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Preface

It was for the first time when the International Conference on Squeezed
States and Uncertainty Relations and the Feynman Festival were held at the
same place, at Olomouc in the Czech Republic from June 22 to June 26,
2009. This decision made by the founder of both conference series, profes-
sor Y. S. Kim, gave the possibility of mutual fruitful interaction between
two communities of researchers working in the field of quantum optics and
squeezed and non-classical states on one side and foundations of quantum
mechanics and quantum information on the other. A common program of
both conferences has included a broad range of topics from modern quantum
physics: coherent states and squeezed states, phase-space methods, contin-
uous variables and quantum information processing with continuous vari-
ables, various quantum detection schemes, quantum measurement, quantum
metrology, generation of discrete quantum states, entangled photon pairs,
atom and molecular optics, spins, cavity QED, decoherence and entangle-
ment, quantum computing, quantum-information processing as well as foun-
dations of quantum theory.

Initial talks have informed more than 160 participants about the history of
the conferences (Y. S. Kim) and long-lasting tradition of optics in Olomouc
(J. Pefina). Review talks devoted to Quantum optics with ultracold atoms
(G. Rempe), Space, time, and quantum nonlocality (N. Gisin), Controlling
the speed of light (R. W. Boyd), Long-distance quantum entanglement ex-
periments (A. Zeilinger), Quantum dot realization of quantum-information
processing (H. Matsueda), and Multiphoton entanglement (H. Weinfurter)

have revealed the recent fascinating and fast development in these modern



fields. Physics and applications of photon pairs have probably been the most
frequently discussed topic including quantum imaging, X-entanglement, spec-
trum shaping, photon statistics, fiber-optic sources, sources on a chip and
their characterization. In the field of continuous variables, preparation, dis-
tillation and purification of entangled states as well as quantification of non-
classical properties have attracted a great attention. Especially the charac-
terization of entanglement and its properties have been mentioned. Also the
description of quantum processes and incompatible measurements have been
in the area of interest of speakers. As a great achievement, the experimen-
tal realization of quantum memories for light has been reported (E. Polzik).
These results have stimulated the development of new quantum-information
protocols mentioned in many contributions.

All these topics were intensively discussed during the conferences and pro-
vided the participants with the newest information about the development
in the fields of quantum optics, quantum information, and quantum theory
in general.

Results contained in many contributions have been summarized in these
Proceedings. In parallel, many contributions have been published as original

papers in the Topical Issue of Journal of Russian Laser Research (Volume 30,

Number 5, 2009).

In Olomouc, November 24, 2009 Jan Perina, Jr.
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Abstract
Measuring photon-number statistics might seem feasible only when photons are very few, owing to the
notably poor photon-number discriminating capability of detectors. We review the performances of de-
tectors based on the most different primary photo-detection processes and the corresponding measuring
techniques. We show that any photo-detector producing a single-photon response sufficiently narrow can
count photons up to numbers corresponding to the upper limit of the linearity range, which makes it feasible

to measure statistical distributions in the macroscopic realm.
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I. INTRODUCTION

Measuring photon-number statistics might seem feasible only when photons are very few, ow-
ing to the notably poor photon-number discriminating capability of detectors, which rarely goes
beyond five detected photons. However, for many applications it would be extremely desirable
to have photon-counting detectors and methods suitable for any situation as to spectral and in-
tensity characteristics of the light to be measured. As a matter of fact, many efforts have been
made that are aimed at improving photon-counting capability by working both on detectors and
on front-end optics. Provided the light is spread across the sensitive area, detectors based on the
most different primary photo-detection processes in which the output charge corresponding to one
detected photon is generated in a confined area were (are being) shown to allow photon counting
(see part a) of Fig. 1). Photons temporally spread by either cascaded arrays of beam splitters or
multiple fiber-loop splitters have been alternatively used in connection with single-photon (S-P)
avalanche diodes. These detectors and approaches are discussed in Section II. Section III is de-
voted to detectors endowed with genuine photon-number resolving power (see part b) of Fig. 1).
These are both detectors that operate, in essence, as micro-calorimeters and detectors based on
quantum interactions between photons and sensitive material. Among the former ones, we men-
tion a super-conducting transition-edge sensor (TES) with tungsten as the active device material
that was recently demonstrated to work as a photon-counter endowed with almost unitary quantum
efficiency 7, from UV-vis to telecom wavelengths [1]. As to the latter ones, we discuss photoemis-
sive detectors. In particular we focus on two categories, both endowed with internal gain, namely
the photomultiplier tube (PMT) and the so-called hybrid photo-detector (HPD). At variance with
PMTs, in which the photoelectrons released by the photocathode are multiplied by impact ioniza-

tion, in HPDs they are amplified by an avalanche diode that the photoelectrons strike after strong
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FIG. 1: Detectors operating as arrays of S-P detectors in a) and genuine detectors with photon-number

resolving power in b).

acceleration [2]. We are aware of the fact that, as compared to TES, photoemissive detectors only
ensure reasonable values of the detection quantum efficiency 7, in the visible and near-IR spec-
tral ranges. Our interest stems from the fact that, for both PMTs and HPDs, the range of linear
response extends well beyond that in which they can “count” photons. In Section IV we show that
such a property leads to a method for using them to assess the number of detected photons all over
the range of linearity. In Section V we describe applications of the method to classical optical
fields with non trivial statistics and in Section VI we draw conclusions and discuss perspective

applications to fields with non-classical features.

II. SPATIAL AND TEMPORAL PHOTON SPLITTING

We first consider detectors in which the output charge () corresponding to one detected photon
is generated in a confined area as depicted in part a) of Fig. 1. These areas can either be the
pixels with single-photon (S-P) sensitivity of an intensified CCD camera or those, also called cells,

of a silicon photomultiplier (SiPM) [3]. They can be as well physically separated S-P sensitive



elements as in the case of arrays either of S-P solid-state detectors or of super-conducting nano-
wires. This category also includes the so-called visible-light photon counters (VLPC) [4], Which
are designed so that the avalanche breakdown is confined into well defined regions. All these
detectors have sizeable sensitive areas over which the light field to be measured must be spread
so that at each duty cycle no pixel/cell is forced to reveal more than one photon. Only in such
a condition the number of pixels that are "fired” corresponds to a number m of detected photons

simply linked to the number n of incident photons by [5]

+oo n
Pn=) (L —n)" P, . (D
n=m m

in which P, and P, are the corresponding probability densities and 1 < 7,(< 1) represents the
overall photon-detection efficiency.

