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Ultrafast optics has undergone a revolution in the past two decades, driven by
new methods of pulse generation, amplification, manipulation, and measure-
ment. We review the advances made in the latter field over this period, indicat-
ing the general principles involved, how these have been implemented in vari-
ous experimental approaches, and how the most popular methods encode the
temporal electric field of a short optical pulse in the measured signal and ex-
tract the field from the data. © 2009 Optical Society of America
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haracterization of ultrashort
lectromagnetic pulses

an A. Walmsley and Christophe Dorrer
. Introduction

.1. Need for Ultrafast Metrology

he development of mode-locked lasers in the mid-1960s gave rise to the prob-
em of ultrashort pulse measurement, since optical pulses generated by this class
f lasers were of significantly shorter duration than any photodetector response
ime. Despite the vastly increased capabilities of modern photodetectors in
erms of both speed of response and sensitivity, the equally dramatic improve-
ents in laser technology have sustained this disparity, and, indeed, with the

mergence of attosecond pulse trains have extended it.

he need for metrology has increased along with the development of new
ources and their application in a wide range of new fields. Of course, determin-
ng the pulse durations remains critical, both because this parameter is an impor-
ant specification of the laser output needed for other applications and because it
rovides a diagnosis of the system operation.

odern mode-locked lasers, for example, generate pulses with spectral band-
idths exceeding one octave, corresponding to pulses the brevity of which is
ell beyond anything that can be characterized by means of fast photodetectors.
he operation of such lasers relies on a complex combination of linear pulse
ropagation, influenced by the chromatic dispersion of the laser material, the
irrors, and the intracavity dispersion-compensating devices, together with

onlinear effects, such as self-phase modulation of the pulse in the laser material
r saturation of an intracavity absorption, such as in a semiconductor saturable
bsorber mirror (SESAM), as well as, in some cases, space–time coupling. The
ptimization of a mode-locked laser is made practicable by means of a diagnos-
ic providing the electric field as a function of time or frequency, or at least pro-
iding some temporal information such as the second-order intensity autocorre-
ation [1–7]. Figure 1 displays the characterization results of the output pulse
rom a Ti:sapphire oscillator. One of the primary limits at present to the genera-
ion of few-cycle pulses directly from a laser is the dispersion of the intracavity
irrors and other optical elements. Historically, detailed measurements of laser

utput were able to identify this as a major obstacle to generating pulses of
reater brevity.

hirped pulse amplification (CPA) operates by lowering the peak power of the
ulses in the amplifier gain medium, which would otherwise induce nonlinear
hase distortion of the pulse or damage to the amplification medium [8,9]. To
chieve this, the pulses are stretched in time by means of a dispersive delay line,

ften based on angular dispersion from diffraction gratings or prisms. After am-
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lification, the pulse is temporally recompressed by using an inverse dispersive
elay line, or compressor, that compensates for the dispersion introduced by the
tretcher and the propagation through the other amplifier elements. Obtaining
eak performance from such a scheme requires a reliable and rapid method to
haracterize the output. Accurate characterization of the output pulses enables
he optimization of the parameters of the system, such as the distance between
he two gratings of the compressor and the angle of incidence of the input beam
n the gratings. The usual optimization parameters in such an application are the
uration of the recompressed pulses, since the peak power scales as the ratio of
he energy per pulse to the duration, and the temporal contrast, since prepulses
an hinder the control or observation of the physical processes of interest, for ex-
mple the ionization of a target. Examples of optimization of CPA systems can
e found in [10,11]. Figure 2 presents an example of CPA optimization obtained
ith spectral phase interferometry for direct electric-field reconstruction (SPI-
ER) [11]. The spectral phase of the output pulse from a Ti:sapphire CPA sys-

em is plotted before and after optimization. The compressor optimization con-
isted in adjusting the angle of the diffraction gratings relative to the input beam
nd the relative distance between the two gratings. The large cubic spectral
hase gives rise to significant prepulses, and the compressor optimization leads
o a better pulse shape with a higher peak intensity.

he bandwidth of an optical pulse can be increased while maintaining a deter-
inistic phase relation between different spectral components by means of vari-

us nonlinear optical processes such as self-phase modulation and harmonic
eneration. All of these require careful compensation of the spectral phase in or-
er to lead to an output pulse with a shorter duration than the input. Further,
hese processes are dynamically complicated and sensitive to the details of the
nput pulse shape. Therefore, even characterizing the raw output pulse before re-
ompression can be a difficult task [12–15]. Figure 3 shows the characteristics of
filament pulse compressor that allows the generation of high-energy ultrashort
ptical pulses [16]. The output pulses have complicated spectral and temporal
tructures, and correlation between time and frequency can be visualized in the

Figure 1
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Figure 3
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utput of a dual-stage plasma filament compressor under different experimental
onditions. (a) and (d) show the temporal intensity, (b) and (e) are the corre-
ponding spectral representations of the electric field, and (c) and (f) are spec-
rograms in the time–frequency space (courtesy of G. Steinmeyer).
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hronocyclic time–frequency space by calculating the spectrogram of the output
lectric field.

haped pulses, sometimes of a quite complex temporal structure, are now com-
only used to both probe and manipulate fundamental processes in atoms and
olecules [17,18]. For instance, the study of primary processes in biologically

elevant systems via ultrafast microscopy is now quite common. The details of
he pulse shapes usually contain important information about the dynamical pro-
ess under study, and this information, residing in both the temporal amplitude
nd the temporal phase of the field, can be extracted only by using modern tech-
iques of metrology. For example, the important phenomenon of the self-action
f intense optical pulses in nonlinear media gives rise to a complicated set of dy-
amics that has analogs in many branches of physics. The study of the changes in
he shape of pulses propagating through such media provides access to these dy-
amics. Optical pulse shaping can also be used to generate trains of pulses useful
n optical telecommunications or to generate shaped electrical waveforms after
ptical-to-electrical conversion by a photodetector. Figure 4 displays the inten-
ity of a train of pulses generated by an optical pulse shaper based on a liquid
rystal spatial light modulator placed in a zero-dispersion line.

here are also important technological applications of metrology. In optical tele-
ommunication systems, such metrology is used to characterize modulators and
he dispersion of fiber links. The propagation of light pulses carrying bits of in-
ormation from transmitter to receiver demands long-distance transmission
hrough various passive and active elements. Both linear processes (e.g., the
requency-dependent transmission and phase of the medium) and nonlinear pro-
esses (e.g., the intensity-dependent index and absorption) modify the electric
eld of the pulses, and these effects must be quantified in order to maximize the
verall system performance. There is also a need to optimize the shape of the
ulses that are used, which are typically carved from a continuous-wave (cw)
uasi-monochromatic source by a modulator. Although telecommunication
ulses typically have durations ranging from 1 ps to 1 ns, the deleterious effects
f propagation are significant because propagation distances of the order of
000 km in a physical medium can be involved. Moreover, the pulses used in
tate-of-the-art commercial and research optical telecommunication systems are

Figure 4
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eyond the reach of all-electronic characterization. Further, temporal phase in-
ormation is also needed. A review of high-speed diagnostics for optical tele-
ommunication systems is presented in [19], and some examples of diagnostics
sed in the telecommunication environment can be found in [20–23]. Figure 5
resents results of a pulse carver optimization using a real-time pulse character-
zation diagnostic based on linear spectrograms [24]. The electric field of the
utput of a Mach–Zehnder modulator driven by a 20 GHz sinusoidal RF drive
epends on the phase difference between the two arms of the interferometer,
hich is controlled by a continuous voltage. The modulation format can be set to
3% return to zero (8 ps pulses with identical phases) or 67% carrier-suppressed
eturn to zero (17 ps pulses with a � phase shift between adjacent pulses). Data-
ncoded optical signals require diagnostics that can acquire an invertible experi-
ental trace in a single shot or can gather statistically significant samples of an

ptical waveform. Intensity sampling diagnostics use nonlinear cross-
orrelation schemes, while sampling systems based on homodyne detection are
ensitive to the electric field of the waveform under test. These diagnostics are
ot detailed in this review, and relevant references can be found in [19].

hus ultrafast metrology continues as an active field of research. In this review,
e outline the basic approaches to pulse-field measurement and describe in de-

ail several of the most popular and powerful methods. The aim is both to sum-
arize the state of the art in this rapidly moving field and to provide sufficient

nalysis and design criteria that a researcher may begin to implement these
ethods in the laboratory.

.2. Historical Developments

onsiderable insight into the field can be gained from a look at the history of
ltrafast metrology. Therefore we outline in a more or less chronological order
he major advances over the past nearly four decades, since the invention of
ode locking. To prefigure the structure of the review, the chronology is given in

erms of several threads that have led to distinct techniques.

Figure 5
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haracterization of a pulse train from a Mach–Zehnder modulator driven by a
0 GHz RF drive. (a) Temporal intensity and phase of a 33% return-to-zero train
f pulses. (b) Temporal intensity and phase of a 67% carrier-suppressed return-
o-zero train of pulses, with the expected � phase shift between successive
ulses. (c) Pulse train measured when the bias of the modulator is set at an in-
ermediate value between the values that lead to the pulse trains represented in
a) and (b). The upper plots in (a) and (b) are the corresponding experimental
ata from which the electric field is reconstructed.
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f course, much has been written on the subject in recent years, and a number of
xcellent reviews of a few methods exist. A review of pulse measurement meth-
ds prior to 1974 can be found in the article by Bradley and New [25]. A review
f concepts for shaping and analysis of short optical pulses can be found in a
983 article by Froehly and coworkers [26], and a summary of methods available
p to 1990 in the chapter by Laubereau in the book edited by Kaiser [27]. In
ore recent developments, a comprehensive description of frequency-resolved

ptical gating (FROG) is given in a book edited by Trebino [28], and a broader
reatment of the field in the context of ultrafast optics is to be found in the book
y Diels and Rudolph [29].

or pulses in the range of several picoseconds or longer, the temporal intensity
an be measured by using a streak camera or a photodiode. Combined with a
easurement of the spectrum of the pulse, this information can be used to pro-

ide a reasonable characterization. For pulses in the femtosecond and indeed at-
osecond range such methods are not possible, in part because detectors that can
bsorb across the spectral range of these pulses are not always available, but
ostly because direct photodetection is not fast enough.

hus a different approach is required, one that avoids the need for fast detectors.
onetheless, it is clear that something with a response time as brief as the pulse

tself is needed, and the initial work in the field made use of the most obvious
hort event to hand—the pulse itself. This was used to synthesize a rapidly re-
ponding material excitation by means of the nonlinear optical responses of sev-
ral common processes and materials. This trend has continued, though it is now
nderstood that measurements using linear systems may also provide sufficient
nformation to measure a pulse field.

istorically, the lack of fast detectors led to the adoption of nonlinear optical
rocesses for the purposes of pulse characterization. An early technique, and one
hat dominated the field for many years, was the measurement of the intensity
utocorrelation of a pulse. This relies on the observation that the efficiency of a
onlinear process (such as second-harmonic generation) is higher for higher in-
ut intensities. Thus the second-harmonic signal when a pair of pulses is inci-
ent on a nonlinear crystal is greater when they arrive at the same time, as op-
osed to when they arrive separately. Therefore a measurement of the second-
armonic power as a function of the delay gives an estimate of the pulse
uration. Although it is possible to determine something of the time dependence
f the phase of the pulse from more sophisticated versions of the autocorrela-
ion, it is not possible to get a complete map. Nonetheless, it was also understood
hat the temporal structure of the pulses was strongly dependent on the spectral
hase, and various representations of the pulse were developed to help visualize
his and to develop new methods of measurement. Among the most fruitful of
hese was the spectrogram, consisting of a time–frequency map that plotted what
as called the instantaneous frequency of the pulse.

any current methods of metrology borrow heavily from methods developed in
ther branches of optics, notably imaging and testing. The strong analogy be-
ween space and time in Maxwell’s equations was employed first in metrology in
he concept of the “time lens.” This employs a temporal phase modulator (a time-
omain analog to a spatial phase modulator—a lens) and a dispersive delay line
a frequency-domain analog to free-space propagation) to generate a time-
tretched replica of the input pulse whose temporal intensity can be measured by
sing a relatively slow detector.
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he ideas of time–frequency representations have proved to be one of the most
asting in metrology, through both spectrography and its cousin sonography. The
ormer builds on the original notion by developing methods to measure the spec-
rum of sequential time slices of the test pulse. The latter, in contrast, measures
he time dependence of adjacent spectral slices. The relationship of these time–
requency (or chronocyclic) representations to various pulse measurement
chemes has been an important source of ideas in ultrafast metrology.

he most common form of spectrography relies on the idea that the nonlinear
echanism used to measure an autocorrelation effectively provides a time gate.
ince the second-harmonic intensity is largest when the two replicas of the test
ulse overlap in time, this mechanism can be thought of as the test pulse select-
ng a time slice of itself. Resolving the spectrum of the resulting second-
armonic radiation, rather than simply measuring the total second-harmonic
ower, then provides more information than the autocorrelation alone. This no-
ion was developed in various ways, but a major breakthrough came when it was
ealized that the pulse field could be retrieved from spectrograms measured in
his way by using methods from image processing. This idea forms the basis of
ne of the currently popular nonlinear methods—frequency-resolved optical
ating. This form of spectrography has spawned numerous offspring, buoyed by
he discovery of a powerful inversion algorithm based on the recognition that a
atrix representation of the spectrogram should be of rank one. This allows

owerful singular value decomposition methods to extract the most appropriate
elds by iteration.

onography has also developed considerably since its first demonstration con-
emporaneously with frequency-resolved optical gating. Sonography requires a
etector of reasonable speed, usually synthesized by using a nonlinear mecha-
ism, and pulse reconstruction can be accomplished rapidly by using a deter-
inistic algorithm applicable to a modified sonogram or an image-processing-

elated iterative inversion.

second analogy from optics that has proved equally fruitful for pulse charac-
erization is interferometry. This is a well-known and sensitive method for ex-
racting phase information about an optical field and is commonly employed in
recision metrology. The measurement of the time-dependent phase of an opti-
al pulse was first demonstrated by interfering it with a reference pulse of known
haracter. In this case, a source with a narrowband spectrum provides a usable
eference. This is analogous to using a point source as a reference wave in optical
esting. It is possible to make this into a self-referencing interferometer by se-
ecting the narrow frequency band for the reference from the test pulse spec-
rum. This is analogous to the generation of a spatial reference wave in optical
esting by selecting a single point from the input beam. The temporal interfer-
nce pattern obtained by combining different frequencies from the test pulse
pectrum, recorded for example by using a cross-correlation (synthesized by us-
ng the same nonlinear mechanisms as had been developed for the autocorrela-
or), enables the relative phases of the two spectral components to be deter-
ined.

different approach to interferometry avoids the need for a fast detector and is
nstead based on measurements made in the frequency domain. In spectral inter-
erometry, a test pulse is gauged by using a known reference, and the phase dif-
erence extracted by using a noniterative algorithm. This method, first applied to
he measurement of pulse distortions through propagation, was shown to be an
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xtremely sensitive tool for pulse characterization, capable of attaining the quan-
um limit for photodetection. The proposal of self-referencing spectral interfer-
metry showed how the lack of a known reference pulse could be circumvented
y interfering the test pulse with a frequency-shifted (or spectrally sheared) ver-
ion of itself and measuring the resulting two-pulse spectrum. A nonlinear
mplementation of this idea—SPIDER—retains the direct and unique inversion
haracteristic of interferometry with the ability to acquire and process data on
ndividual laser pulses at rates up to 1 kHz. This opens the way to measurements
f statistical properties of pulse trains.

he final optical imaging analogy that has proved useful in pulse measurement is
hronocyclic tomography. In this approach, the pulse field is reconstructed from
set of spectra after phase modulation. The name comes from the idea that these

pectra represent projections of the chronocyclic phase-space representation of
he field in the form of a Wigner function. The phase modulation serves to rotate
he phase space, thus giving a series of one-dimensional sections of this two-
imensional entity. Further analogs from optical imaging have been used to de-
elop simplified versions of this method that require significantly fewer mea-
urements at the cost of some assumptions about the character of the input
ulses. One of the earliest attempts to reconstruct pulse fields this way was to use
he dispersive properties of glass to temporally stretch the pulse, then to deter-
ine the time dependence of the stretched pulse intensity by using an intensity

ross-correlation with the unstretched pulse. This idea was further extended by
sing phase retrieval algorithms. Several approaches to tomographic pulse re-
onstruction have also been made by using self- and cross-phase modulation to
chieve the phase-space rotation, coupled with measurements of the spectrum of
he modulated pulse. Because the nonlinear mechanisms involve an ancillary
ulse that must have a known (if not precisely controlled) shape, the best ap-
roach to inverting such measurements also makes use of iterative image pro-
essing algorithms.

lthough most of the development of metrology for ultrafast pulses has made
se of nonlinear optical processes, this turns out to be an artifact of the time
cales involved rather than a fundamental restriction. In fact, it has been shown
hat complete characterization can be achieved by using entirely linear optical
lters, such as spectrometers and temporal modulators. The only requirements
re that the apparatus consist of at least one filter with a time-stationary response
e.g., a spectrometer) and at least one with a time-nonstationary response (e.g., a
hase modulator) [30]. All of the above-mentioned classes of measurement can
e formulated in this way. It is only in recent years, however, that it has been pos-
ible to get active optical elements that have time and modulation scales appro-
riate for operating on subpicosecond pulses. Nonetheless, since modulation
nd photodetection with sub-100 ps response times are required for a 40 Gbit/ s
ptical telecommunications system, these elements are also available to build
inear methods that have proved very useful in assessing the performance of sys-
ems and components in this application. Interferometric, spectrographic, and
omographic methods have been implemented by using linear temporal modula-
ors and spectral measurements, with time-integrating or “slow” detectors (i.e.,
ith electrical bandwidths much less than 40 GHz).

f one goes beyond purely integrating detectors that measure only the energy of
pulse or the power in a pulse train, it is possible to achieve a different sort of
easurement by using linear optics. In this case, using linear filters, one can, for

xample, select two different frequencies from the pulse spectrum and mix them
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 318
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n a fast photodiode. The phase of the resulting modulation of the photocurrent
s closely related to the phase difference of the two optical components.

he subsequent sections of this review deal with each of these approaches in de-
ail, providing both an analysis of the methods and a description of the current
tate of the art. To begin, a general analysis of pulse characterization is described
n Section 2. This covers all known methods and indicates the necessary mini-

um conditions that all apparatuses must satisfy in order to operate success-
ully. The following sections describe each of the major approaches in turn:
pectrography in Section 3, tomography in Section 4, and interferometry in Sec-
ion 5. Some current areas of research are described in Section 6, together with
he conclusions.

. General Principles and Concepts of Pulse
haracterization

.1. Concepts and Protocols

hat apparatus is required to characterize an optical pulse? Given the plethora
f techniques purporting to achieve this aim, it is worth considering what are the
ecessary and sufficient conditions that must be satisfied by any method that
rovides a complete specification of an ultrashort pulse field. It is possible to for-
ulate such conditions quite generally in terms of the theory of linear filters.
he fact that this is possible already implies that apparatuses based entirely on

inear optical elements are capable of pulse characterization, something that was
ot appreciated until relatively recently [31]. In practice, many of the popular
ethods make use of nonlinear optical processes, but this is because it has

roved difficult to construct linear filters of the correct character or response
ime, rather than for any fundamental reason.

he inversion protocols for extracting the pulse shape from measured data are
lso made clear by working with linear transformations, which allows a catego-
ization of different experimental methods and the development of a catalog of
hat is possible in principle. An important feature introduced by the use of non-

inear optics is that the inversion algorithms can become more complicated. In
ome cases they remain deterministic, but in others an iterative search for a so-
ution satisfying the twin constraints of the signal form and the data must be
mplemented. Thus the two major considerations in pulse characterization are
he physical arrangement of the linear and nonlinear components and the inver-
ion procedure [32].

.1a. Representation of Pulsed Fields

efore describing how pulse measurement methods operate, it will be well to set
ut some definitions and to delineate exactly what we mean by pulse character-
zation. An electromagnetic pulse may be specified by its electric field alone, at
east below intensities that give rise to fields that will accelerate electrons to rela-
ivistic energies. Thus a useful notation is that of the analytic signal, whose am-
litude and phase we seek to determine via measurement. The (real) electric
eld of the pulse is given in terms of the analytic signal by
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 319
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ε�t� = E�t� + E*�t� , �2.1�

here E�t� is an analytic function of time (and space, although we suppress other
rguments here for clarity). The signal E is taken to have compact support in the
omain �−T ,T�, and we shall refer to it henceforth as the “field of the ultrashort
ulse.” The analytic signal is complex and therefore can be expressed uniquely
n terms of an amplitude and phase,

E�t� = �E�t��exp�i��t��exp�i�0�exp�− i�0t� , �2.2�

here �E�t�� is the time-dependent envelope, �0 is the carrier frequency (usually
hosen near the center of the pulse spectrum), ��t� is the time-dependent phase,
nd �0 a constant, known as the “carrier-envelope offset phase.” The square of
he envelope, I�t�= �E�t��2, is the time-dependent instantaneous power of the
ulse, which can be measured if a detector of sufficient bandwidth is available
note that absolute measurement of the instantaneous power is usually not re-
uired, and most pulse characterization diagnostics return a normalized repre-
entation of this quantity). The derivative of the time-dependent phase accounts
or the occurrence of different frequencies at different times, i.e., ��t�
−�� /�t is the instantaneous frequency of the pulse that describes the oscilla-

ions of the electric field around that time. The frequency representation of the
nalytic signal is defined by the Fourier transform

Ẽ��� = �Ẽ����exp�i����� = �
−T

T

dtE�t�ei�t, �2.3�

o that ε̃���= Ẽ���+ Ẽ*�−��. Note that Ẽ contains only positive frequency com-

onents, since E�t�=�0
��d� /2��Ẽ���e−i�t. This is therefore a reasonable de-

cription for the field of pulses propagating in charge-free regions of space, for

hich the pulse area �−T
T dtε�t�= ε̃�0� must be zero. Here �Ẽ���� is the spectral

mplitude and ���� is the spectral phase. The square of the spectral amplitude,

���= �Ẽ����2, is the spectral intensity (strictly speaking this quantity is the spec-
ral density—the quantity measured in the familiar way by means of a spectrom-
ter followed by a photodetector). The spectral phase describes the relative
hases of the optical frequencies composing the pulse, and its derivative �� /��
s the group delay T��� at the corresponding frequency, i.e., the time of arrival of
subset of optical frequencies of the pulse around �. A pulse with a constant
roup delay, i.e., a linear spectral phase, is said to be Fourier-transform limited
ecause it is the shortest pulse that can be obtained for a given optical spectrum
33].

single pulse is said to be completely characterized if the function E�t� is
nown on the domain �−T ,T�. In practice one usually adopts the approximation

hat the pulse is also characterized by the function Ẽ��� on the domain ��0

� ,�0+��, where � is a frequency that is large compared with the bandwidth
f the source (i.e., large compared with the inverse of the coherence time of the
ource). The sampling theorem prevents a function from having compact sup-
ort in both domains, but it is usually a reasonable approximation to truncate the
pectral function at large frequencies, where the spectral density falls below the
oise level of the detector. With this approximation, all integrals are usually for-
ally extended from −� to +�. Figure 6 presents the temporal and spectral rep-
esentations of a Gaussian pulse with flat spectral phase, a quadratic spectral
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hase ��2��2 /2, and a cubic spectral phase ��3��3 /6. The impact of these differ-
nt phases on the temporal profile of the pulse can also be seen.

.1b. Correlation Functions and Chronocyclic Representations

he analytic signal describing a pulse field is not sufficient to specify the char-
cter of an ensemble of pulses. For example, each pulse from an amplifier sys-
em may be, indeed probably is, slightly different from its predecessor and suc-
essor, and thus each pulse represents a different realization of the ensemble. A
omplete specification of the ensemble is given by the probability distribution of
he field at each point in time. However, it is usually sufficient to specify a set of
orrelation functions of the field, since experiments can be described in terms of
fairly small number of such functions.

he lowest order of these is the two-time correlation function C�t , t��
�E�t�E*�t��	, where the brackets indicate either a time average over the pulse

rain or an ensemble average over repeated experiments. Note that C�t , t�� is not
he same as the correlation function that is derived from the pulse spectral inten-

ity �Ẽ����2 via the Wiener–Khintchine theorem. In that case, the Fourier trans-
orm yields the reduced correlation

C���� = �
−�

�

dtC�t,t + �� = �
−�

� d�

2�
�Ẽ����2ei��. �2.4�

his obviously contains no more information than the spectrum itself, in con-
rast to C�t , t��, which encodes dynamical correlations in the electric field across
he pulse.

knowledge of the two-time correlation function allows one to determine
hether the pulses in the ensemble are coherent, that is, to determine whether

hey have the same pulse field. A useful number characterizing the similarity of

Figure 6

epresentations of a pulse in the (a) spectral and (b) temporal domains. The tem-
oral phase has been removed for clarity.
he pulses in the ensemble is the degree of temporal coherence, defined by [34]
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µ =
� � dtdt��C�t,t���2


� dtC�t,t��2
. �2.5�

hen this number is unity, all pulses are the same, and values smaller than 1in-
icate various degrees of statistical variations in the pulse ensemble. In the case
f identical pulses, the correlation function factorizes and the ensemble may be
haracterized by a single pulsed field. The analytic signal may be extracted from
single line of the correlation function, since E�t��C�t , t0�.

imilarly, one can define a two-frequency correlation function C5 , which is the
ouble Fourier transform of its temporal counterpart, by

C5 ��,��� = �Ẽ���Ẽ*����	 . �2.6�

or application to interferometry, it is most useful to consider correlation func-
ions written in terms of center- and difference-frequency variables,

C5 �	�,�C� = �Ẽ��C + 	�/2�Ẽ*��C − 	�/2�	 , �2.7�

nd similarly in the time domain,

C�tC,	t� = �E�tC + 	t/2�E*�tC − 	t/2�	 , �2.8�

here �C= ��+��� /2, 	�=�−��, tC= �t+ t�� /2, and 	t= t− t�. An obvious way
o measure correlation functions is to make repeated measurements of the elec-
ric field of the individual pulses that make up the realizations of the ensemble.
rom a large set of such measurements it is possible to estimate the statistics of

he pulse field of the ensemble, or at least to determine some of the lower corre-
ation functions. This has been done in several cases, and the fluctuations in
ulse shape from a chirped-pulse amplifier system have been systematically
haracterized [35,36].

eyond this approach, though, the correlation functions are difficult to measure.
he reason is that the measured signals are functionals of the two-time correla-

ion function and cannot always be simply inverted. This problem is usually ig-
ored, and it is assumed from the beginning that the pulse train may be described
n terms of a field. This makes possible more or less straightforward inversion
lgorithms.

hether or not the pulse train is coherent, it is nevertheless useful to consider
etrologic schemes in the two-dimensional space of the correlation function.
he reason is that the output of all absorptive detectors is proportional to bilinear

unctional of the pulse field, and thus a linear functional of the two-time corre-
ation function. However, it is frequently productive to work with a variation of
he correlation function that uses the two-dimensional chronocyclic space �t ,��.
he intuitive concept of time-dependent frequency can be most easily seen
ithin this space.

ne approach to defining a representation of the pulse in the chronocyclic phase
pace is a Fourier transformation of the correlation function with respect to the

ime difference of the two arguments:
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W�t,�� =� dt��E
t +
t�

2
�E*
t −

t�

2
��ei�t�. �2.9�

can be calculated equivalently from the frequency representations of the ana-
ytic signal:

W�t,�� =� d��

2�
�Ẽ
� +

��

2
�Ẽ*
� −

��

2
��e−i��t. �2.10�

he function W is known as the “chronocyclic” Wigner function [37,38]. Other
ime–frequency representations of the pulse are also possible, and can be related
o the Wigner function via convolution. Particularly useful features of the

igner function are that it is real valued and that its marginals are the temporal
nd spectral intensities

I�t� = �E�t��2 =� d�

2�
W�t,�� , �2.11�

Ĩ��� = �Ẽ����2 =� dtW�t,�� . �2.12�

ote also that the Wigner function is sufficient to characterize both individual
ulses and partially coherent pulse ensembles. It is not in general positive defi-
ite, and cannot therefore be considered a probability distribution of the pulse
eld. Indeed, negative Wigner functions are quite common even for simple pulse
hapes and also characterize many of the complicated pulse shapes that are in
urrent use in, say, quantum control. For example, the Wigner function of a pair
f phase-locked Gaussian pulses is negative over a significant region of the
hase space. The restrictions on the pulse duration and bandwidth required by
ourier’s theorem are inherent in the Wigner function, and there is a minimum
rea of the chronocyclic phase space that it may occupy.

ome examples of chronocyclic Wigner functions for common pulse shapes are
hown in Fig. 7. The Wigner function of a Gaussian pulse with a flat spectral
hase does not show a correlation between time and frequency. However, with a
uadratic spectral phase (i.e. a linear group delay), the Wigner function acquires
slope indicating the correlation between time and frequency, and its contours
rovide some intuition about the pulse chirp via a graph of the time-dependent
requency. The Wigner function of a pair of phase-locked Gaussian pulses and a
aussian pulse with cubic spectral phase take some negative values, although

heir marginals are, as expected, positive quantities.

