first stage, this simplication avoids the huge computational
difficulties involved in a realistic treatment of the dynamical properties of the molecule.
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Moreover, it provides a comprehensive scheme to analyse the physical mechanisms at the
origin of the lifetime changes induced by the presence of highly complex optical systems.
This approximation leads to

α0(ω) = 1

h̄

(
2ω0µ

01µ10

ω2
0 − ω2 − iω00

)
(80)

whereµ01 is now the matrix element of the polarization operator between the two levels.

6.3. Molecule–surrounding medium coupling: towards the concept of effective
polarizability

In this subsection we introduce the electromagnetic coupling between our molecule and the
3D system described in the inset of figure 20. When this system is perturbed by an optical
field E0(r, t) coming from an external laser source, the fieldE(r, t) in the gap may be
derived from the different numerical schemes described in previous sections. It is important
to note that this field is an ‘observable’ since it has already been averaged on the quantum
states of the whole primary system (dielectric surrounding medium).

Figure 20. Distance-dependence of the normalized lifetime00/0‖ change of a molecule trapped
inside a dielectric–metal–dielectric junction, as a function of the position of the molecule (from
Girard et al 1995b). The geometry used in the simulation is described in the inset and the
tip–sample separation is maintained atZ0 = 1600 nm. The glass sample is covered with a
square-shaped silver layer 300 nm long and 20 nm high.

Let us write the interaction Hamiltonian coupling between the primary system and the
molecule

H(t) = −(E(rm, t) + E(rm, t)) · µ(t) (81)
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whereµ(t) andE(rm, t) are the polarization operator of the molecule and the electric field
operator associated with the 3D dielectric surrounding medium, respectively. The vector
rm denotes the position of the molecule. These operators are written here in the interaction
representation

E(rm, t) = exp[ih̄−1H0t ]Em(r) exp[−ih̄−1H0t ] (82)

and

µ(t) = exp[ih̄−1H0t ]µ exp[−ih̄−1H0t ] (83)

whereH0 represents the Hamiltonian for the 3D dielectric surrounding medium. At this
stage, since one neglects all chemical interactions between the molecule and its support,
one can assume that there is no significant modification of the whole wavefunction|ψ〉 of
the system due to the short-range interaction between the molecule and the 3D dielectric
surrounding medium. In this situation it is worthwhile applying the time-dependent Hartree
(TDH) approximation in which one assumes that each part of the system moves under the
combined effect of the external force and the average displacement of the other system
(Maclachlanet al 1963). Within this approximation one can then consider that|ψ〉 is a
tensorial product of the two wavefunctions|ψmol〉 and |ψsur〉 associated with the molecule
and the surrounding medium, respectively.

A straightforward application of the perturbation theory shows that the linear response
of the two variablesµ(t) andE(r, t) is given by

Emol(rm, t) = 〈E(rm, t) + E(rm, t)〉
= E(rm, t) +

∫ t

−∞
S(rm, rm, t − t ′) · 〈µ(t ′)〉 dt ′ (84)

and

µmol(rm, t) = 〈µ(t)〉
=

∫ t

−∞
α0(t − t ′) · 〈E(rm, t ′) + E(rm, t ′)〉 dt ′ (85)

where Emol(rm, t) and µmol(rm, t) represent both the temporal variation of the effective
field and of the dipole moment at the position of the molecule. In addition, the dyadic
tensorsS(rm, rm, t − t ′) andα0(t − t ′) are nothing but the temporal representation of the
field susceptibility of the 3D dielectric surrounding medium and the polarizability of the
molecule (Agarwal 1975). These quantities can be expressed in terms of the quantum
averages of the commutators of the operatorsE(r, t) andµ(t):

S(r, r′, t − t ′) = i

h̄
〈ψ|[E(r, t), E(r′, t ′)]|ψ〉 (86)

and

α0(t − t ′) = i

h̄
〈ψ|[µ(t), µ(t ′)]|ψ〉. (87)

Finally, by replacing equation (85) in equation (84) one obtains the time-dependent self-
consistent equation for the molecular electric field:

Emol(rm, t) = E(rm, t) +
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ S(rm, rm, t − t ′)α0(t

′ − t ′′)Emol(rm, t ′′). (88)

Solving this implicit integral equation requires one to pass into theω-space

Emol(rm, ω) = M(rm, ω) · E(rm, ω) (89)
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whereM(rm, ω) is a 3× 3 matrix defined by

M(rm, ω) = [I − S(rm, rm, ω) · α0(ω)]−1. (90)

Note that from this equation one obtains in a first stage the molecular effective field
Emol(rm, ω). The fieldEmol(r, ω) generated by the molecule far away from the emitting
zone can be described by using once again the Lippmann–Schwinger equation

Emol(r, ω) = E(r, ω) + S(r, rm, ω) · α0(ω) · M(rm, ω) · Emol(rm, ω) (91)

that can be rewritten as

Emol(r, ω) = E(r, ω) + S(r, rm, ω) · αeff(ω) · Emol(rm, ω) (92)

where αeff(ω) defines the effective polarizability of the molecule in the presence of the
dielectric surrounding medium:

αeff(rm, ω) = α0(ω) · M(rm, ω). (93)