Haderka and coworkers [6] used an intensified CCD to measure joint signal-idler photon-
number distributions in a spontaneous parametric down-conversion (PDC) process pumped by
the second-harmonics of an amplified Ti:sapphire laser. By sending signal, idler and background
onto different parts of the sensor they could demonstrate the poissonian statistics of the photon
pairs and the strong correlations in the signal and idler photon numbers, which were of the order
of several tens. In similar regimes of light intensity, it is likely that SiPMs will allow measuring
photon-number statistics, possibly with higher 7, in the next future. These are detectors whose
main drawbacks are the high rate of dark counts and the relevance of cross-talk, but they are ex-
tremely cheaper than S-P intensified CCDs. Here we report on experiments made independently
by the group of Silberberg (Weizmann Institute of Sciences, Rehovot, Israel) and by our group at
University of Insubria (Como) in which the photons to be counted are spatially spread on the sen-
sitive area (1 mm x 1 mm) of very similar SiPMs (see [7] for specifications). Both of us measured

the pulse-height spectrum of the output, which, in the case of a SiPM, contains the information on
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the detected-photon statistics. We simply integrated the output signal by a charge digitizer over
a time window synchronized with the ps-laser source generating the light to be measured. Fig-
ure 2) shows a typical pulse-height spectrum obtained for coherent pulses of ~5.4 ps duration at
523 nm wavelength by using a Hamamatsu S10362-11-100C SiPM with 100 pixels of 100 pm x
100 pm size. Silberberg and coworkers [8] used a SiPM model, S10362-11-050U, differing from

ours essentially in the number and size of the pixels (400 pixels of 50 ym x 50 pm size), but
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FIG. 2: a) Spectrum of the Hamamatsu S10362-11-100C SiPM output charge for detection of coherent

light.

digitized each output current waveform by a computer-based fast digitizer. A sharp strategy for
post-selecting the digitized output waveforms allowed them to lower the dark-count rate by one
order of magnitude and to avoid storing after-pulses as indicative of detected photons. Actually
in the histogram displayed in Fig. 3 of reference [8] the peaks are better resolved as compared
to ours in Fig. 2, which, however, refers to a coherent state producing a greater mean number of
detected photons (m). A photon-number resolving power up to m = 4 was demonstrated for

VLPCs in similar experiments with coherent light [9]. However such detectors, whose technology

started being developed about ten years ago [4], were also exploited in experiments demonstrat-



ing the non-classicality of multi-mode PDC [10] and the generation of photon number states [11].
Detectors constituted by physically separated S-P sensitive elements, such as arrays either of S-P
solid-state detectors [12, 13] or of super-conducting nano-wires [14], are still unable to resolve
sizeable numbers of detected photons. They certainly are position-sensitive in the sense depicted
in Fig. 1a), but not available yet with a sufficient number of sensitive elements, say pixels. Such
a limitation is rather disappointing, in particular for S-P solid-state detectors considering that they
are endowed with 7),-values definitely greater that those of the above multi-pixel detectors.

S-P solid-state detectors such as avalanche photodiodes (APDs) proved to be ideal in conjunc-
tion with light delivery optics providing temporal splitting of the photons to be detected. This
technique pioneered by Banaszek and Walmsley [15] consists in launching the multiple photons
to be measured into a fiber loop that is weakly coupled to a single APD so that it detects no more
than one photon every time it is biased above breakdown voltage. Obviously the transit time in
the loop must be longer than the dead time of the APD. Photon counting rates as high as 100 kHz
with total detection efficiency n > 0.5 were recently achieved with a balanced eight-port photon-
number-resolving detector based on an optical-fiber time-multiplexed device utilizing a pair of
APDs as the detectors [16]. This system has overcome the limitation posed on the acquisition rate
by the dead time of the single APD used by Banaszek and Walmsley, but requires time consuming
optimizations to achieve good balancing of the eight ports.

In conclusion neither spreading the light to be measured across the detector sensitive area so
that each pixel operates in single-photon regime nor splitting photons in time for the sake of using
high-n, S-P APDs seem to be straightforward methods to count mesoscopic numbers of detected
photons. The latter might yield better photon-number resolution, which is still to be proved, but
it is cumbersome. The former gives results affected by artifacts, such as after-pulses and cross-

talk, that only recently have started to be compensated for. The adoption of any of the techniques



described in this Section seems to find its justification only in the lack of genuine photon-counting
detectors operating as sketched in Fig. 1b). That is, detectors giving different output charges when

m instead of m £ 1 photons are detected, being m a sizeable number.

III. PHOTON-NUMBER RESOLVING DETECTORS

To have ideal photon-number resolving power, a detector with internal gain should be endowed
with an extremely narrow gain line. To date, those best approaching the behavior depicted in
Fig. 1b) with m and n linked by Eq. (1) are the TESs. The TES detector developed by Lita and
coworkers [1] at NIST (Boulder, CO, USA) and tested on poissonian light at 1556 nm gave the
pulse-height spectrum showed in Fig. 5 of the quoted paper, in which the peaks corresponding to
different m-values (m < 7) are absolutely separated. The measurement corresponds to (n) = 2.45,
as calculated from the experimental (m) upon calibration of the overall quantum efficiency (n =
0.95). Unfortunately such a detector would be almost impossible to handle in normal laboratories
of optics due to the cryogenic environment in which this TES and the connected electronics must
operate.