.2. General Strategies for Pulse Characterization

.2a. Linear Systems Model and Photodetection

he oscillations of the electric field ε are too fast to be directly resolved by pho-
odetection. Photodetectors are intrinsically square-law detectors, sensitive to
he intensity of optical waves but not to their phase. Indirect approaches are
herefore used to provide phase sensitivity with square-law photodetectors and
o resolve the shape of short optical pulses. The basic elements required for the
omplete characterization of optical pulses are quite simple: at least one fast

hutter or phase modulator, a spectrometer or an element to temporally stretch
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he pulse via dispersion, and one or two beam splitters. One can think of all el-
ments except the beam splitters as two-port devices: a pulse enters at one port
nd exits at another. There may be ancillary ports for control signals, such as the
iming signal for the shutter opening, for example, but these are essentially lin-
ar systems, in that the output pulse field scales linearly with the input pulse
eld. Thus the input–output relations for these devices are all of the kind

EOUTPUT�t� =� dt�H�t,t��EINPUT�t�� , �2.13�

here EINPUT and EOUTPUT are the analytic signals of the input and output field,
nd H is the (causal) response function of the device. We will specify the func-
ional forms of the common linear filters given above in subsequent paragraphs.

he beam splitter is a four-port device, having two input and two output ports.
he input–output relations for this device are well known, and the main utility in
ulse measurement applications is either in providing a means to generate a rep-
ica of a pulse (one input and two outputs) or to combine the unknown pulse with
reference pulse (two inputs and two outputs), or as elements of an interferom-
ter in which phase-to-amplitude conversion takes place.

e take it that all detectors available have a response that is slow compared with
he pulse itself. For pulses with temporal structure of duration less than 100 fs or
o, this is usually the case. The measured signal from a square-law detector is
elated to the incident field, for our purposes, by

Figure 7

(a)

(b) (d)

(c)

Frequency

Time

igner functions of (a) a Fourier-transform limited Gaussian pulse, (b) a pulse
ith Gaussian spectrum and quadratic spectral phase, (c) a pair of identical
ourier-transform-limited Gaussian pulses, and (d) a pulse with Gaussian spec-
rum and third-order spectral phase. In each case, the temporal and spectral mar-
inals are plotted.
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S�t� = �
−�

�

dt�R�t − t���E�t���2, �2.14�

here R�t� is the detector response function, which is causal, real, and time sta-
ionary. When the detector has a response time TR taken to be much longer than
he duration of the field E, but shorter than the time between pulses realizing an
nsemble, then the signal becomes a functional of the test pulse energy alone,
=�−TR

TR dt��E�t���2=�−�
� dt��E�t���2.

inear filters may be separated into two classes: those with time-stationary re-
ponse functions and those with time-nonstationary responses. For the former
lass, which includes the spectrometer and dispersive delay line, the shape of the
utput pulse does not depend on the arrival time of the pulse. For the latter class,
hich includes the phase modulator and the shutter, the output pulse shape

learly depends on the timing of the input pulse with respect to the shutter open-
ng or the modulator drive signal.

ime-stationary filters are characterized by response functions of the form
�t , t��=S�t− t��, and a particularly useful class of time-nonstationary filters by
�t , t��=N�t�
�t− t��. Equivalently, in the frequency domain, these stationary

lters take the general form H5 �� ,���= S̃���
��−���, and the nonstationary the

orm H5 �� ,���= Ñ��−���, where the tilde represents a Fourier transform.

e may postulate a general linear filter function in the form of a temporal
resnel kernel:

H�t,t�� =
1

�2�b
exp
−

i

2b
�at2 − 2tt� + dt�2�� , �2.15�

here a, b, and d are complex numbers (though real for phase-only filters). H is
nitary and satisfies

� dtH�t,t��H*�t,t�� = 
�t� − t�� . �2.16�

ost common manipulations can be described by such a filter function; indeed,
n arbitrary response function may be constructed piecewise by concatenating
everal such filters. Representative response functions for the various elements
amed above, that facilitate analysis of all pulse measurement apparatuses, are
articular cases of this general kernel with elements a, b, d determined by the
ction of the filter. Some particularly useful examples are the response functions
or

Shutter �time gate�, NA�t − �;�g� = exp�− �t − ��2/�g
2� , �2.17�

Linear phase modulator, NL
P�t;��1�� = exp�i��1�t� , �2.18�

Quadratic phase modulator, NQ
P�t;��2�,�� = exp�i��2��t − ��2/2� ,

�2.19�

˜A 2 2
Spectrometer, S �� − �;�� = exp�− �� − �� /� � , �2.20�
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Delay line, S̃L
P��;��1�� = exp�i��1��� , �2.21�

Dispersive delay line, S̃Q
P��;��2�,�R� = exp�i��2��� − �R�2/2� ,

�2.22�

here N and S̃ indicate that the response functions are associated with nonsta-
ionary and stationary filters, the superscripts A and P denote amplitude-only
nd phase-only filters, and for phase-only filters, L and Q denote linear phase
odulation and quadratic phase modulation. Although the spectrometer’s re-

ponse function is not strictly causal, it can be made so by the introduction of a
uitable delay that has no physical significance in the measurement protocol
39]. The various parameters characterizing these filters are the following.

� Gate: opening time �, and duration of opening window �g,
� Linear temporal phase modulator: frequency shift ��1�,
� Quadratic temporal phase modulator: amplitude of quadratic phase

modulation ��2�, and time of phase modulation extremum �
� Spectrometer: center frequency of passband �, and bandwidth �
� Delay line: delay ��1�

� Dispersive delay line: group-delay dispersion ��2� at reference fre-
quency �R

ome of these parameters become variables in the measured signal function (for
xample, the opening time of the gate or the center frequency of the spectrom-
ter passband), while other parameters might be constant (for example the gate
uration). The variable parameters are those on which the inversion is based. It is
herefore important to ensure that the number and type of filters are adequate to
he task.

.2b. Measurement of the Marginals of the Wigner Function

ulse energy spectrum. Possibly the simplest quantity that can be measured for
n isolated pulse is its spectrum. It is therefore also one of the most important,
ince it can be used as a consistency check for all pulse characterization tech-
iques: the reconstructed spectrum must match an independent direct measure-
ent of the spectrum. The pulse spectrum is usually determined by the obvious

xpedient of sending the pulse into a spectrometer (usually a grating spectrom-
ter is necessary to yield the necessary dispersion) and recording the output as a
unction of the setting of the passband of the instrument, �. Then the spectrom-
ter output is

S��;�� =� dt��� dt�SA�t� − t�;�,��E�t���2

=� d�

2�
�S̃A�� − ���2Ĩ��� ,

�2.23�

ith S̃A��� given by Eq. (2.20). When the bandwidth of the spectrometer is small
elative to the variations of the spectrum, the measured signal is simply the op-
ical spectrum of the source. It is clear that the signal measured in this way con-
ains no information about the spectral phase of the pulse and can at best lead to
he optical spectrum when the filter passband is significantly narrower than the

eatures of the spectrum of the pulse under test.
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t is of particular importance that an equation equivalent to Eq. (2.23) can be
ritten for all stationary filters; i.e., the output signal of a device built entirely
ith stationary amplitude and/or phase filters does not depend on the spectral
hase of the pulse. The implication is that stationary-only filters are insufficient
o gather information on the spectral phase of an optical pulse and can at best
eturn information on the spectral intensity of the pulse.

n terms of the Wigner representation, the measurement of a pulse spectrum is
ritten as

S��;�� =� � dt
d�

2�
W�t,��WS�t,�;�,�� , �2.24�

here WS�t ,� ;� ,�� is the Wigner chronocyclic representation of the spectrom-
ter response function, defined by

WS�t,�;�,�� =� dt�SA
t −
t�

2
;�,��SA
t +

t�

2
;�,��ei�t�. �2.25�

quation (2.24) gives the same result as Eq. (2.23); that is, the measured signal is
he frequency marginal of the pulse chronocyclic Wigner function, which is the
pectrum of the source.

he important point is that all measurement techniques can be represented in
erms of the overlap of the Wigner function of the test pulse (or pulse ensemble)
nd that of the apparatus. This provides an important insight into ways that the
xperimental data may be inverted to obtain the pulse field itself, as discussed in
ubsequent sections.

easurement of the temporal intensity. The measurement of the temporal inten-
ity of an optical pulse is in some sense the conjugate operation of the measure-
ent of its optical spectrum. If the pulse under test is sent to a fast square-law

etector (or equivalently, a fast shutter followed by a time-integrating detector),
he measured output is

S��;�g� =� dt�NA�t − �;�g��2I�t� . �2.26�

ecause of the relatively slow response time of photodetectors, the measured
ignal is usually only a blurred representation of the actual temporal intensity of
n ultrashort optical pulse. However, direct photodetection is commonly used
ith longer pulses, such as the pulses used in optical telecommunication sys-

ems.

.2c. Autocorrelations and Cross-Correlations

ntensity autocorrelation. The simplest technique for gathering at least moderate
uantitative information about the temporal structure of an ultrashort pulse is the
ntensity autocorrelation. In a conventional autocorrelator, two pulse replicas are
ixed in a nonlinear material, and the average power of the generated beam

measured with an integrating detector) is recorded as a function of the relative
elay between the two replicas. By assuming a functional form for the temporal
hape of the test pulse, one can estimate its duration from the autocorrelation
race. Because of its simplicity, autocorrelation is by far the most common
ethod of measuring ultrashort optical pulses. However, the autocorrelation
race by itself provides little more than an estimate of the pulse duration.
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variety of schemes based on intensity correlation measurements were demon-
trated during the late 1960s and early 1970s [40–44]. One particular form, the
econd-order intensity autocorrelation function (AC) became one of the stan-
ard techniques in the field for nearly two decades and is still in use today. This
echnique uses the lowest-order nonlinear process available, and therefore oper-
tes at the lowest power possible for a nonlinear process. This is important for
aking measurements of pulse trains from mode-locked laser oscillators, whose

nergy is in the picojoule to nanojoule range. The most common approach to ex-
racting information from this AC data, however, involves fitting an AC calcu-
ated from a specific pulse shape.

onsider a material (say, a crystal) with second-order nonlinearity and two op-
ical waves around the optical frequencies �1 and �2. The nonlinear susceptibil-
ty ��2� links the second-order contribution to the nonlinear polarization to the
lectric field of the two waves by

P�2��t� = ��2�ε1�t�ε2�t� . �2.27�

ith sufficient intensity and proper phase matching over the entire bandwidth of
he two optical waves, a new optical wave is generated around the optical fre-
uency �1+�2, and its electric field is therefore given by

E3�t� = E1�t�E2�t� , �2.28�

here proportionality constants have been removed for clarity. This mechanism
s used for measurement in the following manner [Fig. 8(a)]. The pulse to be
haracterized is incident on an interferometer that generates two replicas of the
ulse with an adjustable delay between them. The two pulses, whose fields are
elated by E1�t�=E�t� and E2�t�=E�t−��, are then mixed in the nonlinear mate-
ial, and the pulse energy of the upconverted beam measured by using a square-
aw, integrating detector. Separation of the upconverted signals from the inde-

Figure 8
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a) Principle of an intensity autocorrelator where only the mixing signal between
he two relatively delayed replicas of the input pulse is measured. (d) Principle of
n interferometric autocorrelator where the total upconverted signal from two
ollinear replicas of the input pulse is measured. (b) and (e) are, respectively, the
ntensity and the interferometric autocorrelations of a pulse with a Gaussian
pectrum and a flat spectral phase, while (c) and (f) are, respectively, the inten-
ity and the interferometric autocorrelations of a pulse with a Gaussian spectrum
nd a quadratic spectral phase.
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endent mixing of each field itself is ensured by noncollinear operation, or by
sing a type II crystal with orthogonally polarized replicas. The data consists of
one-dimensional array of numbers representing the upconverted pulse energy

s a function of the delay and is represented here by the function AC���. This is
elated to the input field by

AC��� =� dt�E�t�E�t − ���2 =� dtI�t�I�t − �� . �2.29�

uch an apparatus therefore yields the intensity autocorrelation of the input
ulse. This gives an indication of the temporal extent of the intensity, but it can-
ot distinguish the details of the pulse shape. For example, the autocorrelation is
undamentally symmetric with respect to �. In the case when the energy of the
pconverted signals �E1�2 and �E2�2 is measured on the same broad-area, time-
ntegrating detector as the main signal E1E2, the autocorrelation signal is

AC���� = 4� I�t�I�t − ��dt + 2� I�t�2dt . �2.30�

he background described by the second term on the right-hand side of Eq.
2.30) can be useful as a check for the data, since AC��0� /AC���→��=3. Any
eduction from this value is a symptom of either misalignment or space–time
oupling in the pulse (that is, the pulse shape depends on the position in the
eam, so that ignoring the spatial dependence of the field is no longer valid). It
ay also be a symptom that the pulse ensemble is not coherent, since incoherent

ime-stationary backgrounds (such as amplified spontaneous emission from an
mplifier chain) gives a lower contrast ratio.

he AC described by Eq. (2.29) yields a direct measure of the root-mean-square
rms) pulse duration 	tI through the relation

	tAC
2 =

� �2AC���d�

� AC���d�

= 2
� t2I�t�dt

� I�t�dt

= 2	tI
2. �2.31�

lthough this relation is exact, it is usually preferred experimentally to estimate
he pulse duration by using a decorrelation factor assuming a functional form for
he intensity of the pulse. The particular shape is chosen either for simplicity
such as a Gaussian) or on theoretical grounds (such as the secant hyperbolic,
hich is a solution to the dynamical equations of a passively mode-locked laser).
igures 8(b) and 8(c) show the intensity autocorrelations of a pulse with a
aussian spectrum with either a flat spectral phase (a Fourier-transform-limited
ulse) or a quadratic spectral phase. The Gaussian autocorrelations obtained in
oth cases demonstrate that the autocorrelation by itself is not sufficient to de-
ermine the structure of the electric field of the pulse. However, the pulse dura-
ion obtained from the AC combined with the bandwidth obtained from a mea-
urement of the spectrum thus determines the proximity of the pulse to
ransform-limited duration. If the pulse is not transform limited, then these mea-
urements are insufficient to characterize the way in which the pulse is distorted,
nd decorrelation is in general ambiguous [45–47]. Thus there are two difficul-
ies with inferring the pulse shape from AC-related measurements: the intensity
rofile is not unique, and the chirp cannot be determined.
nterferometric autocorrelation. The AC is often extended to its so-called fringe-
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esolved form [48] by using a collinear setup [Fig. 8(d)]. One advantage of the
nterferometric autocorrelation (IAC) is that it is sensitive to the phase of the
lectric field. Another advantage is that the quickly varying fringes lead to a
atural calibration of the temporal axis, which is useful when characterizing
ew-cycle pulses. The upconverted signal is given by

IAC��� =� dt�E�t� + E�t − ���4. �2.32�

he interferometric autocorrelation contains the intensity autocorrelation as
ell as correlation terms of E�t� and E�t−��. Since the field of the input pulse
scillates at a frequency �0, the interferometric autocorrelation contains oscil-
ating terms at the frequencies �0 and 2�0. These terms are phase sensitive and
an in theory be used to estimate the temporal phase present on an optical pulse
49,50]. Figures 8(e) and 8(f) display the interferometric autocorrelations corre-
ponding to a Gaussian Fourier-transform-limited pulse and a Gaussian pulse
ith a quadratic spectral phase. The interferometric autocorrelation is sensitive

o the temporal phase of the pulse, and the two autocorrelations have different
tructures, although the corresponding intensity autocorrelations are similar.

th-order intensity autocorrelation and cross-correlation. While autocorrela-
ions provide a somewhat blurred version of the intensity of the pulse under test,
better picture can be obtained from a higher-order intensity correlation func-

ion, such as

Sn+1��� =� dtIn�t − ��I�t� . �2.33�

f n is large enough, In is of much shorter duration than I, and thus Sn+1 is a good
pproximation to I. Since In is often generated by using an nth-order nonlinear
rocess, this technique is not suitable for low-energy pulses. The Kerr effect can
e used for such correlation and is particularly useful for UV pulses [51,52], and
hase-matched parametric gain has also been used [53]. A wave-mixing process
s appropriate for determining the contrast ratio of pulses from high-energy am-
lifier systems, i.e., for measuring the intensity of the incoherent pedestal and
repulses before the main pulse [54–56]. Typically, a probe pulse around the fre-
uency 2�0 is generated from the test pulse around the frequency �0 by using
um-frequency generation. The quadratic dependence of the probe pulse inten-
ity on the input pulse intensity leads to a probe pulse with a better contrast than
he pulse under test. The two pulses are mixed by using a tripling process, and
he cross-correlation signal around the frequency 3�0 is measured as a function
f their relative delay. The third-order cross-correlation is a somewhat blurred
epresentation of the intensity of the pulse under test, which can be measured
ith excellent dynamic range, since the scattering of the interacting pulses at �0

nd 2�0 does not affect the measurement. The obtained traces need not be sym-
etric and can distinguish a prepulse (which can interact with a physical me-

ium before the main pulse) from a postpulse (which is usually of no conse-
uence). It is difficult to obtain the necessary high dynamic range with more
ophisticated pulse characterization instruments, and third-order cross correla-
ors are popular for high-dynamic-range measurements.

nother area where cross-correlations have been used extensively is pulse shap-
ng. Pulse shapers can transform an input pulse into a temporally shaped wave-

orm with a temporal support much larger than the input pulse duration. In many
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ases, a description of the intensity of the output field is sufficient, and this can
e obtained by cross correlating the output waveform with a replica of the input
ulse (Fig. 4).

inally, recovery of the intensity of a test pulse from triple cross-correlations of
he intensity has been attempted [57]. The temporal intensity can in theory be
econstructed unambiguously from the two-dimensional triple correlation func-
ion measured as a function of the two relative delays between replicas of the test
ntensity.

.2d. Classes of Pulse Characterization Devices

easurement devices may be categorized by the arrangements of filters through
hich the test pulse is passed before being detected. A second classification in-
olves the type of algorithm that is used to extract the pulsed field from the ex-
erimental data. The data is a function only of the filter parameters, and there
hould be a sufficient number of these, and of the right kind, that complete in-
ormation about the test pulse is encoded in the data. The requirements that this
laces on the apparatus will be laid out in this subsection.

he filters are characterized by a set of parameters �pi�. For example. the shutter
ransmits any portion of the pulse that falls within a time window of duration �g

ear the opening time �. Likewise the spectrometer transmits any portion of the
ulse that falls within a spectral window of width � near the passband center fre-
uency �. The modulator adds a time-dependent phase onto the pulse, whose
agnitude depends on the modulation index ��2�, and the time of arrival of the

ulse compared with the peak of the modulation at time �. The dispersive line
dds a spectrally dependent phase onto the pulse, whose magnitude depends on
he second-order dispersion ��2� and the position of the pulse spectrum with re-
pect to the reference frequency �R.

lthough these are not the most general linear response functions possible, they
re sufficient for our purposes. Moreover, the categories they represent are com-
lete, in that any linear filter may be synthesized from a sequence of such filters.
pulse measurement apparatus therefore consists of a sequence of filters in se-

ies or in parallel, or both, followed by an integrating detector, as shown in
ig. 9.

ithin this framework, the signal measured by a detector following a sequence
f such filters is a function of the filter parameters. It may be written as the over-

Figure 9

H1(t;t') H2(t;t')

H4(t;t')H3(t;t')

eneral interferometer for optical pulse characterization. The test pulse encoun-
ers a sequence of linear filters, after (possibly) being split into two replicas at a
eam splitter. The combined outputs of the filters are incident on a square-law
hotodetector, usually with a response much slower than the duration of the filter
esponse functions, and certainly much less than that of the input pulse.
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 331



l
F
t

T
m
r
p
fi
a
f
o
o
p
fi
c
p
p
o
s

I
c
s
o
s
s
g
s

I

s
a

T
i
p
a

2

S
s
l
t
o
f
t
r

A

ap of the Wigner function of the pulse with a chronocyclic window function
�t ,� ; �pi�� depending only on the properties of the arrangement of linear fil-

ers:

D��pi�� =� � dt
d�

2�
W�t,��F�t,�;�pi�� . �2.34�

he action of F is to smooth the pulse Wigner function to yield a positive signal
easurable by a square-law detector. The trick is to design F such that W can be

ecovered from the experimental data D. If F is able, by suitable choices of the

i, to explore all of the phase space occupied by the pulse, then D contains suf-
cient information to reconstruct the pulse field. Indeed, this is both a necessary
nd sufficient condition for characterizing the pulse. The window function
ormed by a sequence of time-stationary filters can be shown to be dependent
nly on frequency �, a window function formed using time-nonstationary filters
n t alone. They do not generate a window function that can move throughout the
hase space. Therefore all apparatuses must contain at least one time-stationary
lter and one time-nonstationary filter. This is a necessary, but not sufficient
ondition. These elements may be combined in a number of different ways for
ulse measurement. It is clear that the final filter (that is, the one immediately
receding the detector), must be an amplitude filter (or at least not be a phase-
nly filter), as phase-only filters will not change the detected signal. This re-
tricts the number of configurations of filters that are allowed.

f arranged in series, there are four combinations. Two of these belong to the
lass of spectrographic measurements, and two to the class of tomographic mea-
urements. If arranged in parallel, these elements give another four schemes. All
f the latter are based on interferometry: two in the time domain, and two in the
pectral domain. A final amplitude filter that is either a shutter (a time gate) or a
pectrometer (a frequency gate) enables a slow detector to measure the interfero-
ram. The full catalog of possible configurations is shown in Fig. 10: we de-
cribe each separately below.

t is instructive to revisit the autocorrelation in light of the chronocyclic repre-

entation. It consists of a delay [time-stationary filter S̃L
P�� ;��=ei��] followed by

shutter (time-nonstationary filter NA�t�), so that the detected signal is

D��� =� � dt
d�

2�
W�t,��F�t;�� =� dtI�t�F�t;�� . �2.35�

he shutter response function, however, is the pulse field itself, so that NA=E. It
s clear that F does not provide the necessary phase-space coverage and that this
articular arrangement of filters is inadequate to characterize the electric field of
n optical pulse in a general manner.

.2e. In-Series Filtering Measurements

pectrography. Spectrography refers to schemes in which a simultaneous mea-
urement of the spectral and temporal intensity of the pulse is made. In particu-
ar, methods of this type are based on the measurement of the spectra of different
emporal sections of the pulse, or on the measurement of the temporal intensity
f different spectral sections (in which case it is known as a “sonogram”). For the
ormer, one needs a fast shutter opening at time � (with a speed comparable with,
hough not necessarily as fast as, the test pulse itself) followed by a high-

esolution spectrometer with passband at frequency � [Fig. 10(a)].
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or this arrangement, the Wigner function of the measurement apparatus is

WM�t,�;��,��� =� d��

2�
�S̃A��� − ���2 � dt�NA
t +

t�

2
− ��NA*
t −

t�

2
− ��


exp�i��� − ��t�� . �2.36�

n the limit of narrowband filtering, i.e., �S̃A��� ;���2→
���−��, the apparatus
unction occupies the minimum volume of phase space allowed by Fourier’s
heorem and therefore smooths the pulse Wigner function by the least possible
mount. In this limit, the signal may be written as

D��,�� =� d�

2�
dtW�t,��WM�t − �,� − �� = �� dtE�t�NA�t − ��exp�i�t��2

.

�2.37�

n this case, the experimental trace is the Gabor spectrogram with a window NA.
rovided the gate function NA is known with sufficient precision, the signal is
irectly invertible to the pulse field, although an iterative deconvolution algo-

Figure 10

inear filter description of type I to type VIII devices. Spectrographic devices,
ased on two serial amplitude filters in conjugate variables, correspond to (a)
ype I and (b) type II. Tomographic devices, based on a quadratic phase modu-
ation followed by an amplitude filter in the conjugate variable, correspond to (c)
ype III and (d) type IV. Interferometric techniques related toYoung’s double-slit
xperiment, with two amplitude filters in parallel followed by one amplitude fil-
er in the conjugate variable, correspond to (e) type V and (f) type VI. Interfero-

etric techniques related to shearing interferometry, with two linear phase
odulations in conjugate domains in parallel, correspond to (g) type VII and (h)

ype VIII.
ithm is usually required.
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he elements may also be used in the reverse order [Fig. 10(b)]. In this case, re-
erred to as sonography, the test pulse first encounters a low-resolution spec-
rometer, then a very fast shutter. The Gabor sonogram is defined in an analo-
ous manner to Eq. (2.37) by

D��,�� = �� d��

2�
S̃A��� − ��Ẽ����e−i����2

, �2.38�

here this time the spectral gate is of the form of Eq. (2.20). Again, a fast shutter
ay also be synthesized by a nonlinear optical process. In fact, it is clear from

he form of the integral kernel of the Gabor spectrogram why this is so: the gate
unction is a time-shifted replica of the test pulse, and the product of the test
ulse with itself can be realized by sum-frequency generation in a second-order
onlinear interaction.

he first method to provide complete information about an ultrashort optical
ulse used a shutter based on upconversion of the spectrally filtered (and there-
ore temporally stretched) test pulse with the test pulse itself. The shutter speed
s then equal to the duration of the test pulse, and something close to a sonogram
f the test pulse can be measured [58].

n measuring either spectrograms or sonograms, it is important that the first filter
ncountered by the test pulse have low resolution in its appropriate domain (a
ominally slow shutter for spectrography, and a low-resolution spectrometer for
onography), and that the second filter have high resolution (a high-resolution
pectrometer for spectrography and a fast shutter for sonography). This makes
he measured spectrogram or sonogram most similar to the true Gabor-type
pectrogram or sonogram of the test pulse.

s discussed previously, nonlinear optics is not a necessity for pulse character-
zation. Its use in spectrographic techniques when characterizing sub-100 fs
ulses is required because there is no other way to build a shutter with a similar
esponses time. The test pulse itself is, ipso facto, the shortest-duration entity to
hich the experimenter has access, thereby setting a lower limit on the shutter

peed. Because of this constraint, measurements of a sonogram of a femtosec-
nd optical pulse always have lower resolution than the corresponding spectro-
ram.

hen nonlinear optics is used, the measured spectrograms are nonlinear func-
ionals of the test pulse Wigner function. A true spectrogram, such as the Gabor
pectrogram, is a linear functional of the test pulse and the known shutter re-
ponse Wigner function. Reconstruction of the pulse field from the Gabor spec-
rogram requires a deconvolution, but has in most cases a unique solution. Re-
onstruction of the pulse from nonlinear spectrograms requires an iterative
onlinear deconvolution where the convolution function depends on the un-
nown pulse. This problem might have multiple solutions. As a consequence,
uch of the effort devoted to these techniques has concentrated on devising ro-

ust iterative algorithms for extracting the field from the measured quantity, and
his is discussed in Section 3.

n alternative approach to pulse reconstruction is to ensure that the apparatus
perates with parameters that allow approximate direct inversion. This is pos-
ible with sonography [59], for example, and methods have been suggested for
pectrography [60] as well as the spectrally and temporally resolved upconver-

ion technique (STRUT) [61,62].
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omography. Tomographic pulse measurement is based on the notion of the time
ens. This approach exploits the idea that the temporal intensity profile of the
ulse can be transformed into the spectrum by suitable (linear) manipulations.
he underlying principle can be illustrated by using the well-known dispersive
roperties of a grating pulse stretcher, as illustrated in Fig. 11(a). In this device,
pulse experiences a large group-velocity dispersion, since each wavelength

races a different path through the grating pair. Although the different wave-
engths each occupy a different spatial position within the beam (an example of
pace–time coupling) after the second grating, a second pass through the appa-
atus undoes the space–time coupling while doubling the dispersion. Thus at the
utput of the stretcher the pulse duration is much longer than at the input, be-
ause each frequency in the pulse experiences a different transit time (or delay)
hrough the grating pair. The Wigner functions of a pulse before and after qua-
ratic spectral phase modulation ��2��2 /2 are related by

WOUTPUT�t,�� = WINPUT�t − ��2��,��. �2.39�

his corresponds to a shear of the chronocyclic Wigner function, as shown in
ig. 11(b), which encodes the spectrum of the input pulse onto the temporal in-

ensity of the output pulse.

he inverse effect can also be made to happen. That is, the input pulse temporal
hape can be made to appear in the output pulse spectrum. This requires a time-
omain analog to a pair of gratings. Such a device turns out to be a temporal
hase modulator [Fig. 11(c)], which shifts the frequency of different time slices
f the pulse by different amounts, just as the grating stretcher shifts the time de-

Figure 11

t
(b)

ω

t
(d)

ω

(a) (c)

Phase
modulator

Ψ

t

epresentations of (a) the effect of dispersive propagation and (c) propagation in
quadratic temporal phase modulator. (b) Dispersive propagation leads to a

hear of the chronocyclic representation along the time axis. (d) The quadratic
emporal phase modulator leads to a shear of the chronocyclic representation
long the frequency axis.
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ay of different spectral slices of the pulse by different amounts. Clearly the re-
ponse time of the modulator must be comparable with that of the pulse itself for
his operation to provide a unique mapping, and for this reason it is only recently
hat such methods have begun to be practical in the picosecond and subpicosec-
nd regimes. The Wigner functions of a pulse before and after quadratic tempo-
al phase modulation ��2�t2 /2 are related by

WOUTPUT�t,�� = WINPUT�t,� + ��2�t�. �2.40�

he effect of a quadratic temporal phase modulation is therefore to shear the
igner function along the frequency axis [Fig. 11(d)].

he combination of the temporal modulator and dispersive stretcher allows one
o perform an operation called “temporal imaging” by analogy to the operation
erformed by an optical imaging system in the spatial domain. Consider a stan-
ard optical imaging device, consisting of an object placed some distance before
lens, and an image plane (at which is placed a detector) some distance after the

ens. The underlying physics of image formation is that light from the object un-
ergoes diffraction in free space for a prescribed distance, then refraction by the
ens, then further diffraction before being detected. For the appropriate adjust-
ent of the distances and power of the lens, a magnified image of the object can

e formed. The time–frequency analog is that the grating stretcher plays the role
f diffraction and the temporal modulator the role of the lens. Using such a
etup, a temporally magnified image of the input short pulse can be constructed,
hich is easy to measure by using detectors with response times much longer

han the input pulse.