Many spectroscopic experiments performed near a solid body require the knowledge of
the effective molecular polarizability. In fact, this new response function contains all the
dynamical information about the coupling with the dielectric surrounding medium. In
other words, the molecule radiates optical energy with a polarizability ‘dressed’ by the
dielectric surrounding medium. In the past, several theoretical works have been devoted
to its calculation when the molecule interacts with systems of simple symmetry (spheres,
cylinders, planes and so on). The symmetry of the tensorαeff(rm, ω) is governed mainly
by the symmetry of the molecule–surrounding medium super system even if the molecular
polarizability α0(ω) is initially isotropic. For example, in the particular case of a single
molecule interacting with a perfectly planar surface, the dyadic tensorαeff(rm, ω) belongs
to the C∞v symmetry group, and consequently, may be described with two independent
componentsαeff

xx and αeff
zz . In the case of a SNOM surrounding medium (corrugated

surface+ pointed detector), the effective polarizability tensor will be more complex and all
components should be taken into account in a realistic calculation.

6.4. Fluorescence lifetime change in complex optical systems

Two important electrodynamic effects are included in the expression of the effective
polarizability. The first is a small shift of the excited state, more precisely the frequency
ω0 is shifted towards a lower frequency. This effect can be characterized by the ratio

�(rm) = ωeff/ω0. (94)

Under usual conditions this coefficient is weak and, with respect to other effects, it may be
chosen close to unity. Moreover, we have to keep in mind the fact that�(rm) depends on
the polarizability component under consideration.

The second effect, much more sensitive to the location of the molecule in the junction,
is the lifetime change defined by the ratio

η(rm) = 0−1(rm)/0−1
0 . (95)

This coefficient also depends on all effective polarizability components. Nevertheless, with
a good approximation, we may assume that the dressed molecule belongs to theC∞v group
with its main axis in thez direction. This assumption leads to

αeff(rm, ω) =
( αeff

⊥ (rm, ω) 0 0
0 αeff

⊥ (rm, ω) 0
0 0 αeff

‖ (rm, ω)

)
(96)
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where the two independent componentsαeff
⊥ (rm, ω) andαeff

‖ (rm, ω) may then be identified
by a two-levels polarizability expression similar to that associated with the isolated molecule
(cf equation (80)). This procedure yields

αeff
⊥ (rm, ω) =

(
2ω⊥A⊥

ω2
⊥ − ω2 − iω0⊥

)
= α0(ω)Mxx(rm, ω) (97)

and

αeff
‖ (rm, ω) =

(
2ω‖A‖

ω2
‖ − ω2 − iω0‖

)
= α0(ω)Mzz(rm, ω). (98)

For each equation, the three different parametersω⊥/||, A⊥/|| and0⊥/|| may be defined by
identification. After some algebra one finds

0⊥/|| = Re

(
00Mxx/zz(rm, 0)

Mxx/zz(rm, ω0)

)
. (99)

In conclusion, one obtains a very compact result, only depending on the dynamical matrix
M(rm, ω0) at the resonance frequency of the molecule. Note that the spatial variation of
0⊥/|| with respect to the dielectric surrounding medium is contained in the field susceptibility
S(rm, rm, ω). In the vicinity of a highly complex system this dyadic may be derived self-
consistently by a recursive sequence of Dyson’s equations (Girardet al 1995b). Moreover,
within the first Born approximation one recovers the well known result (Metiu 1984)

0⊥/|| ' 00 + 2|µ01|2
h̄

Im[Sxx/zz(rm, rm, ω0)]. (100)

In figure 20 we have used relation (99) to investigate the distance-dependence of the
normalized lifetime00/0‖ for a fluorescing molecule located in a tip–sample junction.
The molecular parameters used in this simulation are00 = 2 × 106 s−1 and α0 = 10 Å3,
and the fluorescing wavelength isλ0 = 612 nm. The geometry of the junction is sketched
in the inset of figure 20; it consists of a glass support with a thin square silver protrusion,
facing a tetrahedral dielectric tip with sharp edges and a 10 nm ending curvature radius.
When the molecule approaches the metal pad one first observes the usual decay which
is then followed by the fluorescence quenching. For intermediate distances, the lifetime
variation in the gap region(300 nm6 Zm 6 1300 nm) displays standard quasi-periodic
oscillations with a period close to the half-fluorescing wavelengthλ0. It may be seen that
towards the dielectric tip the decay is less abrupt, and a magnification of the evolution of the
coefficient00/0‖ as the molecule approaches the tip extremity indicates that the lifetime
drops by about one order of magnitude when the molecule becomes adsorbed on the tip
surface.

This simulation clearly indicates that the fluorescing molecule behaves as a highly
sensitive nano-probe to the external environment. In particular, working in the near-field
zone just before the quenching effect occurs should make it possible to increase the lateral
SNOM resolution (Ambroseet al 1994, Xie and Dunn 1994).

7. Conclusion

In this review we have shown that near-field optics is not restricted to the improvement
of the resolution of optical microscopy. We emphasize that the principles on which near-
field optics is developed are related to the physics of evanescent electromagnetic waves
which have been approached in several different contexts since the mid 1960s. We also
insist on the fact that the theoretical description of near-field optical phenomena involves
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the problem of light diffraction by subwavelength structures which is neglected in most
classical textbooks. Finally, since near-field optics is still in rapid development, we give
some perspective about trends, for example the study of lifetime effects and their relation
to quantum electrodynamics.
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