Among the more user-friendly photoemissive detectors we have identified some ones endowed
with reasonably good photon-number resolving power. They are selected PMTs, such as the Burle
model 8850 (Burle Electron Tubes, PA, USA) [17, 18] and the above mentioned HPDs manufac-
tured by Hamamatsu. In part a) of Fig. 3 we plot pulse-height spectra obtained with the Burle
8850 PMT for coherent light at 523 nm emitted as the SH output by a mode-locked Nd: YLF laser
amplified at 500 Hz [17]. The four displayed spectra correspond to measurements with intensities
scaled by factors 1 to 2.15 to 4.3 to 10.4 on going from K'=1 to K{=4. Though the peak resolution
1s worse that that obtained with the TES of NIST, by fitting the peaks with suitable analytical line-

shapes and integrating each peak-fitting function, we could arrive at the F,, distributions for the



probability density of detecting m photons in the light pulses that are shown as full black symbols
in part b) of Fig. 3. The inset in this figure illustrates the fitting of the the experimental pulse-height
spectrum with K'=3 in a). The empty grey symbols in the main panel of Fig. 3b) are the P! values

of the poissonian distributions with the corresponding (m)-values equal to the experimental ones.
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FIG. 3: a) Spectra of the Burle 8850 PMT anodic-pulse charge for detection of coherent light with changing
intensity (see K index and text); b) Detection probabilities as calculated from the integrals of the peak-fitting
functions (black) and calculated poissonian distributions (grey) with the corresponding mean values. The
best peak-fitting functions and their sum are superimposed as full lines to the experimental pulse-height

spectrum for K=3 in the inset.

In a further comparative work [18] we measured the same coherent light, namely SH ps pulses

from the same Nd:YLF laser as above, with the Burle 8850 PMT and with an Hamamatsu HPD
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FIG. 4: a) Pulse-height spectra with the same accumulated counts obtained with Burle 8850 PMT and
Hamamatsu H8236-40 HPD detecting the same coherent light. The abscissa is the voltage output v of the

analog-to-digital converter.

signals over temporal gates matching the output current pulses (from zero to zero) of the two
detectors. The spectra in Fig. 4 are for equal accumulated counts and the abscissa is the voltage
output of the analog-to-digital converter, which is the same in the two measurements. The greater
number of peaks displayed by the spectrum obtained with the HPD testifies the higher 7,-value of
this detector as compared to the PMT at 523-nm wavelength. The higher resolution of the peaks
corresponding to equal m-values shows that the photoelectron multiplication mechanism of the
HPD ensures narrower gain line than that produced by the multi-dynode structure of the PMT.
However, both detectors feature linear responses over ranges that extend much above those in
which the spectra are more or less structured into peaks, as shown in previous works of ours (see
Fig. 5 of reference [17], which refers to the measurements in Fig. 3, and Fig. 5 of reference [18]).
In the next Section we demonstrate that this property can be exploited for determining detected-
photon numbers up to the maximum m-value that ensures linear response for any detector just

capable of resolving the m = 0 peak.



IV. COUNTING DETECTED-PHOTONS WITH NON-PHOTON-NUMBER-RESOLVING DE-

TECTORS

The theory outlined here is fully described in reference [19] and it was applied to classical
fields with different photon-number statistics in a number of works [18, 20-22]. In the following,
whichever is the architecture of the system converting the number of detected photons m into
the independent variable x in the histograms representing the pulse-height spectra, we call v the
m-to-z conversion factor. The probability density of -, whose distribution is denoted as p.,, with
mean value 7 and variance o2, then represents the line shape PY of the peak corresponding to
m=1 in the pulse-height spectrum, also called SER (single-electron response) for short. Note that
the detection of m = k photons within the linearity range would give a line-shape ng) equal to
the k-times convolution of p.: chk) = (py * py * ... * py). This amounts to say that the z®) value
recorded is given by (%) = Zle ~vi» where all ~; are distributed according to p.,.

As anticipated in Section III, our aim is to show that, even under a very mild hypothesis on the
narrowness of p., it is possible to recover P, for an arbitrary P, starting from the only experi-
mental data available, which are the = values recorded for an ensemble of repeated measurements.
We cast the experimental x values of this ensemble into a histogram normalized to its integral
that we assume as the distribution P, of the probability density of obtaining x upon measuring a
given light. The zero of the x scale of the measured P, is set to be equal to the mean value of the
distribution recorded in a separate experiment performed in the absence of light.

In an experimental P, distribution, the peak corresponding to the detection of m = k photons
is resolved from those corresponding to m = k £ 1 if the £-times convolution of p., has a standard
deviation definitely smaller than 7. If this is not the case, there is not any suitable fitting of P, that

allows recovering P,,,. However, be the peaks resolved or not, as the events of having different m
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values are mutually exclusive, P, can always be written as

Pa: = szopso) +Pm:1p'y+Pm:2<p’y*p’y)+"'+Pm:k(p’y*p’y* "'*pv)ka (2)

where pgo) denotes the probability density of the x values in the absence of light, whose mean is

zero by definition (see above). Note that in Eq. (2) we allow pﬁ,o) to be different from p., = Pg(gl) to
account for the fact that in photoemissive detectors the anodic charge distribution for dark counts
is different from that of the single electron response SER.