.2f. In-Parallel Filtering Measurements

nterferometry refers to the situation where the phase of the test pulse is encoded
nto the intensity by means of mixing with a second pulse, which may be an an-
illary reference pulse or the test pulse itself. These two categories are known as
test-plus-reference” and “self-referencing” interferometry, respectively. They
re both direct techniques, in that it is possible to reconstruct the correlation
unction in either the time domain or the frequency domain directly (i.e., nonit-
ratively) from the recorded intensity distributions. A general model of this cat-
gory of measurement devices may be developed in terms of a sequence of in-
arallel linear filters. In this model each pulse in the ensemble is split into two
eplicas at a beam splitter, and each replica is independently filtered before being
ecombined. The interference of the field from the parallel pathways introduces
tructure on the output intensity distribution, which then carries information
bout both the amplitude and the phase of the correlation function of the input
eld. If the ancillary port of the input beam splitter is empty, then the interfer-
meter is said to be self-referencing. Alternatively, if the ancillary port is used to
nject a characterized reference pulse, then it is possible to reconstruct the elec-
ric field of the test pulse in a rather straightforward manner [63,64]. Of course,
his approach requires one to first obtain a well-characterized reference pulse.

ne significant advantage of direct techniques compared with phase-space tech-
iques is that the entire space over which the phase-space or correlation func-
ions are defined need not be explored if the pulse train is assumed to consist of
dentical pulses. Only a single section of one quadrature of the (complex) corre-
ation function is necessary to obtain the electric field amplitude and phase, and
hese are precisely what is recorded by direct techniques.
est-plus-reference interferometry. The most common form of test-plus-
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eference interferometry is Fourier-transform spectral interferometry (FTSI)
63,64]. In this approach, the test and the reference pulse are delayed in time
ith respect to each other by � before combining at the input beam splitter. The

etected signal (interferogram) is then S�� ;��= �Ẽ���+ ẼR���e−i���2, where ẼR

nd Ẽ are the spectral representations of the analytic signal of the reference and
he test pulse. The spectral phase difference between test and reference pulses is
ncoded in the relative positions of the spectral fringes with respect to the nomi-
al spacing of 2� /� and can be extracted by using a three-step algorithm involv-
ng a Fourier transform to the time domain, a filtering operation, and an inverse
ourier transform. The phase of the reference pulse must then be subtracted,
eaving the spectral phase of the test pulse as required. A measurement of the test
ulse spectrum then provides sufficient information to characterize the pulse. In
ommon with all interferometric methods, the data set has one parameter, fre-
uency, and may therefore be collected by using a one-dimensional detector ar-
ay. This leaves the second dimension of a camera, for example, available for
oding information about other degrees of freedom of the test pulse, such as the
patial phase. This method is therefore easily extended to full space–time char-
cterization of the test field, again provided that a suitable (i.e., fully space–time
haracterized) reference pulse is available.

elf-referencing interferometry. It is possible to extract the phase of a field with-
ut a known reference pulse by gauging one spectral or temporal component of
he field with another component. This is known as “self-referencing interferom-
try.” In this approach, the goal is to reconstruct the correlation function in either
he time domain or the frequency domain directly (i.e., noniteratively) from one
r several recorded intensity distributions. In fact, when the pulse train is coher-
nt, it is necessary only to measure a section of the two-time or two-frequency
orrelation function in order to reconstruct the pulse field [34].

he in-parallel amplitude-only filters select either two frequency or two time
lices of the pulse that beat together at the output of the interferometer. These are
he time-domain analogs of Young’s double-slit interferometer [Figs. 10(e) and
0(f)].

n the spectral domain [Fig. 10(e)], the center frequencies of the spectral filters
re �C1 and �C2, and each has the same bandwidth �. The selected frequency
omponents are recombined, giving rise to temporal fringes—or a time-
ependent modulation of the intensity—at the output. These are resolved by us-
ng a time gate or a fast shutter. The signal recorded by the square-law detector is
function of the spectral filter center frequencies as well as the time of maxi-
um transmission � of the time gate,

D��C1,�C2,�� =�� dt�NA�t − �� � d�

2�
�S̃A�� − �C1�

+ S̃A�� − �C2��Ẽ���exp�− i�t��2� . �2.41�

he detected signal takes on a particularly useful form when the passband of the
pectral filters is much narrower than the spectrum of the input pulses and the

ime gate is short. In this case, the functions NA�t� and S̃A��� may be replaced by
irac 
 functions in the appropriate domains, and Eq. (2.41) simplifies to
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	�

2
,�� = Ĩ
� +

	�

2
� + Ĩ
� −

	�

2
�

+ 2�C5 �	�,���cos�arg�C5 �	�,��� − 	��� ,

�2.42�

here �= ��C1+�C2� /2 and 	�=�C1−�C2. This is an interferogram, for which
he visibility of the fringes, occurring with nominal temporal period 2� /	�,

rovides a measure of the magnitude of C5 �	� ,��. The location of the fringes

long the delay axis � provides a relative measure of the phase of C5 �	� ,��.
ach temporal beat note in the fringe pattern supplies enough information to re-
onstruct the two-frequency correlation function at the single point �	� ,��.

complementary form of interferometer consists of an in-parallel fast time-gate
time-nonstationary amplitude-only filters) followed by a spectral filter (time-
tationary amplitude-only filter), as pictured in Fig. 10(f). The two replicas of the
ulse are independently sampled with variable times,�1 and �2, before being re-
ombined. The spectral beats, resulting from the overlap of the two time slices,
re resolved by a spectrometer. The resulting signal, for the case of a very fast
ime gate and a very high-resolution spectrometer, written in terms of the center-
ime �t= ��1+�2� /2� and difference-time �	t=�1−�2� coordinates, is the tem-
oral interferogram

D
t +
	t

2
,t −

	t

2
,�� = I
t +

	t

2
� + I
t −

	t

2
�

+ 2�C�t,	t��cos�arg�C�t,	t�� + 	t��. �2.43�

he visibility of the spectral fringes, occurring at the spectral period 2� /	t, is a
easure of the magnitude of the two-time correlation function at the point

t ,	t�, while the position of the fringes is linked to the phase of the correlation
unction.

different class of interferometers makes use of a frequency shifter (a time-
onstationary linear phase filter) and a delay line (a time-stationary linear phase
lter) arranged in parallel, followed by spectrometer after these signals are re-
ombined [Fig. 10(g)]. The detected signal is a function of the delay ��1�, which
cts as a fixed parameter, as well as the center frequency of the spectrometer
assband, �,

D���1�,�;��1�� =�� d�

2�
�S̃A�� − ��
� d��

2�
ÑL

P�� − ��,��1��Ẽ����

+ S̃L
P��,��1��Ẽ�����2�. �2.44�

ith the usual simplifying assumptions regarding the spectrometer resolution,
ogether with the frequency-shifting property of the idealized temporal phase

˜ P �1� �1�
odulator NL��� ,� �=
���+� �, the signal simplifies to
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2
;��1�� = Ĩ
�C +

	�

2
� + Ĩ
�C −

	�

2
� + 2�C5 �	�,�C��


cos�arg�C5 �	�,�C�� − ��1�
�C −
	�

2
�� ,

�2.45�

here 	�=��1� is the spectral shear and �C=�+��1� /2 is the center frequency.
or a given shear the recorded interferogram maps out an entire line of the real
art of the two-frequency correlation function, in contrast to the previous
oung’s double-slit-type configurations. This section may be extracted by using
simple and direct inversion algorithm that separates the interference term [the

hird term in Eq. (2.45)] from the noninterferometric terms. This is easily ac-
omplished by means of Fourier transforms, in a manner described in Subsec-
ion 5.3, for the case when the delay � between the pulses in each arm of the in-
erferometer is sufficiently large. The key point here is that the spectral phase of

he test pulse, arg�C5 �	� ,�C��, is encoded on the spacing of the fringes in the
nterference term.

n entirely analogous argument may be made for temporal shearing interferom-
ters [Fig. 10(f)]. In this case, the delay line in one arm of the interferometer
auses the pulses on recombining at the second beam splitter to exhibit temporal
eats in their intensity that may be resolved by a fast time gate. This latter ele-
ent is the amplitude-only filter that replaces the spectrometer required in the

pectral shearing interferometer. In this arrangement, a temporal linear phase
odulator may be used to provide a temporal carrier for the two-time correlation

unction in the interference term. This is accomplished by frequency shifting one
f the pulses with respect to the other by a shear ��1� and by introducing a rela-
ive delay 	t between the pulses. The signal detected as a function of �, the delay
f the time-nonstationary gate, which is assumed to be of infinitesimal duration,
s then

D��,	t;��1�� = I
tC +
	t

2
� + I
tC −

	t

2
� + 2�C�tC,	t��


cos�arg�C�tC,	t�� − ��1�
tC −
	t

2
�� , �2.46�

here tC=�+	t /2 is the center time. A similar algorithm as described for the
pectral shearing interferogram may be used to extract the temporal phase of the
est pulse in this case. In practice, however, it is very difficult to provide a short
nough time gate to enable this method to work. Nonlinear optical interactions
hat cross correlate the interferogram with the test pulse will not provide enough
emporal resolution to resolve the fringes. Therefore this method is restricted to
ulses whose duration is long enough that an externally controlled time gate,
uch as a telecommunication pulse carver, may be used. This is typically in the
egime of several tens of picoseconds or longer.

.2g. Joint Measurements

here are several modifications to the methods that have allowed some headway.
he spectrum of the pulse helps in determining whether the pulse is close to the

ourier-transform limit and is an obvious second piece of data that is relatively

dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 339



e
p
i
a

A
c
b
s
m
m

D
a
�
r
w
p
i
o
m
i
a
s
r
u
p
s

2

T
t
w
e
o
fi

T
c
n
j
f
s
o
h
f
t

S
t
t
w
i

A

asy to measure. Several iterative schemes have been developed to extract the
ulse shape from a correlation and the spectrum [50,65–67]. They provide vary-
ng degrees of success in extracting the pulse fields, but all share the same char-
cteristic that they are very sensitive to noise in the data [46].

ttempts at retrieving the electric field of the pulse from a set of intensity auto-
orrelations measured after various amounts of second-order dispersion have
een made [68,69]. The use of the intensity autocorrelation in the temporally re-
olved optical gating (TROG) technique, instead of a direct intensity measure-
ent, significantly increases the complexity of the retrieval compared with to-
ographic techniques.

eterministic changes of the spectral phase of the pulse with a pulse shaper have
lso attracted some attention. For a given spectrum, the autocorrelation signal at
=0 is maximized by a flat spectral phase. Since this signal can be measured di-
ectly by doubling the pulse and measuring the energy of the converted pulse
ith a photodetector, an iterative algorithm can be used to modify the spectral
hase and maximize the measured signal. For a given pulse, the spectral phase
ntroduced by the pulse shaper when the maximum is reached corresponds to the
pposite of the spectral phase of the input pulse, therefore leading to a measure-
ent of the phase by adaptive pulse shaping [70]. In a multiphoton intrapulse

nterference phase scan (MIIPS), the spectrum of the upconverted signal is used
s a feedback mechanism when a spectral phase is scanned across the spectral
upport of the pulse with a pulse shaper [71]. Iterations are required for accu-
ately determining the spectral phase of the input pulse: the pulse shaper is also
sed to introduce a static spectral phase that attempts to compensate the spectral
hase of the input pulse, and a specific multiphoton intrapulse interference phase
can trace is obtained when the shaper output pulse is Fourier-transform limited.

.3. Conclusions

here are three general classes of measurement techniques for characterizing ul-
rashort optical pulses—spectrography, tomography, and interferometry—
hich lead to eight devices consisting of the smallest possible number of optical

lements (two spectrographic, two tomographic, and four interferometric). All
f these devices contain at least one time-stationary and one time-nonstationary
lter, which may be linear in the input field.

he two spectrographic methods measure a smoothed version of the chronocy-
lic Wigner function by using sequential amplitude filters to make a simulta-
eous measurement of time and frequency. Tomographic methods measure pro-
ections of the chronocyclic Wigner function onto the frequency variable,
ollowing the application of a quadratic phase modulator to the input pulse. This
erves to rotate the phase-space distribution of the pulse, so that a measurement
f its modified spectrum reveals information about its initial orientation, and
ence chirp. The data, consisting of a set of projections of the Wigner function
or a range of phase-space rotations, can be deterministically inverted to retrieve
he Wigner function itself.

elf-referencing interferometric techniques measure a point or a section of the
wo-frequency or two-time correlation function. A single section of either func-
ion is adequate for reconstructing the underlying electric field. Interferometers
ork by splitting each pulse in the ensemble into two replicas at a beam splitter,

ndependently filtering the replicas, and then recombining them at a second
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 340
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eam splitter. The interference of the parallel pathways introduces structure on
he output intensity distribution, which then carries information about both the
mplitude and the phase of the correlation function. There are two interferomet-
ic devices that are analogs of Young’s double slits: either two spectral or two
emporal slices are taken of the input pulse and fringes recorded in the temporal
r spectral domains, respectively. Since these devices require time gates that are
hort compared with the input pulse duration, they are difficult to implement for
emtosecond pulses. A more useful approach is via shearing interferometry. In
his case, one of the pulses is shifted in frequency (or in time) with respect to the
ther, and an interference pattern recorded in the spectral (or temporal) domain.
he simple and direct inversion algorithm gives a provably unique solution to

he problem of pulsed field reconstruction.

. Spectrography

.1. Introduction

ome of the earliest attempts at measuring the chirp of optical pulses were based
n spectrographic concepts. Such ideas also underpinned the first attempts at
recisely characterizing the electric field of pulses. The concept of “chirp” was
eveloped for microwave pulses and refers to the existence of a time-dependent
nstantaneous frequency—or, equivalently, a frequency-dependent group
elay—in which all of the frequencies of the pulse do not arrive at the observer
imultaneously. In 1971, Treacy quantified this quantity for pulses from a mode-
ocked Nd:glass laser by measuring the time of arrival of spectral slices of the
ulse [72]. This recording allowed the first evaluation of the optical chirp, which
ad been known for microwaves for some time. A description of early develop-
ents can be found in [26]. Different implementations of the same concept were

hen developed and are usually referred to as time-resolved spectroscopy
73–75]. Another precursor to the spectrographic techniques used nowadays is
he measurement of optical spectra of the upconverted signal in an intensity au-
ocorrelator [76]. Chilla and Martinez’s implementation of sonograms using
onlinear wave mixing in a crystal has inspired most setups for sonographic
easurements of femtosecond pulses [58]. Spectrograms and sonograms are

ow widely used in ultrafast optics, and the development of phase retrieval al-
orithms enables full recovery of the amplitude and phase of the electric field
ithout prior assumptions as to its functional form. The best-known example of

his class of measurements is frequency-resolved optical gating (FROG) [28]. In
his section, we describe the principles of spectrography, the apparatuses re-
uired for measuring spectrograms and sonograms, and the approaches available
or extracting the pulse field from the experimental data. We also give some ex-
erimental implementations of these concepts adapted to ultrafast optics.

.2. General Implementation of Spectrography

.2a. Definitions

pectrographic techniques aim at measuring simultaneously the arrival time and
requency of an optical wave, that is, a joint representation of the Fourier conju-
ate variables time and frequency. In the most general case, the measurement
ields a time–frequency distribution that is uniquely related to the input pulse
eld. The usual approach to this measurement is to perform a sequential gating
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 341



i
s
t
s
T
t
t
b
(
c
t

F
c
n

t
c
t
t
i

w
m
i
a
t
v
f

T
w

A
s
a
r
fi
s

A

n the time and frequency domains by using a time-nonstationary and a time-
tationary filter. The time-nonstationary filter can be delayed in time by a quan-
ity � with respect to the test pulse, and the transfer function of the time-
tationary filter can be tuned along the optical frequency axis by an amount �.
he measured quantity is therefore a function of these two variables, which have

o be varied to cover completely the entire chronocyclic phase space occupied by
he pulse. This permits a faithful estimation of the pulse time–frequency distri-
ution. If the two filters are in sequence, and the second has very high resolution
i.e., is either a fast shutter or a narrowband spectral filter), this approach can be
onsidered to make a simultaneous measurement of the time and frequency of
he pulse.

igure 12 shows two typical arrangements for spectrographic measurements
onsisting of two sequential filters. In Fig. 12(a) the first filter is a time-
onstationary device modulating the electric field with a gating function g, and

he second filter is a time-stationary filter described by R̃. The gating function
an be delayed in time by a delay � relative to the pulse under test, and the sta-
ionary filter can be scanned in frequency, � describing a parameter relevant to
his filter, for example the center of its passband. The signal measured by a time-
ntegrating detector is

S��,�� =� d�

2�
�R̃�� − ���2�� dtE�t�g�t − ��exp�i�t��2

, �3.1�

here the two integrals extend from −� to +� in the time and frequency do-
ains. The second filter is chosen to have a high resolution, which in this case

mplies a spectrometer capable of resolving all the features of the optical spectra
fter they pass through the first filter. This choice leads to minimal blurring of
he spectrogram, and therefore more reliable inversion. From a formal point of
iew, the transfer function of the stationary filter may be replaced by a Dirac
unction, so that the measured experimental trace becomes

S��,�� = �� dtE�t�g�t − ��exp�i�t��2

. �3.2�

his quantity is by definition the spectrogram of the electric field E measured
ith the window or gate g [37].

Figure 12

Spectral filtering

(Ω)

Optical spectrum

analyzer (Ω)

Temporal gating

(τ)

τ

Ω

Temporal intensity

analyzer (τ)

(a)

(b)

pproaches for the measurement of (a) a spectrogram and (b) a sonogram. The
pectrogram is measured by first gating the pulse with a time-nonstationary filter
nd measuring the optical spectrum as a function of the optical frequency and
elative delay between the pulse and the gate. The sonogram is measured by first
ltering the pulse with a time-stationary filter and measuring the temporal inten-
ity as a function of time and the position of the spectral filter.
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he order of the stationary and nonstationary filters can be inverted, so that the
easurement is that of the temporal intensity of the pulse after spectral filtering

Fig. 12(b)]. The signal measured by a time-integrating detector is in this case

S��,�� =� dt�g�t − ���2�� d�

2�
Ẽ���R̃�� − ��exp�− i�t��2

, �3.3�

here g is the impulse response of the time gate and R̃ is the transfer function of
he spectral filter. If the time-gating nonstationary filter has sufficient resolution
o reveal all the temporal features of the spectrally filtered pulse, its response
unction can be formally replaced by a Dirac function and the experimental trace
s

S��,�� = �� d�

2�
Ẽ���R̃�� − ��exp�− i����2

. �3.4�

his quantity is by definition the sonogram of the electric field Ẽ measured with

he spectral filter R̃. In practice, the measured sonograms are often given by Eq.
3.3) (where the nonstationary filter can be a function of the test pulse) instead of
q. (3.4). For example, nonstationary filtering of femtosecond pulses is often
rovided by cross-correlation with another pulse, usually the unknown pulse un-
er test itself [77]. Spectrograms and sonograms should be understood as mak-
ng simultaneous measurements of the time and frequency degrees of freedom
f the test pulse. Note that the spectrogram and sonogram given by Eqs. (3.2)
nd (3.4) are mathematically equivalent, and the spectrogram calculated from
he temporal representations E�t� and g�t� is the sonogram calculated from the

pectral representations Ẽ��� and g̃�−��. Mathematical properties of these
ime–frequency distributions can be found, for example, in [37].

.2b. Wigner Representation

he spectrogram of Eq. (3.2) and the sonogram of Eq. (3.4) can be written as a
ouble convolution of the Wigner function of the test pulse WE with the Wigner
unction of the apparatus Wg:

S��,�� =� � dt�
d��

2�
WE�t�,���Wg�t� − �,� − ��� . �3.5�

he spectrogram is the result of the measurement of the Wigner function of the
ulse in the chronocyclic space �� ,�� with a measurement device having an in-
trument function equal to the Wigner function of the time or frequency gate.
Note that although a Wigner function may have negative values, the convolution
f two Wigner functions is always nonnegative, so that the signal is always a
hysically realizable quantity.) Varying the delay � and frequency � is equiva-
ent to moving the instrument function around the chronocyclic space. It is clear
hat this motion must encompass the portion of the chronocyclic space where the

igner function of the pulse under test has nonzero values. It is usually desirable
o have an instrument function of area as small as possible in the chronocyclic
pace to provide minimal blurring of the measured Wigner function. However,
he size of the support of any Wigner function has a lower bound; i.e., the area of
he chronocyclic space where it is nonzero is larger than �. This lower bound
rises from Fourier’s principle; if it were not so, there could exist an apparatus

igner function that was highly localized in both time and frequency and that
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ould, therefore, be able to measure with high precision the time and frequency
ariables. This contradicts Fourier’s theorem concerning conjugate variables. In
act, a rapid time-nonstationary filter realizes good temporal resolution but pro-
ides little spectral information about the test pulse. Its Wigner function has a
orrespondingly small extension in the temporal variable, but large spread in the
pectral variable. In contrast, a narrowband time-stationary filter as used in the
onogram provides good spectral resolution but little temporal resolution, and its

igner function has small extension in the spectral variable but large spread in
he temporal variable. The spectrogram and sonogram are therefore always
lurred versions of the Wigner function of the pulse under test, in the way de-
cribed by Eq. (3.5).

.2c. Chirp Representation

he first-order moments of the Wigner function can be linked to the group delay
nd instantaneous frequencies defined from the first derivatives of the spectral
hase and the temporal phase of the electric field. The first-order moments of the
pectrogram are by definition

�S��� =
� d��S��,��

� d�S��,��
, �3.6�

TS��� =
� d��S��,��

� d�S��,��
. �3.7�

ne can show that

�S��� =
� dt�IE�t��Ig�t� − ����E�t�� + �g�t� − ���

� dt�IE�t��Ig�t� − ��
, �3.8�

TS��� =
� d��IE����Ig�� − ����TE���� − Tg�� − ����

� d��IE����Ig�� − ���
, �3.9�

here the subscripts E and g refer to the test pulse and the time-nonstationary
lter, so that, for example, IE�t� is the temporal intensity of the test pulse, and

g��� the frequency-dependent group delay of the response function of the non-
tationary filter. Because of the symmetric role played by E and g in the defini-
ion of the spectrogram, these moments depend identically upon the properties
f the pulse and the gate, and the ability of a spectrogram or sonogram to repre-
ent chirp in the test pulse is linked to the properties of the gate. The first-order
requency moment of a spectrogram measured with a rapid time gate (with real

esponse function) is the instantaneous frequency of the pulse, given by
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�S��� = �E��� = −
��

�t
��� . �3.10�

spectrogram implemented with a gate that is narrowband and real in the spec-
ral domain leads to the equivalence of the spectrogram group delay and the test
ulse group delay:

TS��� = TE��� =
��

��
��� . �3.11�

igures 13(a) and 13(b) display the spectrogram of a Gaussian pulse with
econd- and third-order dispersion calculated with a real gate. Note that the
idge of the spectrogram follows a curve corresponding to the group delay in the
ulse, which is a straight line for second-order dispersion and a parabola for
hird-order dispersion. As expected, the negative values of the Wigner function
n the latter case have been washed out in the convolution process. The ability of
he spectrogram and sonogram to represent chirp in an intuitive manner finds ap-
lication in signal representation and processing. They are time-tested concepts
nd are still in use today.

.3. Inversion Procedures for Spectrographic Techniques

he basic problem behind the inversion of the spectrogram is the determination
f a relevant quantity describing the train of pulses under test (e.g., chirp, elec-
ric field, or Wigner function) from the measured time–frequency distribution. In
ome implementations of spectrographic techniques, the gate is unknown; for
xample it can be a function of the pulse under test itself in FROG, where the
ime-nonstationary filter is synthesized by a nonlinear interaction with a replica
f the unknown pulse under test. The inversion approaches are classified here as
hirp retrieval, Wigner deconvolution, and phase retrieval.

.3a. Chirp Retrieval

quantitative assessment of the chirp of the test pulse can be obtained from a
pectrogram or sonogram by calculating its first-order moments by using Eqs.

Figure 13

ττ

Ω Ω
(a) (b)

pectrogram of a pulse with (a) second-order dispersion, i.e., a linear group de-
ay and (b) third-order dispersion, i.e., a quadratic group delay. The group-delay
unction has been overlapped on the spectrogram in each case.
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 345



(
m
t
p
e
[
p
w
t
f
i
m
t
o
o
c
s
fi
w
p
w
a
s
[

3

T
W
f
p
n
t
t
d
f
t
s
s
F
t
g
s

3

T
t
o
s
d
f

A

3.10) and (3.11), or simply by locating the delay at which the spectrogram has a
aximum for each frequency or, equivalently, the frequency at which the spec-

rogram has a maximum for each delay (assuming that the pulse structure is sim-
ly enough that the maxima are unique). These properties were understood very
arly on and are at the basis of the works of Treacy [72] and Chilla and Martinez
58], who determined the group delay as a function of frequency for an optical
ulse by spectrally filtering the pulse and determining the time of arrival of the
ave packets centered at the corresponding frequencies. Precise estimation of

he chirp is made difficult by the fact that the second-order moments of the time–
requency distribution along one axis increase significantly when tight filtering
s performed along the conjugate variable [37]. For example, a spectrogram

easured by using a short nonstationary filter leads to a large spread of the spec-
rogram along the frequency axis, which means that the practical determination
f the instantaneous frequency requires a very high signal-to-noise ratio. An-
ther limitation of this approach, in common with many methods, is that the
hirp and the group delay are measures of the derivative of the phase with re-
pect to time or frequency, respectively. To extract the full phase of the test pulse
eld, it is necessary to integrate the measured quantities, which can be done
hen the support of the field is continuous but is difficult otherwise. Such an ap-
roach would not perform well, for instance, in the characterization of pulses
ith disjoint spectral or temporal support or pulses with phase jumps (an ex-

mple of the latter is a train of pulses used in telecommunication, such as carrier-
uppressed return-to-zero pulses where adjacent pulses differ by a � phase shift
78]).

.3b. Wigner Deconvolution

here is in principle a more direct way to extract the field from the spectrogram.
hen the gate response function is known, the corresponding apparatus Wigner

unction Wg is known, and the Wigner function of the pulse under test can in
rinciple be obtained by inverting the convolution of Eq. (3.5) [79]. The steps
ecessary to perform such an operation are the calculation of the double Fourier
ransform of the measured spectrogram or sonogram, the division of this quan-
ity by the double Fourier transform of Wg, and the calculation of the inverse
ouble Fourier transform of the obtained quantity, which leads to the Wigner
unction of the test pulse, followed by the calculation of the electric field of the
est pulse from its Wigner function. However, direct deconvolution is highly sen-
itive to the precision with which the gate response function is known and to the
ignal-to-noise ratio and is prone to error at points in the phase space where the
ourier transform of the Wigner function of the gate takes zero values. Further,
his approach does not take into account additional information such as the de-
ree of coherence of the test pulse ensemble, nor can it easily include any as-
umptions about this. Therefore this approach is not widely used in practice.

.3c. Phase Retrieval

he two-dimensional deconvolution method described in the previous subsec-
ion does not make use of the fact that the underlying quantity of interest is the
ne-dimensional electric field. In the common case where the test pulse en-
emble is coherent, so that the test pulse field is well defined, the two-
imensional spectrogram or sonogram is a function of two one-dimensional

unctions describing the gate response and the test pulse field. This redundancy
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n the data may be put to good use. It is possible to make use of this fact to effect
terative deconvolution algorithms that work at lower signal-to-noise ratios than
irect deconvolution.

he retrieval of E and g is equivalent to the retrieval of the phase of the short-
erm Fourier transform �dtE�t�g�t−��exp�i�t�. The spectrogram is by definition
he modulus square of the latter quantity, and once the short-term Fourier trans-
orm is known, both E and g can be obtained by Fourier transformation. Spec-
rogram inversion therefore falls into the category of phase retrieval problems.
hese problems have been studied extensively in optics, owing to the fact that
ommon square-law detectors, such as charge-coupled device arrays (CCDs)
sed in imaging, provide only intensity information. Various phase retrieval al-
orithms have been used for such inversion in the context of imaging, and phase
etrieval for ultrafast optical metrology can be traced back to the spectrogram in-
ersion by Kane and Trebino [80] and the later sonogram inversion by Wong and
almsley [39]. The general approach to iterative inversion is to locate the inter-

ections of two sets of two-dimensional functions corresponding to two con-
traints. The first constraint is that the modulus square of the short-term Fourier
ransform must match the experimentally measured spectrogram. The second
onstraint is that the experimental signal should be consistent with the func-
ional form of spectrogram of a pulse gated by a gate; i.e., it can be written as Eq.
3.2) or (3.4). There can also be additional constraints, such as the functional de-
endence between the pulse and gate, or the spectral characteristics of the field
r gate. Since the two sets of constraints are not convex, convergence is not guar-
nteed, but iterating by projecting the solution at each step onto each set has
roved a robust way of inverting the spectrogram. Projection on the set of func-
ions satisfying the modulus constraint is easily performed by replacement of the
odulus with the square-root of the measured spectrogram. Projection on the set

f functions satisfying the spectrogram mathematical form was initially per-
ormed by using an error minimization algorithm [81]. A more efficient algo-
ithm to achieve this task is the principal component generalized projection al-
orithm (PCGPA) [82,83] (Fig. 14).

he principal component generalized projection algorithm works in the follow-
ng way: assuming one has a pair of functions �En ,gn� at iteration n, the outer
roduct En�t�gn�t�� is first calculated as a matrix (with row and column indices
ndicated by discretized values of t and t�), and the short-term Fourier transform
dtEn�t�gn�t−��exp�i�t� is then calculated by a sequence of row rotation and

Figure 14

SVD
(power method) En(t) and gn(t)

Generate
outer product

Row rotate to
time domain

FFT columns to
frequency domain

Apply intensity
constraint

IFFT columns to
time domain

Row rotate to outer
product form Measured S(τ,Ω)

Block diagram of the principal component generalized projection algorithm.
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ourier transformation. The modulus constraint is then applied by replacing the
odulus of the calculated short-term Fourier transform with the square root of

he measured spectrogram, retaining its phase. This new complex matrix under-
oes the inverse of the operations applied to its predecessor. It is rendered into
uter-product form, as required by the signal constraint, by means of a singular
alue decomposition (SVD) of the two-dimensional matrix. This decomposes
he matrix into a sum of outer-product (i.e., rank one) matrices. The outer prod-
ct corresponding to the largest eigenvalue is kept, and the corresponding eigen-
ectors are used as the set of solutions �En+1 ,gn+1� for the next iteration. In prac-
ice, this singular decomposition is slow, and an approximate decomposition is
btained by using matrix multiplications (power method). This algorithm does
ot use an explicit relation between the pulse and the gate, and is therefore re-
erred to as “blind.” The algorithm yields in principle both the characteristics of
he pulse and gate, and this is useful for implementations of spectrographic tech-
iques where the pulse and the gate are not related, for example in cross-
orrelation FROG and linear spectrograms and sonograms. Some theoretical
ases of ambiguity in this approach have been reported [84], though these can
sually be removed using additional knowledge such as the optical spectrum of
he test pulse or the relation between the pulse and the gate, as is often the case in
ROG. The knowledge of the specific link between gate and field has been suc-
essfully inserted into the algorithm for polarization-gate FROG and second-
armonic generation (SHG) FROG [83,85].

.3d. Ambiguities, Accuracy, Precision, and Consistency

mbiguities. An ambiguity in phase retrieval arises when more than one phase
unction can be assigned to the reconstructed field while satisfying all con-
traints of the inversion problem. Consider, for example, the spectrogram

S��,�� = �� dtE�t�g�t − ��exp�i�t��2

= �� dtg*�− t�E*�− �t − ���exp�i�t��2

.

�3.12�

t is clear that the pairs �E�t� ,g�t�� and �g*�−t� ,E*�−t�� are always solutions of
he same phase retrieval problem, regardless of the inversion algorithm. This is
alled the time-reversal ambiguity, because both a specific pulse and gate and
heir time-reversed versions produce the same spectrogram. Ambiguities may
rise particularly in blind deconvolution when no prior or side information about
he pulse or the gate is available. Often it is possible to obtain such information
xperimentally by measuring the optical spectrum of the pulse, for example.
urther, in cases where the gate is a prescribed function, say using a temporal
odulator with an external drive signal unrelated to the test pulse, it is possible

o make use of the independently measured gate function for a range of different
est pulses.

quation (3.12) demonstrates the important direction-of-time ambiguity of
HG-FROG, as explained below in Subsection 3.5b. In this case, the gate is de-
ived from the test pulse so that g=E, and the inversion will yield either E�t� or
*�−t�. This implies that a single SHG-FROG measurement cannot determine

he direction of time unless one has additional information about the test pulse
tructure. Various studies on ambiguities for specific implementations of FROG
an be found in [28,86–89].
ccuracy. The accuracy of a diagnostic quantifies the similarity between the
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easured quantity and the physical quantity. This can be specified only if a well-
nown test pulse is available or by means of numerical simulations. There have
een no extensive studies of these for modern ultrafast spectrographic methods,
specially in the presence of noise or nonoptimal experimental conditions. Some
imulations relevant to this issue can be found in [90].

onsistency. The consistency of the inversion of a spectrogram or sonogram
pecifies the degree to which the data reconstructed from the solution matches
he experimental data; i.e., it tells how well the inversion algorithm for the prob-
em worked. The two constraints that are used in inverting the data yield their
wn consistency criterion:

� The rms difference between the measured experimental trace and the
trace calculated from the retrieved solution, also known as the
“FROG error,” quantifies the match with the experimentally mea-
sured trace.

� The relative magnitude of the singular values given by the singular
value decomposition quantifies the match with the outer-product
form in the decomposition of the spectrogram: a single nonzero sin-
gular value corresponds to a perfect decomposition as an outer prod-
uct. The distribution of singular values may be used to evaluate the
convergence of the algorithm [91].

recision. Evaluating the precision of a measurement device requires the ability
o compare several retrievals of the same quantity by the same device. In the case
f ultrafast pulse characterization, this may done in principle by characterizing
he same test pulse several times, with the underlying assumption that the en-
emble of test pulses is coherent, so that the electric field of each is the same. In
ractice, it is much more useful to be able to evaluate the precision of a given
easurement from a single experimental trace. This obviously requires some re-

undancy. In the case of spectrographic techniques, such redundancy is likely to
e present because of the size mismatch between the experimental trace and the
easured quantities. Redundant data can be used to evaluate precision in con-

unction with a statistical technique called bootstrapping, where multiple inver-
ions of the data are performed after removal of some of the data points [92,93].