To achieve the objective of reconstructing P,, from P, we consider the central moments
() = ((x — (z))") of the experimental P, and relate them to the ,.(m) = ((m — (m))") central

moments corresponding of the unknown P, probability density [19]. The fact that (%) = Zle Y

allows using the following property of the cumulants [5]

Kngzl Vi) — "ig%) 3)

k
1

7

and demonstrating that [19]

“4)

under the hypothesis

o? /3% — 0. (5)

We first observe that the condition in Eq. (5) is less stringent than that (¢ /% — 0) ensuring that, in

P,, the peak for m = 1 be resolved from that for m = 0. Moreover, re-writing Eq. (4) in the form

wol@/3) o (m)
@ A

; (6)

makes it evident that, since 7(m) = (z), the distributions P, and P, 5 are identical. In conclusion
dividing the experimental z-values by 7 and recasting the results into an histogram with unitary
bins yield F,,.
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When the relation in Eq. (5) holds, 4 can be experimentally determined without calibrating
either the (internal) gain of the detector or the amplification/conversion factor of the electronics
that processes the detector output to produce the final = variable [18, 19]. In fact, starting from
properties of the bernoullian convolution in Eq. (1), a self-consistent procedure was devised that
utilizes only measurements performed on the light whose statistics is being studied. This procedure

is based on the following relation [18]:

= (@) +7, @

p12() Q
() (n)

in which @ = [u2(n) — (n)]/(n) is the Mandel parameter of the light entering the experimental ap-
paratus, whose overall photon-detection efficiency is 7) (see its definition given after Eq. (1)). Thus
@ /(n) is independent of 7 and its value is either positive or negative according to the value (super-
or sub-poissonian, respectively) of the variance of the light statistical distribution. On the other
hand, in the left-hand member of Eq. (7)), which represents the Fano factor (F, = ps(z)/(z)) of
the experimental output values, the quantity (=) depends on 7). Noting that ) can be set at any value
between 7, and zero by inserting filters into the light delivery optics, by repeated measurements
of the same light at different 7, we can verify the linear dependence on (z) in Eq. (7). The ex-
perimental F).-data plotted as a function of () should align along a straight line, whose intercept
gives 7y to be used for re-binning the x and reconstructing F,,,. Experimental applications to some
non-trivial classical states, giving slopes Q/(n) > 0 (see Eq. (7)), are described in references

[18, 20-22].
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V. EXPERIMENTAL RECONSTRUCTIONS OF DETECTED PHOTON NUMBER DISTRIBU-

TIONS

Our first-choice detectors for reconstructing F,, distributions are HPDs not only for their better
performances as compared to PMTs, as mentioned in Section III, but also for the ease of mini-
mizing the ratio o /7 that we perform by adjusting the voltage of the a reverse biased avalanche
diode, where the photoelectrons are multiplied. By using the Hamamatsu HPD model H8236-40
to measure coherent light at 523 nm from the same laser used for the measurements reported in
Fig. 4 running at 5 kHz rep rate we recorded the spectra displayed in Fig. 5a) at changing n-values
(see the different neutral density values (ND) of the filters inserted in front of the HPD). In the
figure we have plotted, in green, also a spectrum that is not resolved into peaks owing to the too
high intensity of the light reaching the HPD. However in Fig. 5b) we show that the range of linear
response extends much further. For the measurements in Fig. 5a) and similar ones performed with
a series of ND values, we calculated the F, values that are plotted as a function of (z) in panel c¢) of
Fig. 5. They are well fitted with a horizontal line, in agreement with the fact that as () is expected
to vanish in the case of coherent light, which provides the value ¥ = 0.358. The histograms, with
unitary bins, of the =/4 data are shown as bars in panel d) of the same figure. Throughout panels
a), b) and d) of Fig. 5 each color refers to a specific data set. According to the theoretical results
presented in Section IV, these histograms recover the detected-photon number distributions P,,.
We thus called them P¢*? and displayed them together with calculated poissonian distributions P"
having (m) = (z)/7. In Fig. 5d) the latter ones are plotted as symbols and seem to fit very well
the recovered P¢’P distributions, according to the values of the fidelity values f= ) \/m
reported in the figure [18]. It is worth noting that we obtain satisfactory P, reconstructions also

for (m)-values much beyond the range in which the detector yields P, distributions exhibiting
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FIG. 5: a) Experimental P, distributions obtained by using the Hamamatsu H8236-40 HPD detecting co-
herent light with different n-values obtained by inserting filters with the indicated neutral-density values ; b)
(x) as a function of the ND-filter transmittance 7" and fitting straight line showing the HPD linear response;
¢) Fano factor F, as a function of (x) and fitting straight line giving the value of 7; d) reconstructed Py, ”
distributions (bars) obtained from the P, data in a) by using the 4-value in c) and calculated poissonian Pﬁ?

distributions with the corresponding (m)-values of the experimental distributions (symbols). The values of

fidelity f are also reported.

resolved peaks. In fact, while the green P, plot in Fig. 5a), already lacking any peak structure,
corresponds to (m) < 2, the reconstructed P, plotted in dark-yellow in Fig. 5d) has (m) = 4.06.

Clearly the narrowness of the SER peak, that is p,, which can be appreciated in the blue and

14



black spectra plotted in Fig. 5a), ensures that our apparatus fulfills the condition in Eq. (5). With
the same apparatus we reconstructed P, distributions in meso/macroscopic regimes of detected-
photon numbers for both single- and multi-mode thermal fields [18], for the same coherent and
thermal fields displaced by a coherent field, as well as for a phase-averaged displaced coherent
field, that is a field obtained as the superimposition of a coherent state and a phase-averaged state
with different mean numbers of photons at the same frequency [21]. The P, reconstruction is so
accurate that reliable Wigner-function reconstructions could be obtained from the P determined
by the above method [20-22]. Note that in the case of the phase-averaged displaced coherent field,
which is obviously phase dependent, the method demonstrated to be also so flexible to allow us
measuring the phase value at which each PSP distribution was measured “a posteriori”, that is not

controlling the relative phase of the superimposed fields [22].
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FIG. 6: a) Experimental P, distributions obtained by using the Hamamatsu H5773P PMT anodic-pulse
charge detecting coherent light with different n-values; b) Fano factor F;, as a function of (z) and fitting

straight line giving the value of 7, also used to calculate the (m)-values reported in a).

Recently we demonstrated that, beside the requirement of linearity, it is sufficient that the de-
tector exhibits a zero detected-photon response slightly resolved from that of a single detected
photon for the fulfillment of the condition in Eq. (5). We could successfully reconstruct statisti-

cal distributions by our procedure [23]. We performed experiments with a PMT, a Hamamatsu
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model H5773P, that has no photon-number resolving power, being just suitable for single-photon
counting [24]. Unfortunately this PMT saturates for m values of few units. However, we used
it to measure the same light as in the experiments of Fig. 5 and adopted the electronics detailed
elsewhere [23] to obtain the results presented in Fig. 6a) that were used for the determination of
7 through the F,-values in Fig. 6b). The reconstructed P¢*? and calculated poissonian P! dis-
tributions are shown in Fig. 7, in which the f values are also reported. These results show that
PMTs less sophisticated than expected can be used to reconstruct the statistics of detected photon-
numbers provided they operate within their linear-response range in every measurement of the

statistical sample.
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FIG. 7: Bars: reconstructed Py, distributions from the P, data in Fig. 6a) by using the J-value obtained
from Fig. 6b). Symbols: calculated poissonian P‘" distributions with the corresponding (m)-values of the

experimental distributions that are reported together with the values of the fidelity f.
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Works are in progress at our laboratories to show that SiPMs also allow successful applications

of our method.

VI. PERSPECTIVES AND CONCLUSIONS

We think that the results described in this paper will broaden the choice of detectors suitable for
measuring photon statistics. The essential requirement for the detector, beside that of the linearity
of the response, is the smallness of the ratio o /42, which can be ascertained without measuring
the line shape of p,.

The fact that our method applies to measurements in the macroscopic realm may turn out to be
relevant in all cases in which one cannot attenuate the light to bring the photon detection rate down
to the regime where photon-counters operate. As examples we mention fields produced by events
either rare or unstable and, more importantly, all nonclassical fields, where our method risks being
the only one applicable to macroscopic fields. We are in such a condition also when a pulsed field,
either classical or not, is to be characterized, whose duration is shorter than the temporal response
of the detector. In this case the number of photons to be detected in each sample of the statistical
measurement cannot be diminished by shortening the measure time and the well developed S-P
techniques that are the parents of the techniques we discussed in Section II become not suitable.

It is worth noting that, also in the case of a non-classical field, under the hypotheses of both lin-
earity and 0?/4? — 0 there is no reason for the failure of our self-consistent method to determine
7. In fact, the slope coefficient () /(n) in Eq. (7) is not affected by the fact that we must introduce
attenuations in the optics delivering the light to the detector to change the n-value and to arrive at a
plot of F, versus (x). Moreover the non-classicality does not limit the accuracy by which the Fano

factor F,, = po(z)/({x) is approximated by the expression in the right-hand member in Eq. (7) as

17



theoretically demonstrated in reference [19].
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Quantum electrodynamics in absorbing nonlinear media

J. A. Crosse* and Stefan Scheel
Quantum Optics and Laser Science, Blackett Laboratory,
Imperial College London, Prince Consort Road, London SW7 2AZ
(Dated: August 24, 2009)

We describe the derivation of effective Hamiltonians in for the nonlinear process of parametric
down conversion in absorbing media on the basis of the Green function method for the quantization of
the electromagnetic field. We study the nonlinear interaction of the medium-assisted electromagnetic
field with a single atom. Heisenberg’s equations of motion are solved to second order in perturbation
theory in the rotating-wave approximation. The atom is then placed inside a bulk medium and the
real cavity model is used to correct for local field effects of the surrounding matter. The resulting
Hamiltonian is found to be trilinear in the electric and noise polarization fields and reduces to the
phenomenological nonlinear Hamiltonian for the cases where absorption vanishes.

PACS numbers: 42.50.Nn, 42.65.-k, 03.65.-w

I. INTRODUCTION

Over recent years, nonlinear optical processes have
been the subject of great interest and in the last decade,
applications of these process have become ubiquitous
across the fields of both theoretical and experimental
quantum optics. Uses of such processes range from opti-
cal communications at one extreme to fundamental tests
of quantum theory at the other. The second order pro-
cess of parametric down conversion is of particular inter-
est because the strongly correlated (entangled) photon
pairs produced provide the bases for many quantum in-
formation and quantum cryptographic protocols.

All causal response functions such as linear and non-
linear susceptibilities have to obey the the Kramers—
Kronig relations. They relate the real and imaginary
parts of the dielectric susceptibility and hence require a
non-vanishing imaginary part of the response function.
This imaginary part describes absorption or other loss
processes. Hence, absorption is an unavoidable prop-
erty of dielectric materials and will affect many of these,
widely used, nonlinear processes. An example of where
nonlinear absorption can play a limiting role is in the
generation of entangled photon pairs. Absorption is an
important decoherence process and hence a full under-
standing of nonlinear absorption is critical when consid-
ering the degradation of quantum entanglement and the
robustness of quantum information protocols.

II. MACROSCOPIC QED IN LINEAR MEDIA

The framework which is used to describe quantum elec-
trodynamics in absorbing media is macroscopic quantum
electrodynamics (QED) [1, 2]. In this theory, absorption
is accounted for by the addition of a Langevin noise term

*Electronic address: jac0OQ@imperial.ac.uk

to the polarization field,
P(r,w) — P(r,w) + Px(r,w). (1)

This noise polarization field is required in order that the
linear fluctuation-dissipation theorem to be obeyed and
hence it is of critical importance to the consistency of the
theory of medium-assisted electromagnetic fields. Upon
constructing the equations of motion from the dynamical
Maxwell equations one finds that the noise polarization
field appears as a driving term for the electric field

2

VxVxE(r,w)—w—Qs(r,w)E(r, w) = wuePn(r,w). (2)
c

Equation (2) can be formally solved using the Green’s

function for the Helmholtz operator,

E(r,w) = 0250 /dssG r,s,w) - Px(s,w), (3)

where G(r,s,w) obeys

W2
VxVxG(r,s,w)— C—Qs(r,w)G(r, s,w) =9d(r—s). (4)

Quantization is performed by relating the noise polariza-
tion field to a set of bosonic operators as

Px(r,w) =1 @5”(r,w) f(r,w) (5)

™

and imposing their commutation relations as
f'(r,w),f'T(s,w’)} =d(r—s)d(w—w'). (6)