.4. Specific Implementation of Sonograms

.4a. Treacy’s Sonogram

mong the earliest sonographic methods, Treacy’s sonogram [72] (also known
s the “dynamic spectrogram”) was implemented by using the angular disper-
ion of a diffraction grating to spread the spectrum of the pulse in space. Tem-
oral information about the arrival time of each spectral component was ob-
ained by using two-photon fluorescence in a dye cell. In the original
xperiment, the dispersed pulse was correlated with a spatially inverted copy of
tself, therefore comparing the time of arrival of optical frequencies symmetri-
ally located on each side of a reference frequency. More recent implementa-
ions instead correlate the spatially dispersed pulse with a short pulse (for ex-
mple, a replica of the pulse under test).

.4b. Measurement of Sonograms with Nonlinear Crystals

onogram measurement of ultrashort pulses nowadays makes use of nonlinear

rystals, which provide both reasonable signal amplitudes and appropriate tem-

dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 349



p
t
fi
T
l
q
r
g
p
s
t
t
t
p
f

T
s
i
c
b
d

3

A
t
e
d
r
t

a
e
c

(
s
i
t
c
t

A

oral resolution [39,58,59,94]. A typical setup is illustrated in Fig. 15(a). There,
he test pulse is split into two replicas. One of the replicas is sent to the spectral
lter that acts as the stationary filter, for example a slit in a zero-dispersion line.
he output of this filter is cross correlated with the other (short) replica in a non-

inear crystal. The complete sonogram can be measured by scanning the fre-
uency of the spectral filter and the delay between the filtered replica and the
eplica of the input pulse. One advantage of this implementation of the sono-
ram, as well as all subsequent implementations based on SHG, is that the ex-
erimental trace usually gives directly a good picture of the chirp. This is clearly
een in Fig. 15(b), which shows the correlation between time and frequency in
he sonogram of a chirped pulse. As is shown below, implementations of spec-
rograms with SHG (SHG-FROG) do not benefit from such an intuitive struc-
ure. Martinez’s approach led to the measurement of the chirp of a colliding-
ulse mode-locking laser by using the determination of the group delay as a
unction of the optical frequency.

wo-photon absorption has also been used to measure sonograms with high sen-
itivity [95]. The setup is similar to the setup shown schematically in Fig. 15, but
t is necessary to remove the constant background arising from one-photon ex-
itation that is present on the traces. Real-time implementations of the sonogram
ased on a scanning Fabry–Perot filter and a two-photon detector have also been
emonstrated [96].

.4c. Spectrally Resolved Cross-Correlation

spectrally resolved cross-correlation approach has also been used to charac-
erize femtosecond pulses. In this method, a narrowband reference pulse is gen-
rated from the test pulse by spectral filtering (for example, using a slit in a zero-
ispersion line). The field resulting from the cross-correlation between the
eference pulse and the unfiltered test pulse in a nonlinear crystal is then spec-
rally resolved by using a spectrometer. The resulting two-dimensional trace is

S��,�� = �� dtE�t�ER�t − ��exp�i�t��2

, �3.13�

nd is therefore the spectrogram of the pulse under test measured with a gate
qual to the field of the reference pulse. While such a trace is identical to a cross-
orrelation FROG (X-FROG) trace (see Subsection 3.5b), it also appears that if

Figure 15

Spectral
filter (Ω)

Nonlinear
crystal

τ Fr
eq
ue
nc
y

Time

(a) (b)

a) Measurement of a sonogram by using nonlinear optics and (b) measured
onogram of a chirped pulse (courtesy D. T. Reid). The pulse under test is split
nto two so that one replica is sent to the spectral filter and cross correlated with
he input pulse. This setup and variations on this setup can be used for either
hirp retrieval or phase retrieval. The sonogram plotted in (b) shows the familiar
ime-to-frequency correlation indicative of the chirp of the input pulse.
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he gate response function is narrowband and real, the first moment of the spec-
rogram will lead to the group delay in the pulse following Eq. (3.11). This prop-
rty was used in [61], and a setup providing real-time measurements was dem-
nstrated in [62].

.4d. Measurement of Sonograms with Fast Photodetection

hirp measurements are important for optical telecommunications because of
he detrimental effect of chromatic dispersion and self-phase modulation in op-
ical fibers and the presence of time-varying phase modulation on the pulses
enerated by lasers and modulators. Telecommunication pulses have low peak
ower, and their polarization state can vary quickly, which makes diagnostics
ased on nonlinear optics difficult to implement. Since these pulses often have
urations longer than a few picoseconds, time-resolved information can be ob-
ained by using a streak camera, for example. A streak camera can display a two-
imensional image where one spatial direction corresponds to time (calibration
f the space-to-time correspondence is, of course, required) and the other direc-
ion corresponds to a physical spatial coordinate. A sonogram can therefore be
ecorded by mapping the optical frequency onto a spatial coordinate at the Fou-
ier plane of a monochromator [Fig. 16(a)]. The pulse under test goes into the
onochromator (diffraction grating and imaging system) that maps the optical

requency onto the spatial coordinate x. The streak camera maps the temporal in-
ensity onto spatial intensity along the y direction. The �x ,y� image therefore
orresponds to the sonogram as a function of � and �. Sonograms measured
ith fast photodetection have been used, for example, in the chirp evaluation of
arious externally modulated lasers [74,97,98], the measurement of the chro-
atic dispersion of optical fibers [73,75], and the characterization of Raman ra-

iation generated by propagation of optical pulses in a fiber [99].

Figure 16

Streak camera

and imaging

Ωτ

Input pulse

Diffraction

grating

Spectral

filter (Ω)

LO

Lock-in

amplifier

T(Ω)

Train of pulses

under test

(a)

(b)

a) Implementation of sonograms with a streak camera; (b) self-referencing
mplementation of a sonogram in the telecommunication environment by RF
hase detection.
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recent implementation of the sonogram for trains of pulses in the telecommu-
ication environment is based on phase comparison in the RF domain [100].
hese trains of pulses usually have repetition rates f of the order of 10 GHz. As
hown in Fig. 16(b), the train of pulses under test is spectrally filtered at the op-
ical frequency � (upper part of the setup) and detected by a photodetector with
andwidth greater than f. This gives a RF signal whose phase is proportional to
he group delay for the group of frequencies around � selected by the spectral
lter. This phase can be measured by comparison with another RF signal at the
ame frequency, generated by sending the unfiltered train of pulses to an identi-
al photodetector (lower part of the setup); the two RF signals are downcon-
erted by mixing with an identical local oscillator running at a frequency close
o f. The measurement of the RF phase as a function of the filtered optical fre-
uency then yields the group delay in the pulse composing the pulse train. This
mplementation uses conventional telecommunication and RF components, is
olarization insensitive, and generates its own temporal reference, all of which
re significant advantages. Further, telecommunication signals can have large
mounts of incoherent amplified spontaneous emission, and it has been sug-
ested that the measurement process is insensitive to this noise background.

.4e. Sonogram with Phase Retrieval

hile the previous implementations of sonograms are based on the simplified
etrieval of the chirp, it was pointed out by Wong and Walmsley that complete
hase retrieval could be performed on a sonogram, provided that the complete
race of Eq. (3.4) is measured [39]. While the previous implementations typi-
ally use a narrowband spectral filter, this is not optimal for phase retrieval, and
he stationary filter should in that case have a bandwidth comparable with that of
he pulse under test. While spectrograms such as FROG are implemented with
n unknown gate, the gate used in sonograms can be characterized in the spectral
omain (e.g., by using a spectrometer to measure its transmission and using test-
lus-reference spectral interferometry to measure the phase induced on the fil-
ered pulse). The setup follows the general concept of the sonogram implemen-
ation, with a spectral filter such as a slit in a zero-dispersion line or a Fabry–
erot filter and fast photodetection provided by a nonlinear cross-correlation
ith the unfiltered pulse under test. Sonograms were also inverted by using the
rincipal component generalized projection algorithm [77]. In these approaches,
he time-nonstationary filter has finite duration and unknown shape. Deconvolu-
ion can be performed appropriately [101]. The phase retrieval can be used for all
onograms, provided that the entire experimental trace is measured and the
ransfer function of the stationary filter does not vary when its frequency is
odified.

.4f. Single-Shot Sonograms

ingle-shot sonograms require the acquisition of the two-dimensional sonogram
here the frequency and time variable are simultaneously scanned. Two experi-
ental implementations have been demonstrated.

he thick nonlinear crystal approach [102] follows lines similar to those devel-
ped in the poor man’s FROG and the GRENOUILLE devices, which are pre-
ented in Subsection 3.5 [103,104]. Phase-matching conditions in a nonlinear
rystal can be used to provide strong spectral filtering, therefore enabling, for ex-
mple, angular dispersion, while the nonlinearity itself provides the gating
echanism. This was implemented in a type II crystal, following Fig. 17(a). The

ombination of a cylindrical and a spherical lens magnifies the input beam in the
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 352
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orizontal transverse direction and focuses it in the vertical direction. A Wollas-
on prism is then used to split the incoming pulse into two orthogonally polar-
zed beams that propagate at an angle. This therefore encodes the relative delay
etween the two pulses on the horizontal spatial axis. The tight vertical focusing
n a type II KDP crystal (KH2PO4) leads to a SHG process that is mostly nar-
owband along the extraordinary axis and broadband along the ordinary axis,
ith a one-to-one relation between the output angle and the wavelength of the

xtraordinary wave being phase matched. In other words, the crystal essentially
erforms the narrowband spectral filtering along the extraordinary axis and

Figure 17

Ω

τ

Pulse

under

test

Shaping lenses
Wollaston

prism
Nonlinear

crystal
Imaging lenses

Ω1

Ω2

τ1

τ2

Ωτ
Ω1

Ω2

τ1

τ2

Input pulse

Input pulse

Cylindrical lens
Diffraction grating

(b)

(a)

ingle-shot measurements of a sonogram using (a) a thick nonlinear crystal or
b) a two-photon detector. In (a), encoding of time and frequency on the two spa-
ial coordinates is performed with noncollinear upconversion in a thick nonlin-
ar crystal. The pulse under test first travels through a cylindrical lens and a
pherical lens to shape the beam, then into a Wollaston prism. This assembly
enerates two replicas of the pulse that are tightly focused in the vertical direc-
ion and spatially extended and noncollinear in the horizontal direction. After in-
eraction in a thick nonlinear crystal, the vertical direction and horizontal posi-
ion that correspond to the optical frequency of the upconverted field and the
elative delay between the two interacting waves are mapped into vertical and
orizontal positions with a combination of a spherical and cylindrical lenses. In
b), the encoding of frequency on one spatial coordinate is performed with a dif-
raction grating and a cylindrical lens acting on one replica of the input pulse.
he encoding of the relative delay between the different spectral slices of the
ulse and the input pulse acting as a temporal gate is obtained thanks to the non-
ollinear interaction geometry on a two-photon array.
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ates the broadband pulse under test with the filtered pulse. Another combina-
ion of cylindrical and spherical lenses is used to map the vertical angle and the
orizontal position on a two-dimensional detector to allow the single-shot mea-
urement of the sonogram as a function of optical frequency and time.

ingle-shot sonograms have also been measured by using the encoding of the
ptical frequency on a spatial coordinate, using a zero-dispersion line and spa-
ially dependent time gating by correlation with the short pulse under test in a
oncollinear geometry on a two-photon detector [105,106]. Following Fig.
7(b), the pulse under test is spatially dispersed by using a diffraction grating
nd a cylindrical lens so that the optical frequency is encoded on the horizontal
ariable. A short reference pulse (in practice, a replica of the pulse under test) is
ncident at the Fourier plane of the zero-dispersion line and produces a cross-
orrelation signal on a two-photon CCD array, where the relative delay between
he two interacting pulses is encoded onto the vertical direction.

.5. Specific Implementations of Spectrograms

pectrogram measurement apparatuses can be classified by their implementa-
ion of the time-nonstationary filter and the specific measurement geometry.

.5a. Early Attempts

ne of the earliest attempt to measure a complete spectrogram used SHG as the
ime-nonstationary filter [76,107,108]. The setup is an intensity autocorrelator
ollowed by a spectrometer that measures the upconverted pulse spectrum, an
xperimental combination that is now referred to as SHG-FROG. In this case,
he gate is the pulse itself, and the experimental trace is related to the test pulse
eld by

S��,�� = �� dtE�t�E�t − ��exp�i�t��2

. �3.14�

o complete measurement of the spectrogram was performed in this early at-
empt, and the experiment only demonstrated the influence of chirp on spectra
easured at different relative delays between the two replicas of the pulse in the

utocorrelator.

.5b. Frequency-Resolved Optical Gating

complete measurement of the upconverted spectra, together with a means for
nverting the data to extract the test pulse field, is generally referred to as FROG
frequency-resolved optical gating). In this method, the time-nonstationary filter
s obtained via a nonlinear interaction in a medium with a nearly instantaneous
esponse. The spectrum of the output of the nonlinear mixing process is mea-
ured for all delays between the input test pulse replicas, and the pulse is recov-
red from the measured spectrogram by means of a phase retrieval algorithm.
he reader is referred to [28,109] for extensive descriptions of this technique,

ogether with details of various implementations and experimental results. The
ost popular experimental implementations are described in the following sub-

ections, with examples of an experimental trace in the case of a Gaussian pulse

ith second- and third-order dispersion.
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econd-harmonic generation frequency-resolved optical gating. In SHG-
ROG, the pulse is mixed with a delayed replica in a nonlinear crystal with large
pectral acceptance, as indicated in Fig. 18 [60,110,111]. The experimental
pectrogram is

S��,�� = �� dtE�t�E�t − ��exp�i�t��2

. �3.15�

HG-FROG is more sensitive than most FROG techniques, and it can be used to
haracterize ultrafast pulses from Ti:sapphire oscillators [7] and pulse trains in
he telecommunication environment [22,112,113]. Sensitivity can be enhanced
y using nonlinear interaction in waveguide structures [114]. SHG-FROG can
lso be used to characterize extremely short pulses when various deleterious ef-
ects such as the dispersion of the nonlinear crystal and the nonuniform response
f the wave-mixing and spectral detection system are taken into account
115,116], and, since second-order nonlinearities are widely available, it can be
sed in the mid-IR [117].

HG-FROG has a major drawback that is derived from the fact that the gate is
he electric field of the test pulse itself. This leads to a spectrogram that is rather
nintuitive, and the sign of a chirp is, for example, not visible on a SHG-FROG
race. Inversion of a SHG-FROG trace is ambiguous in the direction of time, as
xplained previously. The spectrograms of a Gaussian pulse with second- and
hird-order dispersion are shown in Fig. 18. Determination of the chirp from
rst-order moments of the SHG-FROG trace is not possible, and the traces are
oth symmetric with respect to the relative delay �. Issues due to the direction-
f-time ambiguity can be alleviated in various ways. Some prior knowledge of
he electric field of the pulse under test (e.g., knowing that the pulse is positively
hirped) or the introduction of a recognizable feature (e.g., a trailing pulse using
ultiple reflections in a piece of glass) can break this ambiguity. Another ap-

roach is to perform an additional measurement of the SHG-FROG trace after
ddition of chromatic dispersion of a known sign, but this is rather impractical in

Figure 18

E(t)
ω0

χ(2)

E(t-τ)
ω0

2ω0
SHG-FROG

E(t).E(t-τ)

τ τ

ΩΩ

op, implementation of SHG-FROG with a nonlinear crystal. Two replicas of the
ulse at �0 are mixed, and the upconverted signal at 2�0 is spectrally resolved.
ottom, example of a SHG-FROG trace of a Gaussian pulse with (left) second-
nd (right) third-order dispersion.
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pplications requiring single-shot operation. The deleterious effects of limited
pectral acceptance of the nonlinear crystal can be compensated by numerical
orrection of the experimental trace or by crystal dithering [118]. While
HG-FROG is usually implemented in a noncollinear geometry, some collinear
HG-FROG setups, useful when the experimental setup has some spatial con-
traints, have been investigated [119–121]. Collinearity of the two replicas of the
ulse in the SHG crystal leads to an interferometric modulation of the experi-
ental trace, which can be used independently of the SHG-FROG trace for

hase retrieval [121–123]. A recent example of the application of SHG-FROG to
he determination of pulse formation in a nonlinear optical process is shown in
ig. 19 [124].

olarization-gate frequency-resolved optical gating. Polarization-gate FROG
PG-FROG) uses the principle of the Kerr shutter [125]. The basic physical prin-
iple is that cross-phase modulation is polarization dependent, i.e., the phase
hift induced by a pump pulse on a probe pulse depends on the relative polariza-
ion state of the two pulses. Consider the interaction of a low-energy probe pulse
ith a high-energy pump pulse. The phase shift induced on the probe is �CO�t�
�4�n2L /��IPUMP�t� if the pulses are copolarized, and �ORTHO�t�
�4�n2L /3��IPUMP�t� if the pulses are orthogonally polarized. If the probe pulse

s polarized along x̂ and the pump pulse is polarized along x̂+ ŷ, there is an in-
uced time-dependent birefringence, and the probe after interaction is propor-
ional to E�t���x̂+ ŷ�exp�i�CO�t��+ �x̂− ŷ�exp�i�ORTHO�t���. The field transmitted
hrough an analyzing polarizer set along ŷ is then E�t��exp�i�CO�t��
exp�i�ORTHO�t���, which is proportional to E�t�IPUMP�t� for small birefrin-
ence. A gate proportional to IPUMP�t� can therefore be implemented in such a

Figure 19

HG-FROG measurements of the evolution of an arbitrary input pulse into a
elf-similar asymptotic similariton in an optical amplifier. (a) Experimental and
b) theoretical temporal pulse intensities versus propagation distance. (c) FROG
race of the pulse after exiting the fiber amplifier. (d) Temporal amplitude and
hase of the output pulse (courtesy J. Dudley).
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 356



g
b

S
o
2
t
f
i
a

S
F
b
T
i
t
a

S
a
g
p
s
b

T
e
r
s
w

A

eometry. Spectrally resolving the transmitted pulse as a function of the delay
etween the probe pulse and the pump pulse yields the PG-FROG trace

S��,�� = �� dtE�t�I�t − ��exp�i�t��2

. �3.16�

ince the gate is real, the PG-FROG spectrogram can give a better representation
f the chirp (see, for example, the FROG traces in [10]). As can be seen in Fig.
0, the PG-FROG traces of a Gaussian pulse with second- and third-order spec-
ral phases have an aspect similar to the spectrograms of Fig. 13 and the Wigner
unctions of Fig. 7. PG-FROG is popular in applications such as the character-
zation of amplified pulses from chirped-pulse amplification systems [10]. It has
lso been implemented with cascaded second-order nonlinearities [126].

elf-diffraction frequency-resolved optical gating. Self-diffraction FROG (SD-
ROG) uses the diffracting properties of an index grating written in a material
y the interference of two replicas of the pulse under test via the Kerr effect [80].
he efficiency of diffraction of each replica on the grating is proportional to the

nterference term between the electric field of the two replicas. The SD-FROG
race [Fig. 21(a)] is obtained by delaying one replica with respect to the other
nd spectrally resolving one of the replicas and can be written as

S��,�� = �� dtE2�t�E*�t − ��exp�i�t��2

. �3.17�

D FROG traces are rather intuitive, although the relation between group delay
nd moments depends on the order of the phase distortions because the temporal
ate is pulse-dependent and not necessarily real. The self-diffraction effect is not
hase matched, and the phase mismatch is wavelength dependent. This con-
trains the nonlinear medium to be thin and makes the technique difficult for
roadband pulses. However, SD-FROG does not require high-extinction polar-

Figure 20

E(t)
ω0

χ(3)

E(t-τ)
ω0

PG-FROG

E(t). E(t-τ) 2

ω0

ττ

Ω Ω

op, implementation of PG-FROG with a third-order nonlinearity. A high-
nergy replica of the pulse at �0 rotates the polarization state of a low-energy
eplica of the pulse set between crossed polarizers, and the low-energy replica is
pectrally resolved. Bottom, example of a PG-FROG trace of a Gaussian pulse
ith (left) second- and (right) third-order dispersion.
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zers and can therefore be used to characterize short-wavelength pulses [127].
D-FROG has also been implemented by using cascaded second-order nonlin-
arities [126].

hird-harmonic generation frequency-resolved optical gating. Third-harmonic
eneration FROG (THG-FROG) has been implemented by using surface har-
onic generation in a glass plate [128] and more recently in organic films [129].

wo replicas of the pulse under test are mixed noncollinearly in a medium, so
hat they overlap spatially at one of the surfaces of the medium [Fig. 21(b)]. This
s actually the most sensitive FROG setup based on third-order nonlinear effects
or femtosecond pulses, and it has the advantage of a large phase-matching
andwidth. The traces of THG-FROG can be difficult to interpret; for example,
he THG-FROG trace of a Gaussian pulse with second-order dispersion does not
how the familiar correlation between time and frequency of linear chirp. How-
ver, the THG-FROG traces usually have some asymmetry; for example, the
HG-FROG trace of a Gaussian pulse with third-order dispersion has a more fa-
iliar shape. Since there is no third-harmonic generation from a beam with cir-

ular polarization, a collinear fringe-free THG-FROG setup can be built by us-
ng two beams with opposite circular polarizations [130].

ransient grating frequency-resolved optical gating. Transient gradient FROG
TG-FROG) is based on a three-beam geometry similar to what is called BOX-
ARS in nonlinear spectroscopy [131]. As in Figs. 21(c) and 21(d), the input test
ulse E�t� is split into three replicas E1�t�, E2�t�, and E3�t�. The field generated
y four-wave mixing is proportional to E1�t� ·E2�t� ·E

3
*�t�. Depending on the

hoice of the delayed pulse (either E2�t� or E3�t�), the TG-FROG trace obtained
y frequency resolving the generated field is, respectively

S��,�� = �� dtE�t�I�t − ��exp�i�t��2

�3.18�

r

Figure 21

E(t)

E(t-τ)

THG-FROG

E2(t).E(t-τ)

3ω0
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ω0
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E(t-τ). E(t) 2

E(t-τ)
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E(t) χ(3)
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mplementation of (a) SD-FROG, (b) THG-FROG, (c) and (d) TG-FROG with a
hird-order nonlinearity.
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S��,�� = �� dtE2�t�E*�t − ��exp�i�t��2

, �3.19�

hich are, respectively, mathematically equivalent to the PG-FROG trace or the
D-FROG trace. The nonlinear process of TG-FROG is phase matched, and

herefore a long nonlinear medium can be used to increase the sensitivity.

our-wave mixing frequency-resolved optical gating. The strong wave-mixing
ffects in semiconductor optical amplifiers (SOAs) have been used to character-
ze pulses in the telecommunication environment. The pulse is once again split
nto two replicas, where one is used as a strong pump, depleting the carriers in a
emiconductor optical amplifier, therefore temporally modulating the gain and
hase of the SOA. The second replica, with a lower power, is used as a probe, and
ne spectrally resolves this replica after the SOA. This approach is extremely
ensitive, as it usually suffices to have peak powers of the order of 1 mW to in-
uce significant changes in the SOA transmission [132]. Spectrograms mea-
ured by using a SOA depleted by a strong pump pulse as the gate acting on a
robe pulse from a different source have also been measured, leading to the char-
cterization of dynamical processes in SOAs [133].

wo-photon absorption frequency-resolved optical gating. The high sensitivity
f the two-photon absorption in an indium phosphide crystal has been used to
haracterize pulses in the telecommunication environment [134,135]. This is a
wo-pulse mixing, but it is not background free, since the pump induces absorp-
ion on the probe. A background-free trace can be obtained by proper modula-
ion of the interacting beams.

ross-correlation frequency-resolved optical gating. Nonlinear mixing of the
ulse under test with another optical pulse has also been used. In this cross-
orrelation FROG (X-FROG), the pulse and the gate do not have an explicit
athematical link, and the X-FROG trace can be written as function of the field

f the pulse E�t� and the field of the gate E��t� as

S��,�� = �� dtE�t�E��t − ��exp�i�t��2

. �3.20�

-FROG is not self-referencing, as it requires an additional pulse. It is particu-
arly useful when characterizing pulses in a wavelength range where regular
ROG setups would be difficult to implement, often because of the absence of
hase-matched nonlinear interactions. For example, X-FROG has been used to
haracterize blue pulses around 400 nm by downconversion with a pulse at
00 nm [136] and to characterize infrared pulses at 4 �m by frequency mixing
ith a pulse at 770 nm [137]. As the measured signal increases with the energy
f the ancillary pulse, low-energy pulses can be characterized with a high-
nergy ancillary pulse. Parametric gain can be used in a X-FROG configuration
o provide high-sensitivity measurements, though at the expense of background
oise [138,139]. X-FROG is particularly useful for characterizing the broadband
ulses generated by nonlinear propagation in optical fibers and therefore for in-
erpreting the combination of linear and nonlinear effect that are operative in the
ormation of solitons [15,140,141].

ingle-shot frequency-resolved optical gating. The single-shot acquisition of a
ROG trace relies on encoding the time and frequency variables into the two

ransverse spatial coordinates, making use of a two-dimensional detector to

ecord the spectrogram [142]. Mapping the optical frequency to one spatial co-
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rdinate is performed with a conventional grating-based spectrometer, which
an record the optical spectrum of a pulse in a single shot by using a CCD array.

relative delay between two pulses can be mapped into the other spatial coor-
inate by using a geometry similar to the single-shot autocorrelator [143]. In this
onfiguration, the convergence of two unfocused beams means that the delay is a
inear function of the distance across the interaction plane of the beams. The
eld at spatial position x after nonlinear interaction is E�t�E�t−�x�. This plane
an be reimaged onto the input slit of an imaging spectrometer, which then al-
ows the measurement of the optical spectrum as a function of the optical fre-
uency � and spatial position x. The measured intensity is therefore S�� ,��,
here the relation between x and � has been calibrated. Since delay is now coded

n a transverse spatial coordinate, it is necessary to avoid spatial distortions of
he beam, as they can appear as temporal distortions on the FROG trace. Some
orrections of the FROG trace taking into account the beam spatial profile can in
eneral be performed [144]. Single-shot operation of FROG has been used to
haracterize the output of large laser systems based on chirped-pulse amplifica-
ion [10].

.5c. Poor Man’s Frequency-Resolved Optical Gating and
RENOUILLE

n FROG, the stationary filter allowing the optical spectrum measurement after a
onlinear interaction is usually a standard optical spectrum analyzer. It is, how-
ver, known that nonlinear interactions in a thick nonlinear crystal having lim-
ted spectral acceptance lead to a coupling between the optical frequency of the
onverted field and its wave vector. That is, the upconversion of a particular fre-
uency occurs only in a particular direction. It was pointed out that such cou-
ling could be used to provide angular dispersion of the upconverted spectrum,
llowing, by means of suitable imaging optics and a detector, implementation of
he frequency-resolving element of a FROG diagnostic [103,104]. This property
an be used in concert with the time-to-space mapping configuration of single-
hot autocorrelators and FROG to provide complete mapping of the two trans-
erse spatial coordinates into the time and frequency coordinates of the FROG
race (Fig. 22). Such an arrangement, nicknamed grating eliminated no-
onsense observation of ultrafast incident laser light electric fields (i.e., GRE-
OUILLE, the French word for “frog”), is composed of a cylindrical lens, a
resnel biprism, a thick nonlinear crystal, and a combination of two cylindrical

enses, so that a spatially extended input pulse is focused in the vertical direction
n the crystal, where the spatially dependent phase matching leads to angular dis-
ersion in the upconverted beam [104]. To characterize shorter pulses some of
he transmissive optics may be replaced by reflective optics [145]. The biprism
enerates two beams that cross one another from a single input beam, so that the
elative time between the two waves is mapped into the horizontal spatial coor-
inate. The two cylindrical lenses after the crystal are used to map the horizontal
osition and the vertical dispersion into the horizontal and vertical coordinates
n a plane where a two-dimensional detector can be set. The GRENOUILLE
race is fundamentally a SHG-FROG trace; it therefore suffers from a direction-
f-time ambiguity, and the trace does not encode chirp information in a direct
isual manner. Nonetheless, it has been shown that some types of space–time
oupling can be evaluated by using some prior assumptions [146].

.5d. Linear Spectrograms

spectrogram can be measured by gating the test pulse with a fast temporal

odulator that acts as the nonstationary filter [23,147]. There are several advan-
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ages to this approach, which is particularly well suited to optical telecommuni-
ation pulse durations and wavelengths [148]. The technique is highly sensitive,
ince no nonlinear interaction is involved, and pulse trains with as low as
00 nW of average power have been characterized. The choice of appropriate
lectroabsorption modulator renders the method fairly insensitive to both the po-
arization and the wavelength. Another technical advantage is that both the elec-
ric field of the pulse and the transfer function of the modulator can be retrieved
y using the principal component generalized projection algorithm . Therefore,
uch an experiment can also be used to characterize the amplitude and phase
ransfer function of an unknown modulator. Since the gate is independent of the
ulse, deconvolution of the spectrogram can be performed with a known or ap-
roximate transfer function for the gate. While the gate must have a bandwidth
imilar to the bandwidth of the pulse under test, this condition is rather loose,
nd subpicosecond pulses have been characterized by using a 30 ps gate. The ac-
ion of the modulator must be synchronized to the pulse under test. In the tele-
ommunication environment, a clock synchronized to the source of pulses is
sually available, and can therefore be used to drive the modulator. This ap-
roach has been implemented, for example, with an electroabsorption modulator
r an electro-optic modulator [149,150] driven by a RF sine wave, in which the
elative delay between the pulse under test and the gate was controlled by using
RF phase shifter, so that no free-space optical delay line was needed [Fig.

3(a)]. Such an arrangement was also used to characterize the output of various
ulse carvers [78,151,152], to characterize various pulse shapers [153,154], and
o characterize subpicosecond pulses [147,155]. Figure 23(b) presents the spec-
ral representation of the 2.4 ps pulse from a mode-locked laser diode. This pulse
as sent in a nonlinear fiber, where self-phase modulation was used to broaden

ts spectrum, followed by a dispersive fiber to compensate for the nonlinear
hirp. The output pulse [represented in Fig. 23(c)] is recompressed to 900 fs.
he characterization of the temporal behavior of a gain-depleted SOA was also
erformed by gating a probe pulse with the SOA under test [133]. It is possible to
perate a linear spectrogram system close to video-rate retrieval, effectively in

Figure 22

Ω1

Ω2

Ω

τ

τ1

τ2

Pulse
under
test

Cylindrical
lens

Fresnel
biprism

Thick nonlinear
crystal

Imaging
lenses

mplementation of GRENOUILLE. The spatially extended pulse under test trav-
ls from left to right and propagates into a cylindrical lens and Fresnel biprism.
fter interaction in the nonlinear crystal, the vertical direction and horizontal
osition that correspond to the optical frequency of the upconverted field and the
elative delay between the two interacting waves generated by the biprism are
apped into vertical and horizontal positions with a combination of two cylin-

rical lenses.
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eal time, by using a Fabry–Perot etalon to measure the optical spectra after
odulation has demonstrated update rates of the order of 10 Hz [24].