These bosonic operators f(s,w) and f(s,w) describe col-
lective excitations of the electromagnetic field and the
absorbing dielectric material and can be viewed as the
generalization of the free space photonic mode opera-
tors to arbitrary media. The electric field mode operator
takes the form

BE(r,w) = ”hsoczgo/dB s1/e"(s,w)G(r,s,w) - f(s,w),
(7)



with the total field operator reading
E(r) = / dwE(r,w) + h.c. (8)
0

The Hamiltonian that generates the time-dependent
Maxwell equations is

fIF:/d?’r/ooodefT(r,w)-f(r,w). (9)

III. NONLINEAR ATOM-FIELD INTERACTION

The above prescription has been used to describe a
wide range of linear optical processes. Here we extend
this framework to nonlinear processes by considering the
nonlinear interaction of the field with an isolated atom.
In the next two sections we will outline this procedure.
Further details of this method can be found in [3].

The interaction of photons with an isolated atom in the
dipole approximation will be described by the multipolar
coupling Hamiltonian. In component form this reads

H= /d3r/ooodwhwfi(r,w)f>\(r,w)

+ Z hw;0i; — Ci)\E,\(I'A). (10)

i
Here, 0;; are the projectors on to the ith eigenstate of the
atomic Hamiltonian with energy hw; and d) is the dipole
moment operator associated with the atom. Using the

Hamiltonian (10), Heisenberg’s equations of motion for
both the atom and field variables can be found as

ng ij I‘A,I‘ w)o—lj7 (11>

X . o . 3 o
Gij = w;jGi; — 1 E /d s/dw [g}‘\’jk(rA,s,w)aik
k

—gi’ki(r,q,&w)&kj] fi(s,w) + h.c. (12)

Flr,w) =

zwf/\(r w)

where w;; = w; —w;j are the atomic transition frequencies
and the coupling constants gy ;;(r,s,w) are defined by

\/WCQ\/ (s, w) dp,i;Gur(r,s,w).
(13)

Despite being a complete description of the light-
matter system, Egs. (11) and (12) provide a complicated
description of the interaction and, in this form, obscure
the nonlinear nature of the system. From these coupled
equations of motion, we would like to find an effective
equation of motion that contains only field variables, and
explicitly shows the nonlinear nature of the interaction.
The procedure for this is to solve the equation of motion
for the atom and substitute the solution into the equation
of motion for the field. Equation (12) can be solved as

9X,ij (1‘, S, w)

an infinite expansion in terms of products of field opera-
tors. Each of these terms then corresponds to a specific
nonlinear optical process.

As an example we will look at the nonlinear process
of parametric down conversion, where a pump photon
of frequency w” is converted into a signal and an idler
photon such that w” = w + w’. Since this process is
quadratic in the electric field we will keep terms up to
second order in the solution to (12). Substituting this
solution into Eq. (11), assuming that the pump photon
is off-resonant with any atomic transitions and applying
the rotating wave approximation, one finds an effective
equation of motion for the dynamical field variables of
the form

fj(r,w”):iw”f:f(r,w")—i/dgs/d?’s’/dw/dw’

X IA(AMV(I.A; Sa S/7 I'; w, w',w")fi(s,w)f;i(s’,w’),
(14)

where K, (ra;s,s’,r;w,w’,w"”) is a nonlinear coupling
tensor operator and has the form

") = Z Gii

ijk
% g;(\’k] (I‘A7 S, w)g;,ik (I'A, S/7 w/)gu,ij (I'A, r, w”>
(W — wig) (w + W' — w;j)
- g;(\ﬂ] (I‘A, S) w)g:;ki (I‘A, S/, wl)guﬂkj (I'A, I', w//)
(W — wpi) (w + W' — wiy)
B gi’m (ra,s, W)gz,ij (ra,s’,w')gukj(ra,r,w")
(W = wij)(w+ " — wg;)
L Gnlra s O S g ear )}
(W — wpi) (w + W' —wjs) '
Given this equation of motion, one can view the effec-
tive dynamics of the field to be generated by an effective
Hamiltonian

AT = —h/d3r/d3s/d3s’/dw/dw’/dw”

2 IA{A#V(I‘A; s,s/,r;w,w',w”)fi(s,w)ff(s w )fv(rvw”)
+hec.. (16)

2 R ’
K)\H,,(I'A,&S yw,w,w

By expanding the nonlinear coupling constant using
Egs. (13) and (15), and then applying Eq. (7), one can
rewrite the effective Hamiltonian (16) in terms of electric
fields

AT = so/dw/dw /dw”xfﬁ)v w,w')

X El(rA,w)Eﬁ(rA,w )EW(rA,w”) +he.. (A7)



(2)

Here Xy

(w,w’) is given by

2
X0 (w,w

do,ikdp,jidy kj
(W — wij)(w + W' — wgj)
da,kjdﬂ,ikd'y,ji :|
(W = wri)(w + W —wji) |
(18)

da,jkdﬁ,m‘dw,ij _
(W = wik) (W + W — wi;)

_ dajidg,ikdy k;
(W' — wii) (w + W' — W)

which is the usual quadratic nonlinear susceptibility that
can be derived from standard perturbation theory [4].

IV. LOCAL FIELD CORRECTIONS

So far, we have considered the nonlinear interaction of
an isolated atom in free space (possibly near a dielectric
body) where the applied field interacts directly with the
atom. In the case where the interacting atom is part of
the dielectric body itself, the local electric field at the
position the atom, E°¢(r4), differs from the applied ex-

ternal field E, (ra) such that we can write

Eye(ra) = Lle(w)]Ea(ra). (19)
The local field correction method involves calculating the
prefactor L]e(w)] so that the local interaction can be re-
lated to the applied fields. There are a number of ways
of performing these local field corrections. Here we shall
use the real-cavity model [5, 6], in which the interacting
atom is placed inside an empty spherical cavity of radius
R., which itself is embedded in the host medium.

The local field correction then consists of replacing the
(bulk) Green function found in the expansion of the elec-
tric field with that of the spherical cavity. We assume
a coarse-grained model such that there is only one field
point inside the cavity, at the location of the atom. Thus
the cavity Green function reduces to the contribution
from waves transmitted and reflected at the surface of
the cavity,

GFree(rA7r7w) — GSZVity(I'A, r,LU)
= aﬁ(I‘A,I‘7u)) + Raﬁ(rA7r7w)7 (20)

Substituting the cavity Green function into the definition
of the electric field and taking the cavity radius to zero,

R. — 0, yields an effective Hamiltonian of the form

A —Eo/dw/dw /du)”)(((fgh w,w")
% |EL(ra,w) + LI @) P o (ra.w)]
X [EL(rA,w') +c[e*(w')]1513ﬂ(m,w/)}

X {EW(rA,w”) + ll[s(w”)]PNﬂ(rA,w”)} +h.c.
(21)

where

2 g(w)—1
920 e(w)

Lle(w)] = (22)

is the local correction factor for the noise polarization

field and )Z(Oi;ﬂ{(w,w/ ) is the local field corrected second
order susceptibility.

V. SUMMARY

Starting with the total Hamiltonian for the electromag-
netic field interacting with an isolated atom (10), we de-
rived Heisenberg’s equations of motion for the dynamical
variables of both the atom and the field. By integrating
out the atomic degrees of freedom and then focusing on
one particular term in the nonlinear expansion of the field
variables, we have found an effective equation of motion
for one specific optical process. One can then write down
an effective Hamiltonian which generates this equation of
motion.

After performing local-field corrections to the single
atom Hamiltonian (17), which corrects the interaction
for the presence of a surrounding bulk material, we find
that the Hamiltonian can be expressed in terms of tri-
linear products of electric and linear noise polarization
fields. Each of these terms corresponds to a nonlinear
interaction of the applied field and/or noise polarization
field. In the limit of vanishing absorption, where the noise
polarization field disappears, one recovers the standard
second order effective interaction Hamiltonian as used in
classical nonlinear optics. In the generic situation when
absorption cannot be disregarded, the effective Hamilto-
nian (21) will be the starting point for subsequent inves-
tigations into the role of absorption on the generation of
down-converted photons and their propagation through
nonlinear media.

[1] L. Knoll, S. Scheel, and D.-G. Welsch, QED in Dispersing
and Absorbing Media, in Coherence and Statistics of Pho-
tons and Atoms, ed. J. Pefina (Wiley, New York, 2001).

[2] S. Scheel and S.Y. Buhmann, Acta Phys. Slov. 58, 675
(2008).

[3] J. A. Crosse and S. Scheel, arXiv:0903.3523v1 [quant-ph].

[4] M. Schubert and B. Wilhelmi, Nonlinear Optics and
Quantum Electronics (Wiley, 1986).

[5] R.J. Glauber and M. Lewenstein, Phys. Rev. A 43, 467
(1991).

[6] S. Scheel, L. Knoll, and D.-G. Welsch, Phys. Rev. A 60,
4094 (1999).



P, C and T for Truly Neutral Particles

Valeriy V. Dvoeglazov
Universidad de Zacatecas
Ap. Postal 636, Suc. 3 Cruces, C. P. 98064

Zacatecas, Zac., México
(Dated: June 26, 2009)

We present a realization of a quantum field theory, envisaged many years ago by Gelfand, Tsetlin,
Sokolik and Bilenky. Considering the special case of the (1/2,0) @ (0,1/2) field and developing the
Majorana construct for neutrino we show that a fermion and its antifermion can have the same
properties with respect to the intrinsic parity (P) operation. The transformation laws for C' and
T operations have also been given. The construct can be applied to explanation of the present
situation in neutrino physics. The case of the (1,0) & (0, 1) field is also considered.



2

During the 20th century various authors introduced self/anti-self charge-conjugate 4-spinors (in-
cluding in the momentum representation), see [Majorana, Bilenky, Ziino, Ahluwalia]. Later,
Lounesto, Dvoeglazov, Kirchbach etc studied these spinors, they found dynamical equations, gauge
transformations and other specific features of them. Recently, in [Kirchbach] it was claimed that
“for imaginary C parities, the neutrino mass can drop out from the single § decay trace and reap-
pear in Ov3/3,... in principle experimentally testable signature for a non-trivial impact of Majorana
framework in experiments with polarized sources” (see also Summary of the cited paper). Thus,
phase factors can have physical significance in quantum mechanics. So, the aim of my talk is to
remind what several researchers presented in the 90s concerning with the neutrino description.

The definitions are:

0 0 0 —2
_ .| 0O 0 2« 0 b2
C=e 0 i 0 0 K=—e"vyK (1)
— 0 0 O

is the anti-linear operator of charge conjugation. We define the self/anti-self charge-conjugate 4-
spinors in the momentum spacel[1]

CXFA (") = X3 ("), (2)
Cp>A (") = £p™(1"), (3)
where
S.A _ (EiO¢1(p")
w0 = (%0 ) @
and
sa,uy _ [ 9r(P!)
) = <¢i@¢3‘q(p“)> ' (5)
The Wigner matrix is
9[1/2] = —i0y = <(1) _01> ) (6)
and ¢, ¢r are the Ryder (Weyl) left- and right-handed 2-spinors
Or(P") = Ar(p < 0)0r(0) = exp(+0 - ¢/2)¢r(0), (7)
oL(p") = ALp « 0)¢.(0) = exp(—0 - /2)¢.(0), (8)

with ¢ = ny being the boost parameters:

1 v/c
————, sinhp = 7y = ————
\1—v?/c? \1—0?/c?
As we have shown the 4-spinors A and p are NOT the eigenspinors of helicity. Moreover, A and p
0 1> R, as opposed to the Dirac case.

coshyp = = , tanhyp = v/c. (9)

1 0
Such definitions of 4-spinors differ, of course, from the original Majorana definition in x-

representation:

are NOT the eigenspinors of the parity P = <

(Wp(x) + ¥ (x)), (10)

v(z) =

Sl



(o) = | s Sl (B)ao(p)e ™ + v, (p) b (2] (1)
n0) = 500 (p) + i (0). (12)

Cv(z) = v(z) that represents the positive real C'— parity field operator. However, the momentum-
space Majorana-like spinors open various possibilities for description of neutral particles (with ex-
perimental consequences, see [Kirchbach]).