.6. Conclusions

pectrographic techniques have been used for a large variety of pulses in very
iverse configurations. Nonlinear optics plays a central role in most implemen-
ations to provide a gating process for subpicosecond pulses, although linear
mplementations have also been used to characterize longer pulses, e.g., in opti-
al telecommunications. Spectrographic techniques lead in some cases to intui-
ive experimental traces capable of displaying the time-to-frequency correlation
n a chirped pulse. In most cases, the electric field reconstruction must be itera-
ive.

. Tomography and Imaging Concepts

.1. Introduction

eans for measuring the phase of the spatial electric field describing a quasi-
onochromatic beam of light have been known for a long time. The concepts

eveloped for imaging and wavefront sensing have inspired approaches to char-
cterizing the temporal field variation of short optical pulses. For example, im-
ging of a pulse using temporal magnification is analogous to imaging of a spa-
ially localized, pointlike object with spatial magnification by means of a

Figure 23
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a): Measurement of a spectrogram as a function of the optical frequency and the
elative delay between the modulation and the source under test. (b) and (c) are
he spectral representations of a pulse from a mode-locked diode before and af-
er pulse compression by propagation in a highly nonlinear fiber and dispersive
ber. The insets show the corresponding spectrograms.
onventional imaging system. Similarly, approaches to the measurement of spa-
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ially extended wave field by means of tomography have parallels in temporal
ulse characterization. In this section the analogy between the spatial and the
emporal domains in wave propagation is outlined. We then focus our attention
n specific aspects of imaging and wave-field tomography as applied to the char-
cterization of short optical pulses. Finally, we describe in detail various experi-
ental implementations of these concepts.

.1a. Analogy between Space and Time

he analogy between wave propagation and spatial focusing, on the one hand,
nd dispersion and temporal focusing, on the other, has proved a fruitful tool for
nderstanding and development of concepts for temporal pulse-field character-
zation. In conventional optical imaging, a magnified image of an object is ob-
ained by propagating the field emanating from, or scattered by, the object,
hrough a sequence of optical elements that modify the field in such a way that a
caled version of the field at the object is formed at an image plane, where it can
e recorded. In this way, a small object can be viewed by using a detector of lim-
ted spatial resolution. The process of temporal imaging follows a similar se-
uence, allowing very brief pulses to be viewed by using a slow detector. Tem-
oral imaging of electrical waveforms was first studied by Caputi [156–158] and
ournois et al. [159], who experimentally demonstrated a temporal magnifica-

ion equal to −2 [i.e., the input and output intensities of the waveform before and
fter the time lens imaging system were related by IOUTPUT�t�= IINPUT�−t /2�].
he analogy between Fresnel diffraction in space and dispersive propagation in

requency for optical waves was also mentioned independently [160], and the
quivalence between spatial and temporal domains has been studied extensively
161–171]. Experimental realizations with short optical pulses include the time-
o-frequency converter [172–176], leading to the magnification of various wave-
orms [177–179] and various applications in optical telecommunications
180–182]. Other related works include the pinhole time camera [183], the gen-
ralization of various imaging concepts to the time domain [184], the conversion
f a waveform from time to space [185–189], the temporal Talbot effect
190–192], and the temporal van Cittert–Zernike theorem [193]. All of this work
s based on the correspondence between the pair of transverse space and trans-
erse wave vector coordinates �x ,kx� and the time–frequency coordinates �t ,��,
he equivalence between spatial diffraction and chromatic dispersion, and the
ossibility of mimicking the action of a lens in the time domain by using a qua-
ratic temporal phase modulation. Such equivalence is depicted in Fig. 24 in the
ontext of an imaging system. The physics underlying this can be seen by the fol-
owing argument. Fresnel diffraction over a distance L is expressed in the trans-
erse wave-vector space as a quadratic phase factor [194],

ẼOUTPUT�kx� = ẼINPUT�kx�exp
− i
L

2k0

kx
2�. �4.1�

hanging from the space to the time domain, this can be cast in terms of chro-
atic dispersion of second order, where an element of second-order dispersion

er unit length � introduces a quadratic spectral phase factor

ẼOUTPUT��� = ẼINPUT���exp�i�L�2/2� . �4.2�

n the spatial domain, an aberration-free thin lens of focal length f introduces a

uadratic modulation in the transverse space [194]
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EOUTPUT�x� = EINPUT�x�exp
− i
k0

2f
x2� . �4.3�

n the time domain, this corresponds to the action of a quadratic temporal phase
odulator, which by definition provides a quadratic phase modulation in the t

pace,

EOUTPUT�t� = EINPUT�t�exp�i�t2/2� . �4.4�

ith this equivalence in mind, approaches leading to spatial imaging of objects
nd characterization of spatial wavefronts can be implemented for the temporal
haracterization of short pulses. For example, imaging with magnification can
e implemented by using a dispersive line followed by a temporal lens, followed
y another dispersive line. This mimics the action of a spatial imaging system
ased on a single lens, which generates the magnified image of an object by us-
ng the combination of a lens with free-space diffraction before and after the
ens. Note, however, that the spectrotemporal domain has a unique feature: one
an have positive or negative quadratic spectral phase modulations, whereas the
uadratic modulation associated with diffraction has a constant sign.

.1b. Wigner Formalism

emporal imaging can be understood easily by using the Wigner formulation.
he Wigner functions of a pulse before and after quadratic spectral phase modu-

ation ��2 /2 are related by

WOUTPUT�t,�� = WINPUT�t − ��,�� . �4.5�

he Wigner functions of a pulse before and after quadratic temporal phase
2

Figure 24

x x

t

Temporal

lens (t)

Dispersion

(ω)

Diffraction

(kx)

Lens (x)

(a)

(b)

t

Diffraction

(kx)

Dispersion

(ω)

quivalence between space and time. In (a), a spatial imaging system is imple-
ented using the combination of diffraction and a spatial lens, i.e., quadratic

hase modulations in the space x and wave vector kx domains. In (b), a temporal
maging system is implemented by combining dispersive propagation and a time
ens, i.e., quadratic phase modulations in the time t and frequency � domains.
odulation �t /2 are related by
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WOUTPUT�t,�� = WINPUT�t,� + �t� . �4.6�

rom these two relations, the action of any combination of aberration-free tem-
oral lenses and dispersion can be calculated.

he temporal and spectral intensities of the pulse are the time and frequency
arginals of the Wigner function, i.e., the projections of that function onto the

ime and frequency axes:

I�t� =� d�

2�
W�t,�� , �4.7�

Ĩ��� =� dtW�t,�� . �4.8�

t is usually experimentally easier for short pulses to measure the frequency mar-
inal than the time marginal. Indeed, the frequency marginal can be measured
ccurately by using a spectrometer or monochromator of sufficient resolution,
hile the temporal marginal requires a detector with time resolution much better

han the duration of the pulse under test.

.1c. Tomography

omography broadly relates to the reconstruction of an object in N dimensions
rom a set of projections onto lower-dimensional data sets [195]. This concept
as been used in medical imaging for a long time [196] and has also been ap-
lied to quantum state reconstruction [197], where a high-dimensional entity is
stimated from a set of probability distributions. In imaging applications, the
hree-dimensional reconstruction of an object is obtained from a set of two-
imensional measurements of the attenuation of a probe beam through the ob-
ect taken along different directions through the object. Restricting our attention
o a two-dimensional object with attenuation specified by the function a�x ,y�,
e can define P��u� as the projection of a nondiffracting source of uniform spa-

ial intensity orthogonal to an axis making an angle � with the y axis (Fig. 25).
oting that the line 	��u� satisfies y=x tan���+u / cos���, one has

P��u� =� � dxdya�x,y�

y − x tan��� −
u

cos���� , �4.9�

here 
 is the Dirac delta function. Integrating over y gives

P��u� =� dxa
x,
u

cos���
+ x tan���� . �4.10�

athering a set of projections P��u� for different angles � (a set usually referred
o as the Radon transform of the function a), one can then attempt the recon-
truction of a�x ,y�. In the context of ultrashort optical pulses, tomographic re-
onstruction implies estimating the two-dimensional chronocyclic Wigner func-
ion representing the pulse train. The approach is similar to that described above:
easure a set of projections of the chronocyclic Wigner function, from which

he Wigner function itself can be obtained. As noted above, if the train of pulses
s coherent, its electric field, within some arbitrary constants, can be obtained di-
ectly. If the train of pulses is partially coherent, the description by an electric

eld is inappropriate, and the Wigner function is the next-lowest-order descrip-
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ion. The procedure is known as “chronocyclic tomography” [198], as it applies
omography to the chronocyclic space �t ,��. The time-to-frequency converter

entioned above and simplified chronocyclic tomography [199] are variations
f the complete tomographic technique that use a restricted set of projections.

.2. Chronocyclic Tomography

.2a. Principle

mplementing chronocyclic tomography for reconstructing the electric field of a
hort pulse requires an apparatus that can project the Wigner function of the
ulse onto sets of axes defined in the chronocyclic phase space spanned by �t ,��
198]. The approach is equivalent to rotating the Wigner function and measuring
ts projection on a fixed axis, usually the frequency axis. Rotation of the Wigner
unction by an angle � corresponds to an axis rotation by the angle −�. Experi-
entally, one can easily measure the frequency marginal of the rotated Wigner

unction by means of a spectrometer with sufficient resolution. An arbitrary ro-
ation in the chronocyclic phase space can be implemented by means of qua-
ratic spectral phase modulation in series with quadratic temporal phase modu-
ation. The Wigner function W�,��t ,�� of a pulse after a quadratic spectral phase
odulation exp�i��2 /2� followed by a quadratic temporal phase modulation

xp�i�t2 /2� is related to the input test pulse Wigner function W�t ,�� by

W�,��t,�� = W��1 − ���t − ��,� + �t� . �4.11�

he spectral density of the field after these two modulations is the frequency
arginal of the rotated Wigner function:

Ĩ�,���� =� dtW�,��t,�� =
1

1 − ��
� dtW
t,�

1

1 − ��
+ t

1

1/� − �
� .

�4.12�

efining the angle � by cot���=�−1/� and the variable ��=−�sin��� /� and

Figure 25

x

y

θ ∆θ(u)

u

Pθ(u) a(x,y)

rinciple of tomographic reconstruction. Gray shading represents a lower at-
enuation coefficient, and black a higher one. A two-dimensional attenuation
unction a�x ,y� is projected onto various axes. The set of projections P� is then
sed to reconstruct the attenuation.
escaling by 1/ �1−���, the projection can be written for all angles different
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rom � /2 as

Ĩ�,���� = Ĩ���� =� dtW
t,
��

cos���
− tan���t� . �4.13�

or �=� /2, one simply has

Ĩ�/2��� =� dtW�− ��,� + �t� = I�− ���. �4.14�

quations (4.13) and (4.14) correspond to the projection of the Wigner function
n an axis making an angle −� with the frequency axis, i.e., to the projection on
he frequency axis of the Wigner function rotated by the angle �. A set of pro-
ections of the Wigner function of the train of pulses can be obtained by measur-
ng the spectrum of the pulse for a set of appropriate quadratic spectral and tem-
oral phase modulations �� ,��. Such a formalism is identical to the
easurement of one-dimensional parallel projections of a two-dimensional ob-

ect. From the set of projections, one can reconstruct W. If the source is coherent,
ts electric field E is algebraically reconstructed from a single slice of the two-
ime correlation function, which can be calculated by Fourier transforming W.
his approach has not been experimentally demonstrated until now because of

he relative difficulty in implementing accurately variable quadratic spectral and
emporal modulations. Note that such a technique would lead to the unambigu-
us measurement of the Wigner function, whether it corresponds to a train of
dentical pulses or a partially coherent train of pulses. In this sense it offers a new
eature over the nonlinear methods, which require the assumption of a coherent
ulse train. However, the efforts in pulse characterization have so far concen-
rated, apart from a few exceptions, on measurements of coherent test pulse en-
embles. This notion may also be applied to tomography. Two variations on the
heme of chronocyclic tomography, the time-to-frequency converter and simpli-
ed chronocyclic tomography, use a smaller number of projections to character-

ze the electric field or the intensity of the pulse by making use of some similar
rior assumptions.

.2b. Inversion for Chronocyclic Tomography

omographic data inversion has been studied extensively, both theoretically and
xperimentally. We deal here with inversion methods for a common configura-
ion: parallel projections measured with a nondiffracting source. For data sets
aken in this configuration, inversion can be performed by using the filtered
ackprojection algorithm. We briefly discuss this algorithm in order to illustrate
ts principle and to emphasize that such inversion is algebraic and noniterative.

ore complete treatments of tomographic imaging can be found in the literature
195]. The key to the inversion of tomographic data is the Fourier slice theorem.
sing the notation of Subsection 4.1c, we can define the Fourier transform of the

ttenuation function a�x ,y� by

ã�u,v� =� � dxdya�x,y�exp�− 2�i�ux + vy��. �4.15�
his Fourier transform taken at u=0 gives
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ã�0,v� =� dy�� dxa�x,y��exp�− 2�ivy� , �4.16�

here the quantity between brackets is by definition the projection of the attenu-
tion along a line of constant y, i.e., P0�y�. This leads to

ã�0,v� = P̃0�v� . �4.17�

he Fourier transform of the image at u=0 can therefore be calculated from the
ourier transform of the projection measured for �=0. As this is independent of
he angle between the object and the axis, any one-dimensional slice of the Fou-
ier transform of the object can be obtained from the one-dimensional Fourier
ransform of the projection measured at the appropriate angle, and the Fourier
lice theorem can be written with our definitions as

ã�� cos���,� sin���� = P̃�/2−���� . �4.18�

his is used to derive the filtered backprojection algorithm. The object function
s written as

a�x,y� =� � dudvã�u,v�exp�2�i�ux + vy�� , �4.19�

hich can be expressed in circular coordinates �� ,�� as

a�x,y� = �
0

� � d�d�ã�� cos���,� sin�������exp�2�i��x cos��� + y sin����� .

�4.20�

sing the Fourier slice theorem, this leads to

a�x,y� = �
0

� � d�d�P̃�/2−�������exp�2�i��x cos��� + y sin����� . �4.21�

he image can therefore be directly reconstructed from the set of projections P�.
his involves a filtering operation, represented by the product with ���, and the
peration is equivalent to a projection back from the set of projections to the im-
ge, hence the name “filtered backprojection” given to this reconstruction pro-
edure. When applied to pulse characterization, this approach to tomography has
everal advantages. It allows the algebraic noniterative reconstruction of the

igner function independently of the state of coherence. However, in all tomog-
aphic reconstruction procedures, proper sampling of the experimental trace is
ritical, and the quality of the reconstruction varies greatly with the number of
rojections [195].

.3. Time-to-Frequency Conversion

.3a. Exact Time-to-Frequency Converter

device that permits estimation of the temporal intensity of a pulse by using
emporal and spectral modulations followed by a measurement of the pulse spec-
rum is known as the “time-to-frequency converter” [172–175,200]. From Eq.

4.14), for �1/��−�=0 (i.e., �=� /2), one measures Ĩ�/2���= I�−���. The suc-

essive action of the quadratic temporal and spectral phase modulation is de-

dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 368



p
W
W
f
p
W
i
s
fi
a
p
d
c
q
t

4

A
i
s
w
c
i
t
i
p
o

P
p
t
m

A

icted in Fig. 26. The key point is that the frequency marginal of the output
igner distribution is a scaled version of the temporal marginal of the input
igner distribution, and temporal intensity measurements can therefore be per-

ormed by using a spectrometer. Under these conditions, a quadratic spectral
hase modulation remains after the temporal phase modulation, since the
igner function is W�−�� ,�+�t�. This is apparent from the orientation of the

nterference fringes of the function in the chronocyclic space. Therefore, the
pectral field after the two modulations is not a mapping of the input temporal
eld to the output, just as the image of an object in a simple telescope does not
rise from a replication of the object field in the image space. Rather, it is a map-
ing of the moduli of the two fields only. Similarly to the imaging system, this
oes not affect the recovery of the temporal intensity. As in the spatial domain, a
omplete Fourier-transform setup can be obtained by combining dispersion �,
uadratic temporal modulation 1/�, and dispersion �. This would make the in-
erference fringes observed in Fig. 26 vertical.

.3b. Chirped Pulse Modulation

n approximate version of the time-to-frequency converter has been popular-
zed for terahertz pulse characterization and photonics [201–203]. In this ver-
ion, a short broadband optical pulse (the ancilla) is first stretched by an element
ith large second-order dispersion �1. The chirp is large enough that there is a

lear relation between time and frequency: the group delay in the stretched pulse
s T1���=�1�, and, equivalently, the instantaneous frequency is �1�t�= t /�1. In
he time domain, the pulse has a quadratic temporal phase −t2 / �2�1�. This pulse
s then modulated by the waveform under test r�t�, for example, through a tem-
oral modulator, a nonlinear interaction with another optical pulse, or electro-
ptic modulation. Assuming for simplicity that the stretched pulse before modu-

Figure 26

rinciple of the time-to-frequency converter. The frequency marginal of the
ulse after quadratic temporal and spectral modulation is the time marginal of
he input pulse. The temporal intensity of the test pulse can therefore be deter-
ined by a measurement of the optical spectrum of the modulated pulse.
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ation has a flat temporal profile (i.e., a flat optical spectrum), the electric field of
he output pulse is simply E2�t�=r�t�exp�−it2 /2�1�. The resulting Wigner func-
ion W2 is related to the Wigner function of the test waveform Wr by

W2�t,�� = Wr�t,� − t/�1� . �4.22�

f the function r is slow enough, it does not significantly modify the time–
requency relation in the chirped pulse, and the modulation is therefore encoded
n the optical spectrum of the chirped pulse. The optical spectrum after modu-
ation is therefore

Ĩ2��� =� d�W2�t,�� =� d�Wr�t,� − t/�1� � �r�t/�1��2. �4.23�

he intensity of the modulation (e.g., the intensity of an optical test pulse, or the
ntensity transmission of a modulator) can be measured in a single shot by using
spectrometer that records the optical spectrum of the ancilla after modulation.
similar formalism can be used to describe frequency-to-time conversion by a

ingle time lens followed by dispersive propagation. The optical spectral density
f the test pulse is found by measuring the temporal intensity of the ancilla
176,204–206].

.4. Simplified Chronocyclic Tomography

rovided a number of prior assumptions about the coherent nature of the test
ulse ensemble are accepted, the electric field of the pulse can be obtained from
limited number of projections of its Wigner function [199,207]. More specifi-
ally, the electric field can be retrieved by using one projection of W, i.e., I�, and
ts angular derivative, i.e., �I� /��. Because the latter can be obtained as a finite
ifference, i.e., as the difference between two projections for two different
ngles when the difference between the angles tends to zero, the required num-
er of projections is equal to two (Fig. 27). Following Eq. (4.10), suppose that

Figure 27

+ψ −ψ

Frequency

Time Frequency
(a) (b) (c)

I Iψ−I-ψ
∼ ∼ ∼

xample of simplified chronocyclic tomography. The Wigner function of a pulse
ith Gaussian spectrum and cubic spectral phase after small positive and nega-

ive quadratic temporal phase modulations is shown in (a) and (b). The shears
mposed by these modulations are displayed in the insets. In (c), the difference
etween the two obtained spectral marginals (blue curve) is plotted with the ini-
ial spectrum (black curve).
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ne can measure Ĩ����=�dtW�t ,� / cos���−tan���t�. The angular derivative of
his function with respect to � is

�Ĩ�

��
��� =� dt
�

�

��

 1

cos���� − t
�

��
�tan����� �W

��

t,

�

cos���
− tan���t� .

�4.24�

alculating the derivatives at �=0 gives

� �Ĩ�

��
�

�=0

��� = −� dtt
�W

��
�t,�� = −

�

��
� dttW�t,�� . �4.25�

inally, since �� /�� is equal to the first-order temporal moment of W, one ob-
ains

� �Ĩ�

��
�

�=0

��� = −
�

��

 Ĩ���

��

��
� . �4.26�

he spectral phase of the pulse ���� can therefore be reconstructed by using the
ngular derivative of the frequency marginal of the rotated Wigner function. The
pectral intensity of the pulse, which is needed for the reconstruction of the field
s well as for the reconstruction of the phase, can be obtained directly as the mar-

inal for no rotation, i.e., Ĩ0���. It is therefore possible to reconstruct the field by
sing the frequency marginal of its Wigner function and the angular derivative of
ts frequency marginal taken at �=0. Note that if one uses the frequency mar-
inal at a finite angle � and its derivative, the reconstructed field is the field cor-
esponding to the Wigner function rotated by �, from which the field in the ab-
ence of rotation can be reconstructed algebraically as long as � is known
recisely.

t turns out that the proposed reconstruction is also valid when one uses only a
uadratic temporal phase modulation (in which case the operation on the Wigner
unction is not a rotation but a shear) [199]. Indeed, the projection on the fre-
uency axis of the Wigner distribution for a quadratic temporal phase modula-
ion � is

Ĩ���� =� dtW�t,� + �t� . �4.27�

he derivative of this quantity with respect to � is

�Ĩ�

��
��� =� dt

�W�t,� + �t�

��
=� dtt

�W�t,� + �t�

��
=

�

��
� dttW�t,� + �t� .

�4.28�
pplying this relation at �=0 gives
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� �Ĩ�

��
�

�=0

��� =
�

��
� dttW�t,�� =

�

��

 Ĩ���

��

��
� . �4.29�

he group delay �� /�� can be obtained by dividing the derivative of the optical
pectrum of the modulated pulse with respect to the amplitude of the temporal
hase modulation by the optical spectrum of the pulse. The derivative can be ob-
ained experimentally as a finite difference, i.e., as the difference between two
pectra measured for small finite quadratic temporal phase modulations. These
pectra correspond to the projections of the Wigner function after small rotations
n the chronocyclic space, since tan���=−� is small. Figure 27 represents the

igner function of a pulse having a Gaussian spectrum and a cubic spectral
hase after small quadratic temporal phase modulations of opposite signs. The
ifference between the resulting spectral marginals is plotted in Fig. 27(c). The
lectric field can be reconstructed in the spectral domain by using the optical
pectrum and measured difference, and since the optical spectrum can be esti-
ated by the average of the two spectral marginals, the electric field is com-

letely reconstructed in the spectral domain by using only two projections of the
igner function. This measurement requires a modulator of smaller bandwidth

han the time-to-frequency converter and yet provides a complete measurement
f the electric field by using only two one-dimensional spectra [199], or, more
ractically, by directly measuring the spectrum and its derivative by using syn-
hronous detection [208].

implified chronocyclic tomography can also be implemented with projections
f the Wigner function onto the temporal axis [209]. The temporal phase of the
ulse can be reconstructed from the derivative of the temporal intensity of the
ulse under test with respect to an applied quadratic spectral phase modulation.
he derivative can be approximated by the finite difference of two measured

emporal intensities after different amounts of quadratic spectral phase modula-
ion.

implified chronocyclic tomography is analogous to wavefront reconstruction
rom spatial intensity distribution measured in various planes, as first studied by
eague [210] and Roddier [211]. In this case, the transport-of-intensity equa-
ion, which is a two-dimensional equivalent of Eq. (4.29), is used to reconstruct
he wavefront of a monochromatic beam. A similar approach has also been pro-
osed for the temporal characterization of attosecond x-ray pulses [212].

.5. Temporal Imaging

.5a. Exact Temporal Imaging

emporal imaging is the process of generating an optical pulse field that is a tem-
orally magnified version of the input test pulse field (usually up to a constant
hase, which is of no importance when square-law detection is performed)
164,165,177–179]. The bandwidth of the imaged pulse is smaller than that of
he input pulse, so that registering temporal structure requires a smaller band-
idth detector than for the input pulse. Temporal magnifications of the order of
00 have been experimentally demonstrated.

he principle of time magnification is presented in Fig. 28, illustrated for a pair
f phase-locked Gaussian pulses with different energies. The test pulse experi-

nces, first, second-order dispersion �1, followed by quadratic temporal phase
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odulation �, followed by another second-order dispersion �2. These actions
orrespond to a shear along the time axis, a shear along the frequency axis, and
nother shear along the time axis, respectively. Denoting by W0 the initial
igner function and W1, W2, and W3 the Wigner functions after each of these

ctions, one has

W1�t,�� = W0�t − �1�,�� , �4.30�

W2�t,�� = W1�t,� + �t� , �4.31�

W3�t,�� = W2�t − �2�,�� . �4.32�

his leads to the Wigner function of the pulse at the output of the imaging sys-
em:

W3�t,�� = W0��1 − �1��t − ��1 + �2 − �1�2���,�1 − �2��� + �t� .

�4.33�

he temporal imaging condition is defined by �1+�2−�1�2�=0, which can be
ritten in a manner analogous to Newton’s equation for a lens system:

1

�1

+
1

�2

= � . �4.34�

Figure 28

maging with magnification in the chronocyclic space. Imaging with magnifica-
ion can be obtained by the successive action of quadratic spectral phase modu-
ation, quadratic temporal phase modulation, and quadratic spectral phase
odulation. The shears imposed by these modulations are displayed in the in-

ets. The time marginal of the Wigner function is plotted for the input and output
aveforms and shows a magnification equal to 2.
nder this condition, the Wigner function of the output field is
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W3�t,�� = W0
−
�1

�2

t,−
�2

�1

� + �t� , �4.35�

nd the temporal intensity of the output field is related to that of the input field by

I3�t� = I0
−
�1

�2

t� . �4.36�

he intensity of the pulse has therefore been magnified by M=−�2 /�1, at the
ame time that the pulse has been stretched in time. This is illustrated in Fig. 28,
here the magnification is equal to 2. There is a residual quadratic temporal
hase on the electric field of the magnified waveform. This is obvious from
4.35) and can also be identified in Fig. 28 by the slant of the interference fringes
n the chronocyclic space. An additional temporal phase, i.e., a shear along the
requency axis, would make these fringes parallel to the time axis, and the elec-
ric field would then be a magnified version of the input electric field. This addi-
ional step is rarely taken because the interest in time magnification lies mostly
n measuring the temporal intensity.

he temporal magnification equations are analogous to spatial imaging of an ob-
ect with a combination of free-space propagation along a distance z1, propaga-
ion through a lens of focal length f, and free-space propagation along a distance

2. The well-known condition for imaging is

1

z1

+
1

z2

=
1

f
, �4.37�

nd the magnification of such a system is given by

M = −
z2

z1

. �4.38�

t should be noted that in the time–frequency domain a dispersion of arbitrary
ign can be implemented, and therefore it is possible to obtain positive magnifi-
ation by simply combining dispersion, lens, and dispersion.

he reason why temporal magnification is attractive is that fast photodetectors
ay be able to temporally resolve the time-magnified intensity. The bandwidth

equirement for the photodetector is decreased compared with that required to
easure the test pulse temporal intensity directly, owing to the reduction in

andwidth of the pulse provided by the temporal magnification setup. Also, in
ontrast to sampling oscilloscopes, which may have sufficient bandwidth, time-
agnification systems can operate in single-shot mode. By reducing the band-
idth of the test pulse, one can potentially use real-time oscilloscopes to mea-

ure the temporal intensity.

.5b. Time-Stretch Technique

popular technique related to temporal imaging has been used to characterize
ransient phenomena by optical means [213–216]. Although it does not exactly
agnify the waveform in the way described in the previous subsection, it yields

ood results provided that its parameters are set appropriately and is simpler ex-
erimentally. Consider Eq. (4.22) that describes the Wigner function of a pulse
fter dispersive propagation and low-bandwidth modulation. Since the modula-

ion has been encoded in the optical spectrum of the chirped pulse, it may be
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easured by chirping the modulated pulse significantly and then performing a
ime-domain measurement. An additional dispersive element with second-order
ispersion �2 is therefore added, resulting in the Wigner function

W3�t,�� = W2�t − �2�� = Wr�t − �2�,� − �t − �2��/�1� . �4.39�

he temporal marginal of this Wigner function is

I3�t� =� d�W3�t,�� =� d��Wr�− �2��,���1 + �2/�1� + t/�2� �4.40�

fter a change of variable. Since r is narrowband, the frequency variable is con-
trained to verify ���1+�2 /�1�+ t /�2�0, and this leads to

I3�t� � �r�t/�1 + �2/�1���2. �4.41�

his shows that the measured temporal intensity is a magnified version of the
agnitude of r. The magnification coefficient is 1+�2 /�1, which can be made

arge enough to allow single-shot real-time measurements of nonrepetitive
vents. Although Eq. (4.41) indicates that this implementation is only sensitive
o the intensity of the modulation, phase-sensitivity can be obtained by hetero-
yning of the waveform under test with a cw laser [216].

.6. Cross-Phase Modulation and Self-Phase Modulation
ith an Unknown Pulse

omographic ideas can also be applied in self-referencing temporal field char-
cterization, when there is no reference pulse, and for which there is no common
patial equivalent. Suppose one implements a temporal phase modulation by us-
ng cross-phase modulation (XPM) or self-phase modulation (SPM). In the case
f XPM with a bell-shaped pulse (i.e., one with quadratic temporal intensity pro-
le), a temporal lens is obtained. However, if the temporal intensity profile of the
ulse is unknown, then the induced phase modulation using either XPM or SPM
s unknown. This is generally the case for self-referencing techniques, unless
ne has modified the pulse under test in a controlled manner. Nonetheless, XPM
nd SPM can be used for pulse characterization.

.6a. Two-Spectra Technique

n this initial implementation [217], the experimental trace is composed of the

pectrum of the pulse under test Ĩ1���= Ĩ���= �Ẽ����2 and the spectrum of the

ulse under test after SPM Ĩ2���= ��dtE�t�exp�i�I�t��exp�i�t��2, where � is re-
ated to the nonlinear index and length of the medium. The retrieval of the field,
.e., reconstruction of the one-dimensional spectral phase, can be attempted by

sing a backpropagation iterative algorithm between Ĩ1 and Ĩ2. However, the ex-
erimental data do not uniquely specify the unknown spectral phase, so that no
nambiguous determination of the field can be obtained without additional prior
nowledge about the pulse shape. An extension of the SPM technique to the
haracterization of arbitrarily polarized pulses has also been demonstrated

218].
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.6b. Multispectra Technique

ne way of obtaining redundancy in the experimental trace is to use XPM with
delayed replica of the test pulse [219,220]. The spectrum of the pulse after
PM with a pump pulse of intensity IPUMP�t� can be measured for various rela-

ive delays between the two pulses in order to build a two-dimensional trace, as a
unction of the optical frequency � and the delay �,

S��,�� = �� dtE�t�exp�i�IPUMP�t − ���exp�i�t��2

.

he electric field can be reconstructed from this trace by means of a generaliza-
ion of the Gerchberg–Saxton algorithm. Backpropagation between the spectra
easured for each delay is made possible by the fact that the gate is purely a

hase gate, so that division by the gate response function does not make the al-
orithm unstable. There is a strong similarity of this approach to spectrography.
ndeed, time scanning the unknown nonstationary filter obtained with XPM
cross the test pulse is equivalent to the temporal scanning of the gate in spec-
rography. Although semantically one would expect a gate to be an amplitude-
arying filter, nothing precludes the use of a phase-only nonstationary filter in
pectrography. Inversion based on generalized projections has also been used for
he XPM technique [221]. Note that, in this case, the gate function can be unam-
iguously calculated from the pulse electric field provided that the nonlinearity
is known.