The 4-spinors of the second kind /\‘TgiA(p“) and pflA(p“) are [Dvoeglazov2]:

ip —i(pt 4+ m)
1 i(p~ +m) s 1 —ip
N (pH) = ——— _ SN () = —— " , 13
T(p) 2vE+m | p +m l(p) 2VE+m - (13)
—Dr (" +m)
—ip, i(p* +m)
1 —i(p™ +m) A 1 ip
AA M = ———-- _ 9 >\ H - " Y ]'4
() WE+m | (p~+m) ) 2vVE +m —Di (14)
—Pr (p+ + m)
pr+m Di
1 1 -
S (o —_ DPr S (o1 _ (p +m> 15
= ETm | e | T i ) | 1)
pr+m D
1 1 -
AlpY — DPr Ay — (p + m) 16
pr ") 2VE +m —ipy PP 2WE +m | —ilp~+m) |’ (16)
i(p* +m) ip
with p, = p, +1ipy, P = Pe — 1Py, p* = po £ p.. The indices T| should be referred to either the chiral
helicity quantum number introduced in the 60s, n = —v°h or to the S5 operator quantum numbers.
While
Pu,(p) = +uq(p), Pvs(p) = —v,(P) (17)
we have
PX¥(p) = p™5(p), Pp**(p) = A5 (p), (18)

for the Majorana-like momentum-space 4-spinors on the first quantization level. In this basis one
has

pi(") = —ix'(p"), o}
Pt = xS, ot

The normalization of the spinors )\fiA (p*) and pflA(

NN = —im, N (A () = +im, (21)
XM@Y = +im, X (M) = —im, (22)
pi(p")pl (") = +im, o) (p")p] (p") = —im, (23)
et ") = —im, 5l (") (p") = +im (24)



All other conditions are equal to zero.

First of all, one must derive dynamical equations for the Majorana-like spinors in order to see what
dynamics do the neutral particles have. One can use the generalized form of the Ryder relation for
zero-momentum spinors:

[08(0)]" = (—1)12 e D O 1y 6 7(0), (25)

Relations for zero-momentum right spinors are obtained with the substitution L <« R. h is the
helicity quantum number for the left- and right 2-spinors. Hence, implying that A\%(p#) (and p(p*))
answer for positive-frequency solutions; A\*(p#) (and p°(p")), for negative-frequency solutions, one
can obtain the dynamical coordinate-space equations [Dvoeglazovl]

"9\ () — mp’(z) = 0, (26)
iV 9p™ (x) —mA*(z) = 0, (27)
V"X (x) +mp®(z) = 0, (28)
iV 0,p° (r) +mAt(z) = 0. (29)
These are NOT the Dirac equations.
They can be written in the 8-component form as follows:
[iT"0, —m| ¥ (z) = 0, (30)
[iT"0, + m] ¥ _(z) = 0, (31)

with
A S
_ () _ p(fﬁ)) “_(0 7")

\I/(+)<JZ> = <)\S(I‘>> s \I/(_)<CL‘) = ()\A(J}) ,and F = 'Y“ 0 (32)
One can also re-write the equations into the two-component form. Similar formulations have been
presented by M. Markov [Markov] long ago, and A. Barut and G. Ziino [Ziino|. The group-theoretical
basis for such doubling has been first given in the papers by Gelfand, Tsetlin and Sokolik [Gelfand]
and other authors.

Hence, the Lagrangian is

L= % [X5719,05 — (9, A5)7# A5+

P 0up™ = (00" )y 0"+
MY — (DAY +
P 0up® — (00 )" p°—

_m(/_\SpA + ﬁA/\S _ /—\Aps _ ﬁs/\A)} . (33)
The connection with the Dirac spinors has been found. For instance [Ahluwalia, Dvoeglazovl],
A7 () 1 i =1 i\ [usp@)
A (p") 21 1 = =1 — vy1/2(p")
Af(p#) ) 1 1 —1 'U_l/2<pu>

See also ref. [Gelfand, Ziino].

The sets of A spinors and of p spinors are claimed to be bi-orthonormal sets each in the mathe-
matical sense, provided that overall phase factors of 2-spinors 6, + #5 = 0 or w. For instance, on
the classical level 5\? A} = 2iN? cos(fy + 63). Corresponding commutation relations for this type of
states have also been earlier proposed.



e The Lagrangian for A and p-type j = 1/2 states was given.

e While in the massive case there are four A-type spinors, two A° and two A4 (the p spinors are
connected by certain relations with the A spinors for any spin case), in a massless case )\? and

)\{‘ identically vanish, provided that one takes into account that ¢fl/ * are eigenspinors of ¢ - n.

o It was noted the possibility of the generalization of the concept of the Fock space, which leads
to the “doubling” Fock space [Gelfand, Ziino].

It was shown [Dvoeglazovl] that the covariant derivative (and, hence, the interaction) can be
introduced in this construct in the following way:

0, =V, =0,—igt’B, (35)

where L’ = diag(y> — +°), the 8 x 8 matrix. With respect to the transformations

N(x) — (cosa —iy°sina)\(z) (36)
X (z) = Ax)(cosa —ir’sina) (37)
p(x) — (cosa +iy°sina)p(z) (38)

7'(x) — p(x)(cos a + iy° sin @) (39)

the spinors retain their properties to be self/anti-self charge conjugate spinors and the proposed
Lagrangian [Dvoeglazovl, p.1472] remains to be invariant. This tells us that while self/anti-self
charge conjugate states has zero eigenvalues of the ordinary (scalar) charge operator but they can
possess the axial charge (cf. with the discuss