.7. Practical Implementations of Tomography

.7a. Quadratic Spectral Phase Modulation

uadratic spectral phase modulation can be obtained by linear propagation of
he test pulse through a dispersive device with specific phase transfer function.
seful devices include dispersive materials far from absorption resonances,
aveguides, interferometers, devices based on diffraction, such as the two-
rating compressor, or devices based on refraction, such as the two-prism com-
ressor. The spectral phase added by linear propagation is a quadratic spectral
hase modulation provided that all other terms in the Taylor development of the
hase can be neglected over the bandwidth of the pulse under test. Such a modu-
ation is independent of the pulse under test and can be accurately calibrated by
sing linear techniques. Techniques that require a large number of different
pectral phase modulations benefit from the use of the two-grating or two-prism
ompressor, which can be tuned to vary the amount of quadratic spectral phase
odulation.

.7b. Quadratic Temporal Phase Modulation

hree approaches to generating a quadratic temporal phase modulation on a
hort optical pulse have been demonstrated.

lectro-optic phase modulation. Electro-optic phase modulators, based, for ex-
mple, on lithium niobate waveguides, rely on the index change induced by a
oltage via the electro-optic effect. Quadratic temporal phase modulation is ob-
ained by synchronizing the optical pulse with one of the extrema of the modu-
ation induced by a narrowband RF sine wave [177,199], as depicted in Fig. 29
or simplified chronocyclic tomography. The sinusoidal drive voltage V�t�

V0 cos��t� induces the phase modulation
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��t� = �
V0

V�

cos��t� = �0 − �
V0�

2

2V�

t2 �4.42�

round t=0, where V� is the voltage needed to obtain a � phase shift. This leads
o a quadratic temporal phase modulation with amplitude −�V0�

2 /2V� at the
aximum of the phase modulation, and synchronization with a minimum of the
odulation leads to the opposite amplitude �V0�

2 /2V�. For the simplified
hronocyclic tomography setup of Fig. 29(a), alternation of the relative delay be-
ween the train of pulses under test and the modulation allows synchronization
ith either the positive or negative quadratic temporal phase modulation. This

lternation is performed at frequency f, and the spectral density around the op-
ical frequency � is therefore modulated at the same frequency. Lock-in detec-

ion allows extraction of the time average of the modulation Ĩ0��� (i.e., the opti-

al spectrum) and the oscillating component Ĩf��� (i.e., the difference between
he optical spectra obtained for the two quadratic temporal phase modulations).
he results obtained with this setup included pulse compression by nonlinear
ropagation and dispersion compensation, as shown in Figs. 29(b) and 29(c).

Figure 29
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xample of implementation of simplified chronocyclic tomography with a phase
odulator. In (a), the quadratic temporal phase modulation is obtained via the

lectro-optic effect in a LiNbO3 phase modulator driven by a sine wave. Syn-
hronization of the pulse under test with the extrema of the phase modulation
ith a RF phase shifter provides quadratic temporal modulation. These modula-

ions are alternated at a frequency f so that lock-in detection of the signal mea-
ured by a Fabry–Perot etalon followed by a photodetector leads to the average
pectrum of the modulated pulses (i.e., the spectrum of the input pulse) and the
ifference of the spectra of the modulated pulses (i.e., the finite difference from
hich the spectral phase is reconstructed). (b) Spectrum and phase measured on
train of pulses after nonlinear propagation at various power in a nonlinear fiber
nd dispersion compensation. (c) Calculated temporal intensities, which show
ignificant pulse compression.
eal-time operation allowed quick optimization of this nonlinear compressor.
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or a sine wave at a 10 GHz frequency, with V0=10 V, the quadratic temporal
odulation achievable in a modulator with V�=7 V is 8
1021 s−2. The tempo-

al phase modulation is quadratic only over a limited temporal window, e.g., for
10 GHz sine wave with a 100 ps period, but the temporal window over which

he modulation is within 1% of its parabolic approximation is approximately
0 ps. This approach, although still limited in terms of bandwidth, allows a
ulse-independent temporal modulation, which can be accurately determined
rom the measurement of the parameters of the drive voltage and modulator.
his is also a completely linear modulating scheme. The development of these
odulators has benefited from the developments of high-speed lithium niobate
odulators, and progress in this area is likely to occur.

ross-phase modulation. The intensity-dependent refractive index of a material
an be used in conjunction with an optical pulse to induce a temporal phase
odulation. For SPM, the input and output pulse are related by

E��t� = E�t�exp
i
2�n2LI�t�

�
� , �4.43�

here L is the length of the medium, � is the wavelength, and n2 is the nonlinear
oefficient of the medium (i.e., n2I�t� is the intensity-dependent variation of the
ptical index). It is difficult to implement a temporal lens by using SPM because
he temporal phase modulation depends on the temporal intensity of the un-
nown pulse. However, SPM can be used with an iterative reconstruction algo-
ithm [217,219,220].

n the case of XPM [175,222], a temporal phase modulation is induced on the
est pulse by nonlinear interaction with a different optical pulse having the tem-
oral intensity IPUMP�t�. The input and the output field are related by

E��t� = E�t�exp
i
4�n2LIPUMP�t�

�
� , �4.44�

ssuming that the two pulses have the same polarization. If the intensity of the
ump pulse is given accurately by a second-order polynomial over the temporal
upport of the pulse under test, e.g., IPUMP�t�= IPUMP�0�+ 1

2 ��2IPUMP/�t2�t2

round t=0, quadratic temporal phase modulation can be obtained. One way of
btaining a suitable pump pulse is to use a Gaussian pulse, or a chirped Gaussian
ulse. For example, following the time-to-frequency conversion experiment de-
cribed in [175] and depicted in Fig. 30, a dispersive delay line introduces a
egative spectral phase modulation with �=−0.7 ps−2. The quadratic temporal
hase modulation needed to obtain the � /2 rotation (i.e., �=1/�) is obtained by
ross-phase modulation with a pump pulse having a parabolic temporal intensity
ver the temporal support of the waveform under test after dispersion. A 1 ps
ump pulse with a 1 kW peak power propagating into a 1 m long fiber with
=1 W−1 km−1 leads to approximately �=4 ps−2, leading to the required tem-
oral modulation. A recent development consists in using pulses having a para-
olic intensity profile over most of their temporal support. Pulses with a para-
olic temporal intensity profile can be generated directly as optical similaritons,
type of pulse generated by the interplay of chromatic dispersion, nonlinearity,
nd gain [124,223–225], or that are obtained via pulse shapers [226]. Fourier
ransformation, pulse retiming, and distortion compensation have been demon-
trated for high-speed optical telecommunication using time lenses imple-

ented with parabolic pulses and XPM [222,226,227]. In XPM setups, very
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arge temporal phase modulations can be obtained by increasing the power of the
ump pulse or improving the nonlinearity of the medium.

ave-mixing. Wave-mixing with a chirped pulse can provide a quadratic tempo-
al phase modulation of arbitrary sign [172,173,179,228]. The electric field of a
hort pulse EPUMP�t� after large quadratic spectral phase modulation �PUMP�2 /2

s EPUMP� �t�= ẼPUMP�t /�PUMP�exp�−it2 / �2�PUMP�� within some multiplicative
actors. Nonlinear mixing of the test pulse with an ancillary chirped pump pulse
s therefore formally equivalent to quadratic temporal phase modulation, pro-
ided that the amplitude of the latter is constant over the temporal support of the
ulse under test. A schematic of a time-magnification setup based on wave mix-
ng is shown in Fig. 31(a). The input pump pulse is sent into a dispersive delay
ine (for example, a two-grating compressor or an optical fiber), leading to the
econd-order dispersion �PUMP. The waveform under test is first dispersed by a
ispersive delay line introducing a second-order dispersion �1, then interacts
ith the chirped pump pulse in a nonlinear medium, and the product of this in-

eraction is sent into an additional dispersive delay line with second-order dis-
ersion �2. The imaging condition relating �1, �2, and �PUMP depends on the
onlinear interaction.

ith three-wave mixing, [172,173,179] the electric field of the generated signal
s proportional to EEPUMP� , i.e., the product of the electric field of the input
hirped signal and the chirped pump, and the temporal phase modulation in-
uced by the time lens is −t2 / �2�PUMP�. Equation (4.34) is directly applicable,
ith �1, �2 and �=−1/�PUMP, leading to 1/�1+1/�2=−1/�PUMP and M
−�2 /�1. For example, [179] uses a stretcher to provide the dispersion �1

0.17606 ps2 on the waveform under test, and a compressor to provide the dis-
ersion �PUMP=−0.17784 ps2 on the pump. After sum-frequency generation, the
ignal propagates in a compressor providing the dispersion �2=−17.606 ps2.
his setup theoretically leads to a temporal magnification M=100, and was in-
eed shown experimentally to magnify the temporal intensity of pairs of pulses
y 103. This allowed waveform measurements with a 300 fs resolution by use of
irect photodetection and a sampling oscilloscope.

ith four-wave mixing [228], the electric field of the generated idler is propor-
2 *

Figure 30

Dispersive
delay
line (ϕ)

Waveform under test
XPM
n2

Pump pulse
intensity

OSA

Parabolic
approximation

xperimental implementation of the time-to-frequency converter with XPM.
he waveform under test propagates into a dispersive delay line and is then
hase modulated by a pump pulse via XPM in a fiber. The temporal intensity of
he waveform under test is a scaled version of the spectrum measured by the op-
ical spectrum analyzer (OSA). The pump pulse is assumed to have a parabolic
emporal intensity over the temporal support of the dispersed waveform under
est.
ional to EPUMPE , i.e., the square of the field of the chirped pump and the con-
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ugate of the field of the signal. Because of this, Eq. (4.34) must be applied to
�1, �2, and �=−2/�PUMP, leading to −1/�1+1/�2=−2/�PUMP and M
�2 /�1. This has, for example, been implemented in a silicon chip [228]. In this
ase, the pump and waveform under test are, respectively, dispersed by 1900 and
000 m of standard single-mode fiber, leading to dispersions �1=−21.6 ps2 and

PUMP=−41 ps2. The idler generated by four-wave mixing is sent into a
ispersion-compensating module with dispersion �2=434 ps2. This setup dem-
nstrates a temporal magnification M=−20. An example of a setup for time-to-
requency conversion using four-wave mixing in a silicon waveguide is shown in
ig. 31(b) [229]. The chromatic dispersion for the pump and test waveform is
rovided by optical fibers. Four-wave mixing occurs in a silicon waveguide, and
ave-mixing with a pump pulse that has twice the dispersion of the test wave-

orm leads to time-to-frequency conversion. An additional span of fiber identical
o the input fiber span allows a full time-to-frequency conversion of the electric
eld, although this is not required for intensity measurements. Time-to-
requency conversion enabled measurement of the intensity of high-speed opti-
al waveforms over a time interval longer than 100 ps with a 220 fs temporal

Figure 31

a) Principle of imaging with temporal magnification using sum-frequency gen-
ration, and (b) implementation of a time-to-frequency converter using four-
ave mixing in a silicon waveguide (courtesy of A. Gaeta). In (a), the waveform
nder test propagates through a dispersive delay line, then undergoes a wave
ixing process with a chirped pump pulse, then propagates through an addi-

ional dispersive delay line. The frequency chirp in the highly chirped pump
ulse leads to a quadratic temporal phase in the pulse, therefore allowing the
uadratic temporal phase modulation through the wave mixing process. In (b),
he waveform under test chirped by a fiber with dispersion D and the pump pulse
hirped by a fiber with dispersion 2D interact via four-wave mixing in a silicon-
n-insulator waveguide. The spectrum of the generated idler is a scaled repre-
entation of the temporal intensity of the input signal. A complete time-to-
requency conversion of the electric field can be obtained if the generated idler
ignal further propagates in a fiber with dispersion D.
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esolution. Single-shot operation is provided by using a spectrometer capable of
easuring the entire spectrum after modulation in a single shot. Examples of
aveforms measured with this setup are shown in Fig. 32. The left column cor-

esponds to results from the time-to-frequency conversion ultrafast oscilloscope.
he right column corresponds to the intensity measured by cross-correlation of

he test waveform with a short optical pulse. Very good agreement is obtained
or a number of different waveforms, even in single-shot operation.

.8. Conclusions

hronocyclic tomography provides a means by which the full two-time correla-
ion function of a pulse ensemble can be determined. It has proved difficult to
mplement full tomographic reconstruction of femtosecond pulses in practice
ecause of the difficulty in modulating pulses with sufficient bandwidth. How-
ver, a number of subtomographic approaches have been implemented success-
ully, and the most common of these, the temporal imaging system, allows direct
easurement (and indeed simple visualization) of subpicosecond waveforms by

sing single-shot data acquisition by means of a fast photodetector and sampling
scilloscope. Such devices are useful for low-repetition-rate systems, or for sys-
ems where the pulse shape is changing rapidly from shot to shot and from which
amples can be taken.

Figure 32
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xamples of waveforms measured by time-to-frequency conversion in a silicon
aveguide compared with waveforms measured by nonlinear cross-correlation

courtesy of A. Gaeta). The left-hand column corresponds to the time-to-
requency converter, and the right-hand column corresponds to nonlinear cross-
orrelation with a short optical pulse. (a) Interference of two chirped optical
aveforms, with the inset displaying the measured waveforms in a 10 ps win-
ow. In (b), the time-to-frequency converter is used in single-shot operation to
easure the intensity of a pair of delayed chirped pulses.
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. Interferometry

.1. Introduction

nterferometry provides a very sensitive and accurate means to measure the
hase of an optical field. This approach has a long pedigree in the field of optical
esting [230,231]. The conversion of phase to amplitude information that is the
allmark of interferometric measurement allows deterministic and robust ex-
raction of the phase from the measured data.

he earliest suggestions for using interferometric methods for pulse character-
zation made use of the concept of test-plus-reference interferometry in the spec-
ral domain to show how the phase of an optical pulse was changed during
ropagation in a linear or nonlinear optical medium [232–234]. This implemen-
ation of spectral interferometry (SI) made use of the fact that the measured sig-
al reflected the difference in the spectral phase between the test and reference
ulses, so that differential measurements (say, of the input to the output fields)
ould be made with great precision.

t was soon realized that detailed knowledge of the reference pulse enabled ex-
raction of the complete spectral phase of the test pulse, which, together with a
easurement of its spectrum, constitutes a complete characterization of the

ulse [63,64]. Of course, this begs the question, since it depends on the avail-
bility of a known pulse of appropriate character. However, the extremely high
ensitivity of this method, which is entirely linear in the test pulse electric field,
as enabled it to continue as a viable method in certain applications.

ethods of interferometry that do not require a reference pulse have been devel-
ped and are now in wide use. The basic feature of self-referencing methods is to
easure the temporal beats that arise when one replica of the pulse is interfered
ith a second, time-shifted, replica, or, equivalently, the spectral fringes that oc-

ur when one replica of the pulse is interfered with a second, frequency-shifted
or spectrally sheared) replica. The latter case has strong analogies to SI and is
nown as “spectral shearing interferometry” (SSI). In both cases the fringes pat-
erns reveal the relative phase between two adjacent parts of the pulse field (ei-
her two time slots or two frequency components), from which the complete
hase function may be reconstructed.

he key features of interferometry that make it useful for pulse characterization
re the rapidity of data acquisition, the direct and fast reconstruction of the field
rom the data, and the insensitivity of the measurement to wavelength-dependent
pparatus response. These properties are important for characterizing sources
or which the pulse shape fluctuates and the pulses have large bandwidths. In this
ection, we discuss interferometric methods of pulse characterization and show
ow these are implemented in ultrafast optics.

.2. General Considerations and Implementations

.2a. Definitions

he detected signal in interferometry is related to the two-frequency or two-time
orrelation function. This two-dimensional function is itself related to the time–
requency representations used in spectrography and tomography. Further, the
orrelation function is encoded in the measured data in a way that makes it easy
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 382
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o invert. In the most general case, the correlation function can be mapped out
irectly from the fringe pattern. Moreover, in almost all implementations of in-
erferometry, it is assumed that the ensemble underlying the measurement is co-
erent, so that the field can be extracted from a single section of the correlation
unction. The two-variable structure of the correlation function suggests that
here will be complementary versions of interferometry related to these vari-
bles. This is indeed the case: for every time-domain interferometer, it is pos-
ible to identify a frequency-domain analog. It is this latter class that has proved
ost fruitful in the subpicosecond regime. Note that this time–frequency duality

eflects the similar duality between phase-space methods, where spectrography
mphasizes the frequency dependence of time sections of the pulse and sonog-
aphy the time dependence of frequency sections.

wo classes of interferometer can be identified. In the first, measurements are
ade in the frequency domain, and in the second in the time domain. The signals

re then proportional to sections of the two-frequency and two-time correlation
unctions, respectively. Because available detectors are slow compared with the
ulses themselves, measurement in the frequency domain is usually preferred.
n both of these classes there are two species of interferometer, self-referencing
nd test plus reference.

typical spectral-domain test-plus-reference interferometer is illustrated in Fig.
3(a). The test pulse is shifted in time by the delay � with respect to the reference
ulse using a delay line. It is mixed with the reference pulse at a beam splitter,
nd the resulting spectrum is measured. This exhibits fringes in the spectral do-
ain, whose spacing is inversely proportional to the delay �. The detected signal

s

Figure 33

E(t)

E(ω)

(a)

(b)

SP(ω;τ)L

~ E(t-τ)
SA(ω;Ω)
∼

NP(ω;Ω)L

∼

ER(ω)
∼

E(ω+Ω)
∼

NA(t;τ)

ER(t)

est-plus-reference interferometers for (a) spectral and (b) temporal interferom-
try. The unknown (test) pulse E�t� is combined on a beam splitter with a known
reference) pulse ER�t�. The resulting interference pattern is measured by using
a) a spectrometer and a slow detector or (b) a fast detector, possibly synthesized
y using a rapid shutter followed by a slow detector.
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D��;�� = �ẼR��� + Ẽ���ei���2 �5.1�

here ẼR is the reference field (the Fourier transform of the reference pulse ana-

ytic signal) and Ẽ the test pulse field. The spectral phase difference between test
nd reference pulses is encoded in the relative positions of the spectral fringes
ith respect to the nominal spacing of 2� /�.

he time-domain analog of this interferometer shifts the test pulse in frequency
ith respect to the reference pulse by an amount �, before mixing the two at a
eam splitter [Fig. 33(b)]. The resulting temporal interference pattern is mea-
ured by passing the signal through a fast shutter and recording the transmitted
nergy. In this case the signal is given by

D��;�� = �ER��� + E���ei���2, �5.2�

here in this case the relative temporal phase of the two pulses is encoded in the
elative positions of the temporal fringes with respect to the nominal spacing of
� /�.

n the spectral case, the final spectrometer must have a resolution that is high
ompared with the nominal spectral fringe spacing. In the temporal case, the
hutter must be open for a time short compared with the period of the temporal
eat pattern.

he class of self-referencing interferometers similarly has implementations both
n the time and the frequency domains. Self-referencing interferometers are
ased on spectral or temporal shearing. This type of interferometer uses modu-
ators and delay lines to generate two modified versions of the input test pulse,
hifted in time and frequency with respect to each other, that are then interfered.
he resulting interferogram may be measured in the time or the frequency do-
ain. When characterizing ultrashort pulses by using slow square-law detectors,

he most common sort of interferometer makes use of spectral shearing.

chematic apparatuses for shearing interferometry are shown in Fig. 34. The test
ulse enters the interferometer, experiencing a frequency shift in one arm (by
eans of a linear temporal phase modulator) and a time-delay (or temporal shift)

n the other (effected using a simple delay line, which may be considered in lin-
ar filter terms as a linear spectral phase modulator). The two modified pulses
re combined at the exit ports of the interferometer, and the output is measured
n the time domain or frequency domain by passing it through a fast time gate or
arrow spectral filter, respectively.

he field after the interferometer in both apparatuses is

EOUT�t� = E�t�ei�t + E�t − �� = FT�Ẽ�� + �� + Ẽ���ei��� , �5.3�

here FT�. . .� represents the Fourier transform, � is the delay imposed in one of
he arms of the interferometer, and � the frequency shift imposed in the other.
hese may be thought of as lateral shears in their respective domains.

n the case of a temporal shearing interferometer, the signal is measured directly
n the time domain by means of a very fast time gate or shutter, followed by the
sual integrating square-law detector. When the shutter response is very fast

ith respect to the variations in the pulse temporal field, the detected signal is
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D�t;�,�� = �EOUT�t��2 = I�t� + I�t − �� + 2Re�E�t�E*�t − ��ei�t� , �5.4�

here I�t�= �E�t��2 is the intensity of the pulse. In the case of the spectral shear-
ng interferometer, the detected signal is measured in the frequency domain by
eans of a high-resolution spectrometer, with a slow detector. The spectrometer

assband must be narrow with respect to variations in the pulse spectral field, in
hich case the detected signal is

Ĩ��;�,�� = �ẼOUT����2 = Ĩ��� + Ĩ�� + �� + 2Re�Ẽ���Ẽ*�� + ��ei��� ,

�5.5�

here Ĩ���= �Ẽ����2 is the spectrum of the pulse. In both cases, it is clear that the
nterferogram encodes the derivative of the temporal or spectral phase function
n the fringe spacing. For example, in the spectral shearing interferometer, the
ringe extrema are located at frequencies � satisfying

���� − ��� + �� + �� = m� , �5.6�

here ����=arg�Ẽ���� is the spectral phase function and m is an integer. There-
ore, as with phase-space methods, it is possible to determine ���� to within a
onstant (the carrier-envelope offset phase) and a linear term (the overall delay
f the pulse with respect to an external clock). For most applications, this is suf-
cient to characterize the pulse, as long as the spectrum of the pulse is known.

.2b. Interpretation of Interferograms

nterferometry measures the two-frequency (or two-point, in the case of spatial
nterferometry) correlation function of a field. (Since, as with all methods, it de-
ives from measurements made with square-law detectors, it must yield some bi-
inear functional of the input field.) In the most general case, it yields a two-
imensional complex function, whose arguments are both time variables or both

Figure 34

elf-referencing interferometers for a (a) spectral and (b) temporal shearing in-
erferometry. The unknown pulse is divided into two replicas, each of which fol-
ows a different path through the interferometer. One replica is shifted in fre-
uency, the other in time. The two modified replicas are recombined, and the
esulting interference pattern is measured by using (a) a spectrometer and a slow
etector or (b) a fast detector.
requency variables. To this extent, it is quite different from spectrographic tech-
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iques, which work in a time–frequency representation, and tomographic meth-
ds, which use a set of one-dimensional functions parameterized by an external
ariable often unrelated to time or frequency.

he two-frequency correlation function

C5 ��1,�2� = Ẽ��1�Ẽ*��2� �5.7�

s clearly a complete characterization of the optical pulse field E�t�. For applica-
ion to interferometry, however, it is most useful to consider this function written
n terms of center- and difference-frequency variables,

C5 �	�,�C� = C5 ��1,�2� , �5.8�

here �C= ��1+�2� /2 and 	�=�1−�2. This function is closely related to the
etected output of spectral interferometric measurements. For example, it can be
asily seen that

C5 �0,�C� = �Ẽ��C��2 �5.9�

s the spectrum of the pulse, as might be measured by using a standard labora-
ory spectrometer or monochromator and a slow photodiode. The aim of inter-

erometry is to measure a section of the spectral correlation function C5 �	� ,�C�:
s can be seen from Eq. (5.7), this will give the required field to within a constant
ultiplicative complex number.

he correlation function is easily related to any of the many time–frequency rep-
esentations of the pulse field (in particular, the Wigner distribution is simply the

ourier transform of C5 �	� ,�C� with respect to the difference frequency). How-
ver, the important feature of interferometric measurements, compared with
ime–frequency methods, is that a single section of the correlation function
ields complete information about the pulse, whereas for time–frequency tech-
iques the entire two-dimensional representation must be measured to extract
he field. This allows data acquisition to be very rapid, which, coupled with a de-
erministic inversion algorithm, makes for the possibility to characterize pulses
ith very fast update rates.

s a particular example, it is useful to see how a spectral shearing interferogram
elates to the correlation function. Starting from Eq. (5.5), variables are changed
o the mean- and difference-frequency coordinates, �C=�+� /2, 	�=�. Then
he interferogram may be written as

Ĩ��C;	�,�� = �Ẽ
�C +
	�

2
� + ei��C−	�/2��Ẽ
�C −

	�

2
��2

, �5.10�

r, in terms of the correlation function,

Ĩ��C;	�,�� = Ĩ
�C +
	�

2
� + Ĩ
�C −

	�

2
� + 2�C5 �	�,�C��


cos�arg�C5 �	�,�C�� + �
�C −
	�

2
�� . �5.11�

his shows that the interferogram maps out a line of the two-frequency correla-
5
ion function, taken as a function of �C, keeping 	� fixed. Since C�	� ,�C� is a
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omplex function and Ĩ��C ;	� ,�� a real one, two measurements are required.
he interferogram is a superposition of the two quadratures of the two-

requency correlation function, so that these can be individually retrieved by us-
ng only two values of the delay �. In the case of a coherent ensemble, we have
een that the complete correlation function need not be measured in order to ex-
ract the field. This is in contrast to phase-space methods, in which the entire dis-
ribution must be measured. Importantly in this common experimental situation,
nly a single line of either quadrature of the two-frequency correlation function
s sufficient for reconstructing the electric field, making interferometry inher-
ntly more economical of data than other methods.

.3. Inversion

he inversion methods for interferometric measurements are direct, and there-
ore robust and reliable. The basic element of the inversion algorithms is the ex-
raction of the correlation function, which is a complex entity, from a purely real
nd positive detected signal. Though there are a number of ways of doing this,
he simplest and most commonly used is based on a Fourier analysis of the sig-
al, accompanied by filtering to remove the symmetry in the Fourier domain that
rises from its real character. This is the first step of all interferometric phase re-
rieval methods; the subsequent steps depend on whether the method is self-
eferencing. In this section we first describe this algorithmic element as applied
o methods with known reference pulses, then describe the additional steps
eeded for self-referencing methods.

.3a. Fourier-Transform Spectral Interferometry

ourier-transform spectral interferometry (FTSI) is a version of test-plus-
eference interferometry where the signal is measured in the frequency domain
elative to a reference pulse [232]. Typically this is recorded with a detector array
laced in the focal plane of a flat-field grating spectrometer, to yield a spectral
nterferogram. The schematic apparatus is shown in Fig. 35(a) in the case when
he pulse under test is derived from the reference pulse by propagation in a de-
ice under test. The data set is a function of only a single variable—the
requency—rather than of two variables as in time–frequency methods. This
eans that the second dimension of a two-dimensional detector array may be

sed to record spatial variations in the spectral phase, for example.

he spectral phase is extracted via a direct inversion that is both rapid and ro-
ust. The test and reference pulse are delayed in time with respect to one another

y � by using a linear time-stationary filter S̃L
P���=ei��. The detected signal (in-

erferogram) is then D�� ;��= �ẼR���+ Ẽ���ei���2, where ẼR is the reference field

nd Ẽ the test pulse field. The spectral phase difference between test and refer-
nce pulses is encoded in the relative positions of the spectral fringes with re-
pect to the nominal spacing of 2� /�. Examples of interferograms correspond-
ng to identical reference and test pulses and to a test pulse with a quadratic
pectral phase are plotted in Fig. 35(b). In the first case no change in the spacing
f the fringes is observed, while for the quadratic spectral phase the fringe spac-
ng is clearly a function of the optical frequency, revealing that the spectral phase

ifference between the two pulses is quadratic. The phase difference can be ex-
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racted by using a three-step algorithm involving a Fourier transform to the time
omain, a filtering operation, and an inverse Fourier transform [63,235]. The in-
erferogram may be written as

D��;�� = D�dc���� + D�ac����ei�� + �D�ac����ei���*, �5.12�

here

D�dc���� = Ĩ��� + ĨR��� , �5.13�

D�ac���� = �Ẽ���ẼR����ei�����−�R����. �5.14�

he dc portion of the interferogram, Eq. (5.13), is the sum of the individual spec-
ra of the pulses and contains no phase information. The ac term, Eq. (5.14), con-
ain all of the relative phase information.

here are three steps for reconstructing the spectral phase from the interfero-
ram. First, isolate one of the ac terms, and hence ����−�R���+��, by means
f a Fourier transform and filter technique (Fig. 36). Let t be the conjugate vari-

ble to � and D̃ be the Fourier transform of Eq. (5.12). If � is sufficiently large,
he dc and ac components (located at t=0 and t= ±�) are well separated in time,
nd the phase-sensitive component D�ac� can be filtered. For this purpose we use
filter H�t� centered at t=�. The filtered signal,

D̃�filtered��t� = H�t − ��D̃�t� , �5.15�

s simply the Fourier transform of the positive ac portion �t= +�� of the interfero-

ram. The spectral phase difference is the argument of IFT�D̃�filtered��, i.e., the in-
˜ �filtered�

Figure 35

Device

under test

Optical

spectrum

analyzer

τ

ω
ω

I

(a)

(b)

∼ I
∼

a) Principle of operation of SI. The test and the reference pulse are mixed on a
eam splitter, and the resulting joint spectrum measured. (b) Examples of spec-
ral interferograms, corresponding to a test pulse equal to the reference pulse
left) and to a test pulse with a quadratic spectral phase (right).
erse Fourier transform of D �t�,
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���� − �R��� + �� = arg�D�ac����exp�i���� = arg�IFT�D̃�filtered������ .

�5.16�

he next steps include removing �� by subtracting a calibration phase and re-
onstructing ���� by subtracting the reference phase �R���. In cases when the
est pulse is obtained by linear propagation in a device under test, the extracted
hase difference ����−�R��� completely characterizes the dispersion proper-
ies of the device.

he above analysis pertains to an idealized version of an experiment. The spec-
rometer has a finite spectral resolution that depends on its optics and detector,
hich leads to a decreased fringe contrast when the fringe period becomes com-
arable with the spectral resolution. Furthermore, sampling of the interferogram
f Eq. (5.12) is performed at a finite rate (e.g., with the array of finite-size pho-
odetectors that compose the detector located at the Fourier plane of the spec-
rometer). The interferogram is sampled at frequencies that are not necessarily
venly spaced. Finally, the quickly varying fringes that allow the extraction of
he spectral phase difference from a single interferogram can make FTSI sensi-
ive to frequency calibration of the optical spectrum analyzer. These effects are
ot detrimental to most applications of SI, and can be accounted for [236,237].

TSI has applications in cases where one wishes to characterize a weak modu-
ated pulse whose spectrum overlaps completely with that of a known, and usu-
lly more intense, reference pulse. This is not an uncommon situation in ultrafast
ptics, arising wherever linear filters (such as a pulse shaper or stretcher and
ompressor) are used to manipulate the pulse [238]. It also pertains to some non-
inear optical processes that are used in time-resolved spectroscopy, such as de-
enerate four-wave mixing [239–243]. Since the Fourier transform of the optical
pectrum can also be measured directly by using temporal scanning, versions of
I based on this principle have been applied in wavelength ranges where direct
pectral measurements are difficult [244,245]. Examples of related techniques

Figure 36

0−τ τ

0 τ

Filtering

Fourier

transform

Inverse

Fourier

transform

iagram of the inversion algorithm for Fourier-transform SI. After an initial
ourier transform to the time domain, an ac sideband is digitally filtered to iso-
ate the interference term. An inverse Fourier transform is made, and the ampli-
ude (solid curve) and phase (dashed line) of the interferometric component are
xtracted.
an be found in [246–249].
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.3b. Concatenation

hearing interferometry may be implemented in the optical frequency domain
nd thus be used to measure the spectral phase function of the input pulse using
tself as a reference [31,250]. Two delayed replicas of the (unknown) test pulse
re generated in an interferometer, and one is frequency shifted with respect to
he other. The combined spectrum of the pulse pair is measured by using a spec-
rometer and a detector array, can be measured simultaneously with the inter-
erogram [251], or can be extracted from the shearing interferogram itself [252].
he important feature is that the frequency shift, or spectral shear, allows two
djacent frequencies in the original pulse spectrum to interfere on an integrating
etector. The resulting fringe pattern thus reflects the spectral phase difference
etween spectral components of the pulse separated by the shear. Extracting the
pectral phase of the input pulse therefore requires additional steps. The simplic-
ty of the inversion mean that such characterization can be done at very rapid
ates—up to a 1 kHz refresh rate has been reported to date, limited only by the
etector readout time [253,254].

he SSI interferogram has a similar form to the FTSI interferogram [Eq. (5.12)]
xcept that the dc and ac terms contain different frequency arguments:

D�dc���� = Ĩ�� + �� + Ĩ��� , �5.17�

D�ac���� = �Ẽ�� + ��Ẽ����ei����+��−�����. �5.18�

he spectral phase difference ����=���+��−���� between two frequencies
eparated by the spectral shear � is extracted from the interferogram by using
he FTSI algorithm previously described. It is then concatenated into the spectral
hase of the pulse under test, �, by following the formula

��0� = 0,

���n + 1��� = ��n�� + ��n�� . �5.19�

n interpolation of the spectrum on the same grid completes the measurement
n the spectral domain. This then gives the electric field in the spectral domain at
requencies �0,� ,2� , . . . ,N��.

n this method, therefore, a sampling of the spectral phase (to within a constant)
t intervals of the shear � across the pulse spectrum is obtained. According to
he Shannon theorem, all pulses with compact support in the domain
−T /2 ,T /2� may be completely characterized by a sampling of their spectral
epresentation every 2� /T. Thus SSI is able to reconstruct all pulses that have
upport (i.e., that do not have energy outside this domain) only in the temporal
indow �−� /� ,� /��. Moreover, the inversion is unique.

.3c. Ambiguities, Accuracy and Precision in Phase Extraction

mbiguities. Difficulties in reconstruction arise in SSI when the spectrum goes
o zero over a region that is large compared with the spectral shear, in which case
he spectral phase is not defined for several samples of the SSI phase. In this
ase, two interferograms measured by using two different values of the shear are
eeded to reconstruct the pulse. The first returns the spectral phase across each

ontinuous region of the spectrum; the second returns the relative phase between
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he two discontinuous pieces. Note that zeros of intensity in the time domain do
ot lead to ambiguities, unless they are associated with zeros in the spectral do-
ain.

hen a nonlinear interaction is used to spectrally shear an optical pulse, this dif-
culty can result in an undeterminable phase. For example, in spectral phase in-

erferometry for direct electric field reconstruction (SPIDER) the single known
ase for which the data is incomplete is that of a pulse whose spectrum consists
f no more than two well-separated components, when the measurement is made
sing only the pulse itself (i.e., not by means of a separate uncharacterized
hirped pulse). By “well separated”, we mean that the spectral intensity is below
he noise level of the detection system over a domain that is larger than the shear
86]. For spectra with several such components, it is still possible to obtain the
elative phases between them by using several different values of the shear.

hen a separate independent pulse is used as an ancillary for inducing the spec-
ral shear, even the case of two-component spectra is possible.

ccuracy and precision. For any measurement, testing the accuracy of the recon-
truction, i.e., how close the measurement result from the apparatus is to the ac-
ual physical quantity, is of primary importance. This is mainly a theoretical task,
elying on simulations or equations, for the obvious reason that in most experi-
ental situations the measured field is unknown before the measurement. A
easure of the difference between the input target field and the output retrieved
eld provides the criterion of accuracy. The choice of a measure is, however,
omewhat subjective [255,256].

n SSI, the accuracy of the reconstruction of the spectral phase is perfect in the
bsence of noise, when the spectral phase function on the sampling interval � is
epresented by a polynomial, and the sampling criterion is satisfied. Therefore it
s possible to reconstruct very sharp spectral phase functions, especially those
roduced by a Fourier-plane pulse shaper. Beyond the sampling limit for the
ulse spectrum, the accuracy depends somewhat upon the details of the recon-
truction algorithm. In practice, those that use integration over the measured
pectral phase give the most accurate results.

n practice the accuracy must be evaluated for each implementation, on the basis
f the parameter settings for that piece of apparatus. It is therefore impossible to
ake a general statement about the accuracy of the spectral shearing method as
whole. However, an instrument using a simple integration algorithm for which

he spectral phase is oversampled by a factor of 2 has an accuracy that scales
oughly as ten times the noise fraction, where this is defined as the ratio of the
ariance of the noise to the maximum signal of the interferogram [256]. Al-
hough the SSI experimental trace is a single one-dimension interferogram, its
obustness to noise was found similar to spectrographic techniques requiring the
cquisition of a two-dimensional experimental trace [255].

ne useful feature of the direct inversion possible in SSI is that it is possible to
etermine analytically the effect of systematic errors in the apparatus on the es-
imation of the test field. The primary systematic errors arise from miscalibra-
ion of the delay � that gives rise to the carrier fringes. For example, miscalibra-
ion of the spectrometer can lead to some error in the delay calibration, although
fficient and simple calibration procedures have been devised [236]. Ultrabroad-
and pulses also require a carefully designed interferometer [257,258]. A delay
alibration error 
� leads to an additive linear component �
� on the spectral

hase before concatenation. The integrated phase has an additional component
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hat is quadratic in frequency, 
��2 / �2��, i.e., an error 
� /� is made in the re-
rieved second-order dispersion. This may alter the duration of the reconstructed
ulse compared with the actual pulse. A simple example illustrates the main is-
ues. Consider a Gaussian test pulse with bandwidth 	�, corresponding to a
ourier-transform-limited pulse duration 	tFTL and to an actual pulse duration
t0. In the presence of second-order dispersion ��2� and error on the second-
rder dispersion 
� /�, the actual pulse duration is

	t0
2 = 	tFTL

2 
1 +
	�2

	tFTL
2

���2��2� , �5.20�

nd the measured pulse duration is

	t2 = 	tFTL
2 
1 +

	�2

	tFTL
2

���2� + 
�/��2� . �5.21�

f the actual pulse is Fourier-transform limited (i.e., ��2�=0 and 	t0=	tFTL), Eq.
5.21) can be written simply as

ε	t = �1 + �Nε��2 − 1, �5.22�

here ε	t is the relative error on the pulse duration �	t−	t0� /	t0, ε� is the rela-
ive error on the delay 
� /	tFTL, and N=	� /� is the degree above the Fourier-
ransform limit chosen for the sampling window. If the pulse is far from the
ourier-transform limit, Eq. (5.21) can be written simply as

ε	t = Nε�

	tFTL

	t0

. �5.23�

rders of magnitude can be obtained from a simple example. For N=20 (i.e., a
etup that is arranged to measure pulses up to 20 times the Fourier-transform
imit) a 1% delay calibration error corresponds to a 2% error in the estimated
ulse duration for a Fourier-transform-limited pulse. Taking the example of a
hirped pulse with 	t0=10	tFTL, a 1% delay error still leads to a 2% error in the
stimated pulse duration. This is not a severe constraint. For example, even for
he most extreme case of pulses in the single-cycle regime, where 	tFTL=2.5 fs,
he delay must be calibrated to within a path length of � /100, which requires a
ell-designed interferometer and proper alignment procedure. In that extreme
ase, however, all methods have some form of systematic error that must be dealt
ith carefully. Unfortunately, it is not so simple to ascertain the severity of cali-
ration errors for most methods—and not at all in analytic form.

recision. Because the spectral interferogram is often measured by using a spec-
rometer with much higher resolution than required by the Shannon theorem, the
easured spectrum is actually oversampled for reconstructing pulses on the in-

erval �−� /� ,� /��. Therefore multiple samples of the phase can be concat-
nated and used to estimate the precision of the reconstruction. Thus, a first
ample is constructed by starting at pixel 0, concatenating every �, a second set
y starting at pixel 1, and so on. The second set is sampled on a grid that is
hifted from the first by 
�, the spectrometer sampling rate:
��
�� = 0,
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��
� + �n + 1��� = ��
� + n�� + ��
� + n��. �5.24�

he number of different independent determinations of the field M is of the or-
er of � /
�. Because of the initial hypothesis that � is a sufficient sampling for
he field, all of these determinations are equivalent. These sets of data can be
sed to refine the measurement or reduce the sensitivity to noise [259]. Because
he fields are on different sampling grids in the spectral domain, it is not possible
o directly sum them to get an average retrieved field. If, however, each of them
s Fourier transformed to the temporal domain, where they represent the same
lectric field on the same sampling grid, then an average of the temporal field can
e obtained with no shifting of the temporal fields. The reason is that all the
elds retrieved from the same extracted SSI phase ���� will have the same time
ducial and thus be consistent. The constant phase of each of these fields is com-
letely arbitrary, since it depends only on the choice of the initial phase for each
et before concatenation and is not determined by the phase ����. This proce-
ure has several technical advantages. First, because it reconstructs several rep-
esentations of the same electric field, it allows a test of the precision of the re-
onstruction. Second, because it directly uses the sampling rate �, it allows
ndersampling to be easily recognized. The reconstructed temporal electric field
hould be equal to zero at the edges of the time window, to be consistent with the
ondition of finite temporal support compatible with the shear �. Any deviation
rom this condition indicates undersampling.

.4. Time-Domain Interferometric Measurements

lthough we have focused on SI for the purposes of discussing inversion meth-
ds, these can be applied equally well to a signal measured in the time domain.
s mentioned in Subsection 5.2, this requires a detector with high temporal res-
lution, rather than one with high spectral resolution. Typically these are diffi-
ult to find for femtosecond-duration pulses. Nonetheless, some of the earliest
ork in interferometric characterization of optical pulses was done in the time
omain.

.4a. Test-Plus Reference Temporal Interferometry

time-domain version of reference-pulse-based interferometry was developed
y Rothenberg and Grischkowsky [260]. In their approach, a spectral filter is
laced in one arm of an interferometer. The monochromatic frequency compo-
ent resulting from the spectrally filtered path provides an effective reference
ith which to compare the pulse that passes through the unfiltered arm of the

nterferometer. The resulting temporal interferogram contains sufficient infor-
ation for reconstructing the pulse-shape of the unaltered pulse. The fringe pat-

ern is measured by a photodetector. The response of the detector determines the
aximum bandwidth 	� of the test pulse: the fastest temporal beats occur at

requency 	� /2. Constraints on the available detector time resolution limit this
ethod to the measurement of relatively long pulses.

.4b. Self-Referencing Temporal Interferometry

n the femtosecond regime, a fast-response detector may be synthesized by using
nonlinear optical wave-mixing process, such as upconversion, with the test
ulse, which sets the temporal resolution to be close to the duration of the input
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ulses. Consequently, the narrow-time-gate assumption is not valid for fre-
uency separations, 	�, greater than a small fraction of the pulse bandwidth,
ince the temporal beat note is too fast to resolve.

he narrow-time-gate approximation does hold for small frequency separations;
o slices of the two-frequency correlation function near 	�=0 can be recorded.
f the pulses in the train are assumed to be identical, a sampling of one such slice
s sufficient for reconstructing the pulse electric field. When coherence is as-
umed, the phase of the two-frequency correlation function is no more than the
hase difference between the selected spectral components. When coupled with
nowledge of the pulse spectrum, the spectral phase differences for a set of fre-
uencies separated by 	� provide ample information for reconstructing the
ulse electric field. This is precisely the approach adopted by Chu and coworkers
261,262] in their direct optical spectral phase measurement (DOSPM). Direct
ptical spectral phase measurement uses an apparatus in which a pair of adjust-
ble slits is placed in the Fourier-transform plane of a zero-dispersion pulse
tretcher. This spectral filter with dual passbands of adjustable center frequen-
ies is equivalent to a pair of in-parallel single-frequency spectral filters.

related approach to sampling the two-frequency correlation function by
eans of interferometry has been developed by Prein et al. [263]. In this ap-

roach, an ultrafast photodiode and Schottky diode nonlinear mixer are used to
ecord the temporal intensity beats between adjacent pairs of spectral compo-
ents of the input pulse that are separated by a gigahertz or so in frequency. The
elative phase of the beats for different spectral pairs is related to the spectral
hase difference between the two wavelengths, permitting the spectral phase
unction itself to be reconstructed.

he temporal interference between two optical frequencies can be resolved in
rinciple by using a much slower photodetector. This can be achieved by stretch-
ng two temporally delayed replicas of the pulse under test by using chromatic
ispersion [264,265]. For a delay � and large second-order dispersion ��2�, two
ptical frequencies separated by � /��2� interfere at a given time t, and it is pos-
ible to recover the spectral phase difference between these frequencies, for ex-
mple, by using a Fourier-transform algorithm [266,267]. One difficulty with
his approach is that the reconstructed spectral phase is that of the stretched
ulse, and accurate characterization of the large chromatic dispersion added to
he pulse to perform the measurement is mandatory. This, however, does not
inder the ability of this technique to accurately quantify the chromatic disper-
ion of the element used to stretch the pair of pulses.

f the source has a high duty cycle, it suffices to measure the phase difference
etween well-separated spectral modes with a fast photodiode used as a nonsta-
ionary element. This can be achieved by isolating the two modes, for example at
requencies �n and �n+1 and measuring the resulting temporal intensity with a
andwidth larger than the mode spacing � [268–270].

n alternative way to separate two spectral components is to use the spatial mul-
iplexing properties of SI. For example, in spectral interferometry resolved in
ime (SPIRIT), two replicas of the pulse under test are spatially dispersed so that

point x in space corresponds to a frequency � from the first pulse and fre-
uency �+� from the second pulse [271–273]. One way of achieving this is to
end two noncollinear beams on a diffraction grating and focus the diffracted
eams with a lens. The phase of the beating between these replicas, which leads

o the corresponding spectral phase difference, can be read in the time domain
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y using a nonlinear cross-correlation with a short optical pulse, e.g., the pulse
nder test itself.

.5. Spectral Phase Interferometry for Direct Electric Field
econstruction

elf-referencing SI relies on the interference between two frequency-sheared
eplicas of the input (test) field. These may be obtained from a single input pulse
y either linear or nonlinear means. It is, of course, preferable to use the former
here at all possible: the current technological limit is to pulses of at least 100 fs
uration. For durations shorter than this, nonlinear means of generating a fre-
uency shear must be employed. Nonlinear methods are therefore important in
he regime of ultrashort optical pulses, while linear techniques are more appro-
riate for low-energy pulses with durations longer than 100 fs.

PIDER is an implementation of shearing interferometry in the optical domain,
sing nonlinear means to obtain a relative frequency shift between two replicas
f the test pulse [274,275]. This spectral shear is obtained by nonlinear mixing of
oth delayed replicas of the pulse with a chirped pulse in a nonlinear crystal.
his leads to a shift of each replica by a different frequency because of the
hange of the instantaneous frequency in the chirped pulse over the delay be-
ween the replicas. This, in turn, gives rise to a relative shear between the two
eplicas.

.5a. Generic SPIDER

generic SPIDER apparatus suitable for the measurement of pulses in the op-
ical region of the spectrum is shown in Fig. 37 [5]. Two pulse replicas with a
elay � are generated in a Michelson-type interferometer or an etalon. A strongly
hirped pulse is generated by a dispersive delay line inducing the second-order
ispersion ��2�. The chirped pulse and the two time-delayed replicas are mixed
n a crystal cut for sum-frequency generation (SFG; in the case of a type II non-
inear interaction, a half-wave plate is introduced into the optical path of the
hirped pulse). The chirp introduced by the delay line is adequate to ensure that
ach pulse replica is upconverted with a quasi-cw field, and the delay ensures

Figure 37

Spectrometer
Nonlinear

crystal

Etalon

Stretcher

λ/2

chematic of a SPIDER device. The input pulse is used to generate a chirped
ulse by propagation in a dispersive delay line. Two temporally delayed replicas
f the pulse under test are nonlinearly mixed with the chirped pulse, and the re-
ulting interferogram is spectrally resolved by an optical spectrum analyzer.
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hat each of the replicas upconverts with a different frequency component of the
nput pulse spectrum (�0 and �0+�), leading to an output consisting of two
dentical pulses with a spectral shear �=� /��2�. The spectral representations of

he sheared pulses Ẽ1 and Ẽ2 are centered near twice the carrier frequency of the
nput pulse being characterized. When the sheared pulses are interfered, the
requency-resolved signal is related to the input pulse field by

Ĩ��� = �Ẽ1��� + Ẽ2����2 = �Ẽ�� − �0 − ��ẼR��0 + ���2 + �Ẽ�� − �0�ẼR��0��2

+ 2�Ẽ�� − �0 − ����Ẽ�� − �0���ẼR��0 + ����ẼR��0��


cos���� − �0 − �� − ��� − �0� − �R��0 + �� + �R��0� + ��� .

�5.25�

hus the spectral fringe pattern (as a function of �) is determined by the differ-
nce between the spectral phase difference ���−�0−��−���−�0� between
wo frequencies in the test pulse separated by the shear �. This is exactly as in
SI, and therefore the inversion algorithms outlined previously enable the spec-

ral phase of the test pulse to be extracted. Alternate processing techniques for
PIDER can be found in [276–278].

he term linear in frequency �� in the argument of the cosine is removed by us-
ng a calibration phase either at the fundamental or harmonic wavelength that is
haracteristic of the instrument and that must be taken once [275]. This refer-
nce phase exactly corrects any influence of the calibration of the spectrometer
n the SPIDER interferogram [236]. This calibration of the device must be ac-
urate, and may be done a priori (thus the signal can be integrated or averaged).
t is frequently a linear measurement that can be performed around the wave-
ength of the pulse under test. The pulse spectrum can be measured simulta-
eously with the SPIDER interferogram and on the same experimental trace
251], or extracted from the SPIDER interferogram [252].

ote that the difference of the spectral phases of the ancillary stretched pulse
ives rise to an unknown constant phase, which is set arbitrarily to zero. Thus the
ulse is reconstructed completely except for the carrier-envelope offset phase
nd the exact time of arrival of the pulse with respect to an external clock, as is
sually the case for self-referencing pulse characterization techniques.

PIDER has a number of important features that make it particularly suitable for
ertain applications. First, the rapidity of the data acquisition and inversion
ean that the reconstruction is not compromised by the source’s stability. More-

ver, the inversion algorithm returns the mean spectral phase when the signal is
veraged over small random fluctuations in the pulse shape. The update rate for
ulse shape reconstruction is usually limited by the time needed to acquire the
races: the algorithm itself runs at over 1 kHz [11,253,254].

econd, accurate measurement of the spectral phase does not require the re-
orded trace to be corrected for the phase-matching function of the nonlinear
rocess or the detector sensitivity [279,280]. The key to this remarkable robust-
ess is that the phase information is contained in the fringe spacing rather than
he visibility, and this is not compromised by wavelength-dependent responsiv-
ty in the apparatus, provided the sensitivity does not vary across one fringe.

.5b. Cross-Correlation SPIDER

quation (5.25) shows that the chirped pulse need not be derived from the input

est pulse: it can come from an entirely separate (though synchronized) laser sys-
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em, and be at quite a different wavelength than the test pulse. This version of the
echnique is called X-SPIDER and has been used to characterize pulses in the
lue [281] and visible regions of the spectrum [254]. There are obvious technical
dvantages to using a high-energy pulse as this kind of ancilla, including an im-
roved signal-to-noise ratio, especially for weak test pulses, and the possibility
or frequency shifting to regions that are favorable for particular detectors, such
s Si-based CCD arrays.

.5c. Homodyne Optical Technique for SPIDER

I has the important advantage over SPIDER that it is linear in both the test pulse
eld and the ancillary pulse field (in SI this is the reference pulse). This advan-

age is characteristic of all homodyne detection methods. However, the major
isadvantage is that in SI the ancillary reference pulse must be well character-
zed. It is possible, however, to apply the methods of homodyne detection to self-
eferencing SI, in which case a significant gain in sensitivity is possible.

n the homodyne optical technique for SPIDER (HOT-SPIDER), the pulse cor-
esponding to the two different frequency shifts �0 and �0+� is interfered se-
uentially with a local oscillator (LO) [282]. After shifting by �0, using nonlin-
ar conversion with a chirped pulse, the spectral phase difference �1���
�LO���−���−�0�+��LO is extracted from the resulting interferogram, where

LO is the spectral phase of the local oscillator and �LO is the delay between the
eplica and the local oscillator. For the replica shifted by �0+� (obtained for ex-
mple by delaying the chirped pulse used for nonlinear conversion by �), the ex-
racted spectral phase difference is �2���=�LO���−���−�0−��+��LO. Note
hat the shear is set by the delay �, and the delay between the sheared replicas and
he local oscillator remains constant. Subtracting the two phases thus gives

2���−�1���=���−�0�−���−�0−��, which is identical to the phase differ-
nce obtained with standard SPIDER after removal of the delay term. The stan-
ard recovery algorithm can then be applied to extract the spectral phase of the
est pulse.

part from the increase in sensitivity that can be obtained with a high-energy
ocal oscillator, HOT-SPIDER is automatically calibrated and does not require
wo replicas of the input pulse to be made simultaneously. Furthermore, since
he shear is not set by the delay �LO, this delay can be set to a small value, so that
OT-SPIDER can operate with greatly reduced spectrometer resolution. This,

oo, leads to a higher signal-to-noise ratio and thus greater accuracy in recon-
tructing the pulse field. HOT-SPIDER setups based on temporal scanning
283,284] and dual-quadrature detection [285] have also been demonstrated.

.5d. Spatially-Resolved SPIDER

PIDER is particularly well suited for measuring space–time coupling in ul-
rashort pulses because the temporal dependence of the field at a single point in
he beam can be reconstructed from a one-dimensional measurement—a single
pectral interferogram. Therefore, an imaging spectrometer and a two-
imensional detector array (a CCD camera, for example) enables measurements
f the spatial dependence of the temporal field [286]. Moreover, the noniterative
econstruction algorithm enables rapid processing of the large amount of data
esulting from the additional degree of freedom. This simple extension does not
equire any prior knowledge of the spatial chirp of the pulse before the appara-
us, nor does it require the beam to be spatially filtered, as is often the case in

utocorrelation-based measurements.
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or a SPIDER device based on SFG, for example, the two broadband test pulse
eplicas are mixed with two quasi-cw slices of a strongly chirped ancillary pulse.
n the spectral domain, each of these SFG processes corresponds to the convo-
ution of a broadband spectrum with a narrowband spectrum. As a result, the in-
ut beam becomes shifted by a constant frequency and is multiplied by the spa-
ial mode pattern of the particular quasi-cw slice. Therefore the spatial chirp of
he ancilla does not cause a frequency-dependent efficiency, since the same cw
lice is mixed with each frequency component of the test pulse. Thus only the
patial intensity pattern, fringe contrast, and an undetermined phase constant of
he SPIDER signal are affected. Importantly, the spectral fringe spacing is unaf-
ected by spatial chirp. Because SPIDER uses only the latter for spectral phase
econstruction, it works correctly even in the presence of significant spatial
hirp.

or the success of this method, it is important that the spatial phase information
e preserved during the nonlinear interaction and acquisition of the interfero-
ram. This can be achieved by focusing the two time-delayed replicas of the in-
ut pulse into the nonlinear crystal, together with the unfocused chirped pulse.
s the beam size of the focused replicas at the image plane is very small com-
ared with the size of the unfocused chirped pulse, frequency conversion pre-
erves the spatial information. A second recollimating lens then gives two

requency-shifted replicas, Ẽ�x ,�−�0� and Ẽ�x ,�−�0−��. These fields may
lso be obtained by mixing the unfocused fundamental pulses with a spatially
xpanded chirped pulse. This eliminates any space–time coupling due to the fo-
using optics. The spectral interferogram is measured as a function of x and �
ith a two-dimensional imaging spectrometer having its entrance slit oriented

long x. Independent processing of each line of the interferogram leads to the
pectral phase of the pulse at the corresponding spatial location and, hence, the
emporal pulse shape at this location up to a constant phase and delay. Therefore,
ariations in the pulse shape are revealed, but no wavefront information is ob-
ained.

.5e. Space–Time SPIDER

n fact it is possible to go beyond spatially resolved SPIDER measurements and
elate the spectral phases at each point in the beam. This provides a unique ca-
ability: the measurement of the complete spatiotemporal field, including spec-
rally dependent wavefront distortions [287]. The device operates by measuring
wo orthogonal gradients of the phase ��x ,�� as a function of space and fre-
uency, the spectral phase gradient �� /���x ,�� and the spatial phase gradient
� /�x�x ,�� and reconstructs the phase from these gradients by using standard
patial shearing interferometry algorithms.

he spectral phase gradient at each point in the beam �� /���x ,�� can be mea-
ured by using a spatially resolved version of SPIDER, as described in Subsec-
ion 5.5d above. The spectrally resolved spatial phase gradient �� /�x�x ,�� is
easured by imaging the input beam at the fundamental frequency onto the slit

f the two-dimensional spectrometer through a Michelson interferometer. This
nterferometer provides independent control of the shear, tilt, and delay between
he two interfering pulses. One can use a combination of delay and tilt to provide
ringes in the interferogram measured by the imaging spectrometer, which al-
ows the extraction of the interferometric component by Fourier-transform tech-
iques. For a small shear X, the gradient �� /�x�x ,�� can be approximated by

��x+X ,��−��x ,��� /X.
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he spatially resolved SPIDER interferogram, near the second-harmonic wave-
ength of the input pulse, and the spectrally resolved lateral shearing interfero-
ram, at the fundamental wavelength, can be recorded simultaneously on a
ingle two-dimensional detector by using the first and second diffraction order of
he grating of the spectrometer. Single-shot operation of the device is therefore
ossible. Both phase gradients can be extracted simply from the single data set
ecause they can be encoded differently in the superimposed interferograms.
he spectral phase gradient is extracted from fringes due to the delay between

nterfering pulses, i.e., that lie predominantly parallel to the spatial axis of the
nterferogram. The spatial phase gradient is obtained from fringes set by the

ichelson interferometer; for example, tilt will lead to fringes that are predomi-
antly parallel to the spectral axis. An example of spatiotemporal characteriza-
ion of the field of a pulse after propagation through a prism, which causes
pace–time coupling by virtue of angular dispersion, is shown in Fig. 38. The in-
uced angular dispersion is seen as the phase ��x ,��=��x, where � is the pro-
ortionality constant between optical frequency and the wave vector due to the
rism angular dispersion. In the spatiotemporal domain, the pulse-front tilt
anifests itself as the coupling between time and space.

.5f. Spatially Encoded Arrangement for SPIDER

n SSI, the spectral sampling rate of the detected signal must be twice the
hitaker–Shannon limit for the test pulse. In spectrography, however, it can be

t the limit. This means that a lower resolution spectrometer may be used for
ulses of the same bandwidth and temporal support in spectrography than in
SI. In practice, an implementation of SSI such as SPIDER operates at a signifi-
antly higher sampling rate (typically between 5 and 10 times the Whitaker–
hannon limit) because of the coupling of the spectral shear and the temporal
elay required for encoding the phase into the interferogram. By contrast, non-
inear spectrographic methods, such as frequency-resolved optical gating
FROG), typically operate at only a few times the Whitaker–Shannon limit. The
dvantage of the oversampling in SI is that the inversion of the data to the spec-
ral phase does not require iteration and is insensitive to variations in the spectral

Figure 38

x

ωx

ω

Phase

ω x

(a) (b)
x

t

(c)

a) Spatially resolved interferograms for space–time SPIDER, with (upper)
pectral shear and (lower) spatial shear. The fringes are due to a delay between
nterfering pulses in the upper plot and to a tilt between interfering pulses in the
ower plot. (b) Reconstructed spatiospectral phase map for a pulse dispersed by a
rism, extracted from the interferograms in (a). (c) Space–time intensity of the
ulse with this spatiospectral phase, showing pulse-front tilt.
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esponse of the apparatus. The disadvantage is that a higher resolution spectrom-
ter is needed than is strictly necessary for the pulse at hand.

way around this problem is provided by encoding the spectral correlation
unction, which contains the required spectral phase information, into a spatial
ringe pattern, hence the acronym SEA-SPIDER for spatially encoded arrange-
ent for SPIDER [288,289]. In this case the spectral resolution of the spectrom-

ter can be exactly at the sampling limit, though the spatial resolution must be
orrespondingly beyond the spatial sampling limit. Further, this approach re-
uires only a single copy of the test pulse, thereby eliminating extraneous optics
equired to produce a replica. This is important for extremely broadband pulses.

he apparatus is configured as shown in Fig. 39. The beams are arranged so that
he test pulse is mixed with two noncollinear chirped ancillary pulses in a non-
inear crystal, and two frequency-shifted and sheared replicas are generated.
hese propagate in different directions, set by the phase-matching angles in the
rystal, and are brought together to interfere in an imaging spectrometer. Since
here is no temporal delay between the two beams, there are no spectral fringes:
ence the spectrometer resolution can be the minimum required by the sampling
heorem. On the other hand, because the beams are at an angle with respect to
ne another, there are spatial fringes, which are resolved on the CCD camera. A
traightforward modification of the SI inversion algorithm enables the SPIDER
hase for the pulse at position x in the beam to be extracted. This is achieved by
aking a Fourier transform with respect to both position and frequency to sepa-
ate the spectral correlation function from the spatiospectral intensities. The spa-
iospectral phase extracted from the interferogram is ��x ,�−�0�−��x ,�−�0

��+Kx, where K is the difference in the mean transverse wave vectors of the
nterfering beams (their tilt with respect to each other). An example of a
EA-SPIDER interferogram measured for pulses in the few-cycle regime gen-
rated by means of a highly nonlinear process is shown in Fig. 40(a). The Wigner

Figure 39

EA-SPIDER apparatus showing the use of a single copy of the test pulse and
wo chirped ancillae to encode the spectral phase in a spectrally resolved spatial
nterferogram. The tilted upconverted replicas generated in the crystal are reim-
ged on the detector through an imaging spectrometer. The shape of the fringes
ndicates the spectral phase derivative, providing an intuitive diagnostic of the
ulse structure.
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unction of the reconstructed pulse [Fig. 40(b)] shows that the pulse has a slight
ositive chirp and temporal structure separated from the main peak, which is
ery short. The marginals of the Wigner function shown in Figs. 40(c) and 40(d)
ndicate that the temporal intensity profile is a little longer than a transform-
imited pulse of the same bandwidth, owing to the residual spectral phase in-
uced by the finite bandwidth of the chirped mirrors.

.5g. Long-Crystal SPIDER and ARAIGNEE

he spectral filtering properties of the phase-matching function of wave mixing
n a long nonlinear medium may also be used to simplify the SPIDER apparatus
Fig. 41(a) and 41(b)]. In conventional SPIDER, a spectral shear between two
est pulse replicas is produced when they upconvert with different quasi-
onochromatic slices of a highly chirped ancillary pulse in a thin nonlinear

rystal. An alternative approach is to effect the mixing of a broadband test pulse
ith a narrowband ancilla in a single, long nonlinear crystal. In such a crystal
riented for type II SFG the incident pulse propagating as an ordinary wave (o
ave) has a large acceptance bandwidth, whereas the extraordinary wave (e
ave) has a much narrower acceptance bandwidth. This highly asymmetric
hase-matching function shape is due to a group-velocity match between the o
undamental input and the e upconverted output and a group-velocity mismatch
etween the e fundamental and the e upconverted fields. As a result, the ordinary

Figure 40

Wavelength (nm)

P
o
s
it
io
n
(
m
m
)

(a) SEA-SPIDER Interferogram

600 700 800 900 1000

-100

0

100

Wavelength (nm)

T
im
e
(f
s
)

(b) Reconstructed Wigner Distribution

600 700 800 900 1000

50

0

50

600 700 800 900 1000

-2

0

2

Wavelength (nm)

P
h
a
s
e
(r
a
d
)

(c) Spectral Intensity and Phase

50 0 50
0

0.5

1
(d) Temporal Intensity

Time (fs)

N
o
rm
a
lis
e
d
In
te
n
s
it
y

EA-SPIDER measurements of the output of a hollow-core-fiber compressor
ystem. (a) The spatial fringe maxima in the SEA-SPIDER interferogram map
he gradient of the spectral phase across that section of the beam. Note the spec-
ral cut at 950 nm due to the limited bandwidth of the chirped mirrors used for
ompression. (b) Chronocyclic Wigner function of the pulse, indicating the
omplex character of the compressor output. The pulse has a slight positive
hirp and structure away from the main peak. (c) Measured spectral intensity
blue) and reconstructed spectral phase (green), taken at the center of the beam.
d) Fourier-transform-limited temporal intensity (blue) and reconstructed tem-
oral intensity (green). The full width at half-maximum pulse durations are 5.2
nd 7.5 fs, respectively.
est pulse is upconverted with a single e-ray frequency, resulting in its replication
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t the upconverted frequency, as shown in Fig. 41(b) [290]. The angle of propa-
ation relative to the crystal optic axis determines the frequency of the narrow-
and component of the e wave, which upconverts with the entire spectrum of the
wave, providing the spectral shear necessary for SSI. If the e-ray pulse walks

ompletely through the o-ray pulse as it propagates through the crystal, then the
pconverted o-ray pulse is a spectrally shifted replica of the fundamental test
ulse.

he apparatus to effect a spectral shear is shown in Fig. 41(c). The test pulse is
plit into two orthogonally polarized components by a wave plate, and the e-ray
s advanced with respect to the o-ray on transmission through a piece of linear,
ow-dispersion, birefringent crystal such as quartz. The pulses are further split
nto two by reflection from a split mirror, which directs each time-delayed pair
nto the nonlinear crystal, each pair propagating at a different angle to the c axis.
ach pair mixes so that two spectrally sheared replicas of the test pulse are pro-
uced by SFG. At the output of the crystal, the two beams are overlapped by
eans of a 10 cm lens onto the entrance slit of a compact grating spectrometer.
he resulting spectral interferogram is processed in the same way as a normal
PIDER trace. In keeping with established practice, this is known as “another
idiculous acronym for interferometric geometrically-simplified noniterative
-field extraction” (ARAIGNEE, the French word for SPIDER) [291].

.5h. Zero-Added-Phase SPIDER

ero-added-phase SPIDER (ZAP-SPIDER) does not require replication of the
est pulse and makes use of two chirped pulses to upconvert with a single test
ulse. Because no replica needs to be made, the optics seen by the test pulse are
inimal and may be all be completely reflective. This means that they add no

pectral phase to the test pulse; hence the acronym [292,293]. The two ancillae
evertheless generate two upconverted and frequency sheared replicas that may
e interfered to obtain a spectral interferogram. The important innovation to note

Figure 41

(b)

(a) Delayed test pair

Delayed test pair

Unstreched ancillae

Streched ancilla

Spectrally

sheared

replica

Spectrally

sheared

replica

(c)

chematic diagram illustrating the nonlinear process for generating two spec-
rally sheared replicas in (a) SPIDER and (b) ARAIGNEE. In the latter, the di-
ection of propagation of the beams in the long crystal determines the wave-
ength of upconversion. (c) The ARAIGNEE apparatus, showing the paths for
he fundamental (red) and upconverted (blue) beams that are interfered in the
pectrometer.
s that the upconversion process may be angularly multiplexed. That is, each an-
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illa mixes with the test pulse at a slightly different angle, still within the angular
nd spectral acceptance bandwidth of the nonlinear crystal. This generates two
pconverted pulses from the single test pulse that propagate at different direc-
ions, owing to the phase-matching conditions imposed by the nonlinear pro-
ess. The upconverted pulses are recombined into copropagating beams by using
irrors that also introduce a delay, so that the spectral interferogram is identical

n form to the SPIDER interferogram. The same constraints on the chirp of
he ancillae applies here as in SPIDER, but ZAP-SPIDER shares with
OT-SPIDER the independence of the delay and shear, which again provides an

mprovement in the signal-to-noise ratio.

.5i. Calibration-Parameter Encoding: Two-Dimensional Spectral
hearing Interferometry

patial encoding of the spectral phase may be viewed as using the calibration pa-
ameter as the encoding variable. This approach may also be implemented by
odulating the pulse delay in the conventional SPIDER apparatus. The mea-

ured signal is then a function of the frequency, as in the conventional SPIDER
etection, and also a function of the delay—thus the fringe pattern is two-
imensional. The functional form of the interferogram is very similar to that of
EA-SPIDER, except that the spatial variable x is replaced by the delay variable
. The fringes are given by the loci of constant value of the SPIDER phase func-
ion ���−�0�−���−�0+��+�0��, and the spectral phase of the test pulse

ay be extracted by using the SEA-SPIDER algorithm. This approach has simi-
ar advantages to SEA- and ZAP-SPIDER for ultrabroadband pulses, since it
ay be implemented without requiring replication of the test pulse [258]. In this

pparatus, illustrated in Fig. 42(a), the ancilla is replicated in a Michelson-type
nterferometer, and the delay between the two ancillae is modulated. The com-
ined ancillae are upconverted by mixing with the test pulse, and the resulting
um-frequency spectrum is recorded as a function of this delay. Exemplary mea-
ured interferograms are shown in Fig. 42(b) for a pulse close to the Fourier-
ransform limit and in Fig. 42(c) for a pulse stretched by propagation into 1 mm
f fused silica, where the chirp is revealed by the tilt of the fringes. The fringe-
esolved autocorrelation calculated from the extracted pulsed field is compared
ith the measured autocorrelation in Fig. 42(d): the excellent agreement be-

ween the two traces emphasizes the suitability of this approach for ultrabroad-
and pulses in the single-cycle regime.

.6. Self-Referencing Spectral Interferometry Based on
inear Temporal Phase Modulation

spectral shift can be obtained directly by linear temporal phase modulation. In
act, the first proposals of SSI were made along these lines [31,250]. A linear
emporal phase modulation exp�i�t� directly induces a spectral shear on an op-
ical pulse, provided that the temporal phase modulation is linear over the tem-
oral support of the pulse. Since the relative shear in SSI must be of the order of
few percent of the bandwidth of the source under test, this approach has be-

ome practical only with the development of high-efficiency, high-speed phase
odulators based on lithium niobate. In these modulators, the voltage drive
odulates the optical index via the electro-optic effect. This has been imple-
ented by using a sinusoidal drive or a pulse generator for characterization of
ulses in various wavelength ranges [294–296]. A modulator driven by a sinu-
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oidal RF voltage at a frequency f, V�t�=V0 sin�2�ft�, induces the temporal
hase ��V0 /V� �sin�2�ft�, where V� is the voltage necessary to obtain a � phase
hift. The temporal phase can be linearized around one of its zero crossings to
ive the temporal phase modulation �2�2V0f /V��t, which identifies the induced
pectral shear �=2�2fV0 /V�. Large shears are then obtained by using large
oltages V0 in high-efficiency, low-V� modulators at high frequency f (or equiva-
ently, high-bandwidth voltage pulses). Symmetric setups in which two optical
ulses are spectrally sheared in opposite directions have been used. This is natu-
ally obtained by sending two pulses separated by a delay � in a phase modulator
riven by a sinusoidal drive with a period equal to 2�, as pictured in Fig. 43(a).
he linear implementations of SSI, like other linear techniques, are highly sen-
itive. Figure 43(b) presents the spectral phase of a short optical pulse measured
t three different average powers. Accuracy is preserved even with power lower
han 1 µW. In fact, the SSI setup described in [296] can characterize a 1 nJ pulse
n single-shot operation. Furthermore, pulses with long temporal support can be
easured as long as a linear temporal phase modulation can be maintained, and

ulses stretched to tens and even hundreds of times the Fourier-transform limit
ave been characterized. Spectral shearing interferometry can also be used with-

Figure 42

a) Schematic of the two-dimensional spectral shearing interferometry (2DSI)
pparatus, showing the generation of two phase-delay-variable chirped ancillae
n a Michelson interferometer. (b) Raw interferograms from (a) a 5 fs laser pulse
nd (b) a pulse dispersed by 1 mm of fused silica. (c) Predicted and measured
nterferometric autocorrelation of a 5 fs pulse (figure courtesy J. Birge and F.
ärtner).
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ut a delay between the two interfering pulses, in which case the phase of the
nterferometric component can be retrieved by scanning the relative phase of the
nterfering pulses [297].

.7. Techniques for Sources with Discrete Spectral Modes

here exist implementations of SSI adapted to the characterization of periodic
ources with high duty cycles. These sources have an optical spectrum com-
osed of a small number of spectral modes at the frequencies ��n� separated by
he repetition rate of the source �, and complete characterization of the corre-
ponding electric field is obtained by measuring the intensity and phase of each
ode. The phase difference between the spectral modes can be inferred by mea-

uring the beating between two adjacent modes in the time domain. A significant
eduction of the photodetection bandwidth requirement is achieved if a time-
onstationary modulation is performed before photodetection. For example,
odulation of the periodic source under test at the frequency � /2 generates

idebands of each mode; i.e., the mode at frequency �n leads to sidebands at

n−� /2 and �n+� /2. The lower and upper sidebands of the two successive
odes �n and �n+1 therefore interfere at the optical frequency �n+� /2, and the

elative phase between modes can be recovered from the spectrally resolved in-
erference measured for a plurality of relative phases between the optical source
nd the temporal modulation [20]. If the modulation is performed at a frequency
lightly offset from half the repetition rate of the source, the sideband interfer-
nce occurs at a small nonzero frequency. It can be measured with a low-

Figure 43
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a) Schematic arrangement for a linear spectral shearing interferometer based on
lectro-optic modulation. (b) Spectrum (solid black curve) and spectral phase
easured for an input average power of 2 mW, 10 µW, and 270 nW (solid red

urve, blue dots, and green squares, respectively).
andwidth photodetector after the modulated source has been filtered around the

dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 405



s
a
e
c
�
c
f

A
d
t
i
w
s
t
m
m
s
a
c

5

I
t
c
r
w
t
o
q
t
e
l
m

6

T
b
t
w
s
n
o
p
d
e
n
t

A

idebands being measured [298]. In practice, it might be more convenient to use
modulation at the frequency of the source under test, since it can be recovered
asily by direct photodetection or from the drive of the optical source in some
ases. For a modulation at the frequency �, the spectral density at a given mode

n is impacted by the phase of the modes �n−1, �n, and �n+1. The spectral phase
an nevertheless be reconstructed by using the optical spectra measured for dif-
erent relative delays between the source under test and the modulation [299].

nonlinear technique was recently demonstrated to characterize sources with
iscrete modes: the source with modes spaced by � is nonlinearly mixed with
wo CW sources at frequencies separated by � [300]. As in SPIDER variants us-
ng only one test pulse and two chirped pulses, nonlinear mixing of the test pulse
ith each monochromatic frequency leads to two spectrally sheared pulses. The

pectrum of the two interfering pulses can be measured by using an optical spec-
rum analyzer, and extraction of the interferometric term requires the measure-
ent of several interferograms for different relative phases between the two
onochromatic sources (e.g., the four relative phases 0, � /2, �, and 3� /2 are

ufficient to extract the two quadratures of the complex interference term). An
dvantage of this approach is that it can be used for sources with high duty
ycles.

.8. Conclusions

nterferometry has proved to be a reliable and flexible method for measuring ul-
rashort pulsed fields. A particularly useful feature of this approach is the direct
oding of spectral phase in the experimental data, allowing simple, robust and
apid inversion algorithms. In its test-plus-reference form, it is suitable for use
ith a known reference that can be obtained from any of the many characteriza-

ion methods and is very sensitive, reaching the quantum limit for measurement
f the quadrature amplitude of the fields and providing a direct estimation of the
uantum state of the light pulse [301]. Self-referencing interferometry extends
he scope of interferometric measurements to the case where no appropriate ref-
rence pulse exists. One form, spectral shearing interferometry (SSI), is particu-
arly adapted to the measurement of broadband pulses and has been imple-
ented for a wide range of wavelengths and pulse durations.

. Current Areas of Research

he field at present is moving in a number of different directions. Now that the
asic principles are well established, and the most simple and reliable appara-
uses have been demonstrated, the application to more complex fields is under-
ay. This includes determining the space–time structure of a pulse, rather than

imply its temporal structure, as well as identifying the fields of pulses that are
ot close to the transform limit or that may have highly structured spectra. In an-
ther direction, the techniques developed for the optical domain are finding ap-
lication in the characterization of pulses in quite different spectral and temporal
omains, including that of attosecond-duration extreme UV (XUV) pulses gen-
rated via high-harmonic radiation from atoms. In this section, we highlight a
umber of areas of current research activity that are particularly promising in

erms of new methods and new applications.
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.1. Attosecond Metrology

t is now possible to produce pulses whose duration lies in the attosecond re-
ime, with mean wavelengths correspondingly in the XUV region of the spec-
rum. With these pulses one can study processes that have characteristic time
cales of attoseconds, namely, electronic dynamics in atoms, in molecules, and
n surfaces. Some notable achievements in the emerging field of attoscience in-
lude the generation of x-ray pulses with a duration of 650 as [302], trains of
50 as pulses [303,304], and the creation of individual sub-200 as pulses [305]
hat can be used to measure electron motion with a temporal resolution of 100 as
212]. At present, it is not possible to produce and measure attosecond pulses
outinely and easily. This is mainly because the bandwidth required is extraordi-
arily large and the mean wavelength of the pulse is in a region of the spectrum
here there are no standard linear or nonlinear materials. Therefore there are

imited options for optics that can be used to manipulate these pulses. The con-
traints of the extreme mean wavelength and the extreme bandwidth pose many
ractical and physical limitations on the generation, manipulation, and detection
f attosecond pulses.

he primary method of creating attosecond pulses is to generate XUV light via
he interaction of an intense, phase-stabilized few-cycle laser pulse with a wave-
ength in the mid-IR with an atomic or molecular gas. This process is known as
high-harmonic generation” (HHG) [306–308]. In fact, the nonlinearity associ-
ted with this interaction can itself form the basis for measurements. However,
he most common nonlinear interaction is to mix the XUV pulse with an optical
ulse in another gas of atoms. The nonlinearity arises because when the XUV
ulse ionizes the atoms, the ionized electrons remain sufficiently close to the ion
or long enough to absorb radiation from the optical pulse that is simultaneously
resent. Therefore the ionized electron energy is shifted with respect to what it
ould be without the presence of the optical field. This energy shift can be ob-

erved by using a photoelectron spectrometer. The details of the modification of
he photoelectron energy spectrum depend on the details of the XUV pulse that
s to be measured. For instance, if the XUV pulse is long compared with one
ycle of the optical pulse field, then the electron energy is simply proportional to
he sum of the XUV and optical frequencies. In this case, the photoelectron
pectrum has sidebands around the main XUV peak. Since these sidebands are
n principle replicas of the main ionization peak, which itself maps the ampli-
ude and phase of the XUV pulse spectrum, the effective action of the optical
eld is to produce images of the XUV spectrum that are spectrally sheared into

he photoelectron spectrum. Now, if the XUV pulse consists of a train of short
ttosecond bursts, as is the case when long driving pulses are used for HHG, then
ts spectrum consists of the odd-order harmonics of the driving pulse frequency

0. In this case, the photoelectron spectrum produced on mixing this pulse train
ith a long optical pulse in an atomic gas is to produce both upconverted and
ownconverted sidebands for each peak in the XUV spectrum. Since these are
isplaced from the XUV peaks by �0, then the downconverted sideband of the
th high harmonic overlaps spectrally with the upconverted sideband of the �n
1�th harmonic and will interfere with it. The relative phase of the nth and �n
1�th harmonics can thus be determined. With the assumption that all pulses in

he train are temporally similar, the measurement of this relative phase across the
hole XUV spectrum enables the envelope of the pulses in the train to be deter-
ined. This technique, known as “RABITT” (reconstruction of attosecond-

armonic beating by interference of two-photon transitions) [309], bears some
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 407
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imilarity to the sideband method of Debeau et al. [20], since the optical field
imics the action of a phase modulator on the electron wave function and was

ne of the first to be developed for attosecond pulse measurement. This approach
an simply be extended to the case of a two-frequency drive field, in which case
SPIDER (spectral phase interferometry for direct electric-field reconstruction)

nterferogram is possible in the photoelectron spectrum [310–313]. If, in addi-
ion, the relative delay between the optical pulse and the XUV pulse is changed,
hen the interference fringes between the harmonic sidebands may also be
apped out as a function of this delay, along with the harmonics themselves. In

his case the delay-resolved photoelectron spectrum contains components that
re reminiscent of a spectrogram as well as an interferogram. In fact, the model
f the optical pulse acting as a phase modulator for the ionized electron wave
unction can be formulated in terms of a phase-gated spectrogram, so that an it-
rative deconvolution algorithm may be used to unravel the XUV pulse field, as
ell as (at least in principle) the optical pulse field. This method is therefore
nown as “FROG-CRAB” (frequency-resolved optical gating complete recon-
truction of attosecond bursts) [314,315]. Figure 44 presents results obtained
ith this technique. The measured and retrieved spectrograms are shown in Figs.

Figure 44
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haracterization of sub100 as XUV pulses by using spectrograms. (a) Measured
hotoelectron spectrum as a function of the delay between the XUV pulse and an
R ancilla. (b) Spectrogram reconstructed by using an iterative deconvolution al-
orithm. (c) Temporal intensity (solid curve) and phase (dashed curve) and (d)
pectral intensity (solid curve) and phase (dashed curve) of the reconstructed
UV pulse, showing some residual chirp due to the HHG process (figure cour-

esy E. Goulielmakis and F. Krausz).
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4(a) and 44(b), and the temporal and spectral representations of the pulse are
hown in Figs. 44(c) and 44(d). The reconstructed XUV pulse has a duration of
0 as.

different approach may be used to extract the XUV field if the XUV pulse du-
ation is short compared with one cycle of the optical pulse. In that case two situ-
tions can be distinguished. The first is that the pulse arrives near the extremum
f a cycle and envelope of the optical field. In this case, the electron wave func-
ion is modulated just as a short optical pulse would be when arriving at a phase
odulator near an extremum of its drive signal. That is, the wave packet has a

uadratic temporal phase modulation imposed (the sign of which depends on
hether it arrives near the maximum or minimum of the cycle). This may lead to
broadening or compression of the electron energy spectrum, depending on
hether the electron wave function (and therefore the XUV pulse that generated

t) is chirped or not. As with the optical case, for sufficiently large modulation
i.e., sufficiently large optical pulse intensity) this scheme can be used as time-
o-frequency converter, when it is known as the “attosecond streak camera”
212,316]. Similarly it should be possible to use this to implement chronocyclic
omography [310].

different approach to attosecond pulse characterization is to use the nonlinear-
ty of the harmonic generation process itself. In this approach, it is possible to
mplement a spectral shear by changing the mean wavelength of the driving
ulse. To understand this, note that the spectrum of high harmonics for long
ulses consists of a series of peaks separated by twice the mean frequency of the
ptical drive pulse. These odd-order harmonics occur because the ionized elec-
ron is driven twice past the ion core during each cycle of the optical pulse. Each
assage gives a probability amplitude for emission of an XUV photon upon re-
ombination, and the sum of these different quantum pathways for the genera-
ion of an XUV photon leads to the radiation’s being emitted as a train of pulses,
ith a corresponding comblike spectrum. The spacing of the harmonic spectral
eaks may be altered by driving the generation process with an optical pulse of a
ifferent frequency. The spectral interferogram of radiation generated by two
ources with different spacing of the harmonics is then equivalent to a SPIDER
nterferogram, from which the spectral phase of the XUV spectral peak may be
stimated. This approach has been implemented for one harmonic order of HHG
y using a collinear pair of frequency-shifted drive pulses [317,318]. This ver-
ion is limited in the wavelengths that can be measured because ionization of the
toms by the first pulse modifies in a complicated way the phase of the XUV ra-
iation generated by the second pulse. This can be overcome by a SEA-SPIDER
spatially encoded arrangement SPIDER) configuration [319], which also has
he advantage that space–time coupling in the emitted harmonics can be mea-
ured.

.2. Spatiotemporal Characterization

pace–time characterization of optical waveforms brings in the spatial depen-
ence of the temporal waveforms of optical pulses. While the temporal wave-
orm is ideally independent of the location in the beam, this property is not pre-
erved by some optical pulse generation mechanisms. For example, short-pulse
scillators based on Kerr-lens mode locking have been shown to exhibit a spa-
ially dependent optical spectrum and pulse shape [286,320]. The stretcher and

ompressor of chirped-pulse amplification systems can induce spatiotemporal
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oupling if they are not aligned properly [321]. Such coupling is also induced by
roperly aligned zero-dispersion lines [322]. Nonlinear propagation leads to
patiotemporal coupling, since it induces a temporal phase proportional to the
ntensity of light, therefore locations of the beam corresponding to different in-
ensities correspond to different induced temporal phases [323,324]. Chromatic
berrations in lenses can lead to significant spatiotemporal coupling [325]. The
roblem becomes particularly acute for high-power laser systems that use large
inglet lenses to perform relay imaging of broadband optical pulses [326] and
or applications of ultrashort optical pulses that require tight focusing [327]. The
erformance of some applications of short optical pulses can actually be en-
anced by spatiotemporal shaping [328–330]. There is therefore a need for some
ccurate estimation of the spatial variations of the optical pulse shape, optimally
he full determination of the electric field as a function of time t (equivalently �)
nd the transverse coordinate x and y (equivalently the spatial wave vectors kx

nd ky).

patiotemporal characterization usually goes beyond the simple measurement
f the temporal electric field at different locations in the beam, which can be ob-
ained by performing independent measurements of the temporal waveforms.
ndeed, while the electric field E�t ,x1� and E�t ,x2� can usually be retrieved up to
constant and time delay, the information about the relative phase and delays

etween these two fields is usually lost. Therefore, a more global approach to
patiotemporal measurements, where relative phases and delays are properly ac-
ounted for, is needed.

ome quantification of pulse-front tilt (the spatially dependent time of arrival of
n optical pulse to a reference plane perpendicular to its direction of propaga-
ion) can be obtained in correlating devices. For example, a nonlinear cross-
orrelation between a short optical pulse and the pulse under test at different po-
itions in the beam reveals the spatial variations of the time of arrival of the
ptical wave packet at a reference plane [331]. Pulse-front tilt can also be in-
erred by using an autocorrelator provided that the number of mirrors in the two
rms of the setup has a different parity [332]. The relative spatial inversion in-
roduced by this setup makes the experimental trace sensitive to spatial varia-
ions of the time of arrival at a reference plane.

nterferometry plays a significant role in spatiotemporal measurements, since
patial interference on a time-integrating detector can directly reveal optical
hase differences. The space–time coupling introduced by various optical ele-
ents can be revealed by time-of-flight interferometry [333–335]. An input

ource is split to generate a reference field and a probe field that propagates into
n element under test. The interference between the spatially inhomogeneous
eld generated by the element under test and the reference field is recorded on a

ime-integrating detector as a function of the relative delay between the two
elds. Interference is visible only when the relative delay is smaller than the co-
erence time of the input source, and one can therefore map the group delay dif-
erence between the two fields as a function of spatial location.

pectral interferometry is another approach to spatiotemporal measurements.
he spectral interference between two optical pulses measured by a spectrom-
ter directly leads to their spectral phase difference. An undistorted or precisely
haracterized pulse can be used as a reference pulse, in which case one can map
he spectral phase variations of the distorted pulse at different locations in the
eam relative to the spectral phase of the reference pulse [327,336,337]. A tech-
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 410
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ique using optical fibers has been demonstrated to spatially filter the two
eams: one of the fibers delivers a reference pulse while the other fiber is spa-
ially scanned [338,339]. Interference between the two optical waves occurs af-
er free-space propagation and recollimation and leads to the spectral phase dif-
erence between the reference pulse and the pulse under test at the spatial
ocation where the corresponding collection fiber is located. A full representa-
ion of the spatially resolved spectral phase of the pulse under test relative to the
pectral phase of the reference pulse can be obtained by spatially scanning the
ollection fiber. Note that, in all multishot techniques that use interference with a
eference pulse, coherence between the two interfering pulses is mandatory to
easure the interferometric term containing the phase difference between the

wo pulses. This coherence is naturally obtained if a common optical source is
sed to generate the reference pulse and the distorted pulse.

he spatial interference of two monochromatic beams leads to their spatial
hase difference. Assuming that one of the fields is a reference field, performing
his measurement at a discrete set of optical frequencies ��i� leads to ��x ,y ,�i�
p to a frequency-dependent phase that can be determined by measuring the
pectral phase at one or several spatial locations. The set of monochromatic
avefront measurements can, for example, be obtained by generating a refer-

nce monochromatic wave and using it to measure the spatially resolved wave-
ront of the pulse under test at the corresponding optical frequency, then scan-
ing the frequency of the reference wave [340]. This set of phases can be
btained in a single shot by spatially multiplexing the interferograms corre-
ponding to different optical frequencies on the same camera. A discrete set of
ptical frequencies from the reference and test beams is selected by combining a
iffractive optical element with an interference filter [341]. The diffractive opti-
al element generates replicas of the two beams traveling in different directions.
he narrowband filtering function of the interference filter is direction depen-
ent, and the different diffracted directions correspond to filtering at different
ptical frequencies. After this filtering element, propagation to a two-
imensional detector leads to a set of discrete interferograms, which, with care-
ul calibration of the spatiotemporal coupling of the reference field, yields the
patial phase difference between the reference and pulse under test at the corre-
ponding set of optical frequencies.

elf-referencing shearing interferometry can be used to quantify spatiotemporal
oupling. A simple linear setup uses the spectrally resolved interference of two
patially sheared replicas of the input beam, which is measured with an imaging
pectrometer [342,343]. The spatially and spectrally resolved interference of the
wo beams leads to the phase difference ��x+X ,��−��x ,��, which can be in-
egrated to yield the spatiospectral phase ��x ,�� up to an unknown function of
he optical frequency �����. Although such an experiment alone does not deter-
ine the pulse shape at any point in the beam, it is sufficient to estimate how

ifferent the spectral properties of the pulse are at different points in the beam.
ore complete information can be obtained by determining the function �����

y using a complete measurement of the spectral phase performed at one point
n the beam. This was, for example, performed with spectral shearing interfer-
metry in [287], where a spatially resolved spectral shearing interferometer
easures the spectral phase gradient �� /���x ,�� and the spectrally resolved

patial shearing interferometer measures the spatial phase gradient �� /�x�x ,��.
lgorithms used for spatial shearing interferometry can be used to reconstruct

he phase as a function of the spatial coordinate x and optical frequency �.
dvances in Optics and Photonics 1, 308–437 (2009) doi:10.1364/AOP.1.000308 411
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.3. Terahertz Optics

erahertz (THz) waves, with wavelengths in the millimeter range, are extremely
seful for medical imaging, detection of concealed objects and substances, and
ther applications where they are advantageous over optical waves because of
heir increased penetration depth and propagation distance [344,345]. Proper
haracterization of the THz waveforms that are generated and modified by
ropagation in probe media is important to implement these applications. While
he short optical cycle of visible radiation prevents the direct measurement of the
lectric field, the electric field of THz waveforms can be directly measured.
here are mainly two approaches for this measurement, photoconductive sam-
ling [346,347] and electro-optic sampling [348–350], both of which rely on an
ncillary optical pulse. Experimental details of these implementations can be
ound, for example, in [351] and references therein, and direct comparisons of
hese two techniques are presented in [351–353].

n photoconductive sampling, the THz waveform under test modulates the cur-
ent generated by a photoconductive antenna (e.g., fabricated with GaAs) ex-
ited by a short optical pulse. The measured current I���=�dtvg�t�g�t−��, where

g represents the voltage bias induced by the THz radiation across the photocon-
uctive gap and g is the photoconductance induced by the short optical pulse.
hen the antenna frequency response is flat over the spectrum of the THz wave-

orm, vg is proportional to the THz temporal electric field. The conductance is a
onvolution of the temporal intensity of the short optical pulse with decreasing
xponentials that take into account the response time of the photocurrent and its
ecovery. These finite response times can induce some distortions of the mea-
ured photocurrent, but in principle the measured modulation leads the temporal
lectric field of the THz waveform. Nonetheless, it is possible to extract accu-
ately both the THz pulse shape [354] and the antenna response function [355]
y using the rapid turn-on of the gating pulse intensity, which sets an upper
ound on the bandwidth and a lower bound on the temporal resolution of the ap-
aratus. Figure 45 shows the design of a polarization-sensitive photoconductive
etector for THz pulses [356]. The vectorial electric field of two different pulses
s also shown.

lectro-optic sampling uses the voltage-induced variation of the optical index in
n electro-optic crystal (e.g., ZnTe) to modulate the polarization state of a lin-
arly polarized optical pulse. The polarization modulation can be analyzed with
polarizer, and the intensity modulation is directly proportional to the electric
eld of the THz waveform. Electro-optic sampling can have very large band-
idth if it is implemented in thin electro-optic crystals, where effects such as
roup-velocity mismatch between the optical and THz waveforms and distor-
ions due to phonon–polariton coupling are small.

ingle-shot operation of electro-optic sampling has been demonstrated in vari-
us ways. Since some optical setups can measure the temporal intensity in a
ingle shot, THz waveforms encoded on an optical wave can be directly charac-
erized in the time domain provided that the intensity of the modulated wave is
ecorded with sufficient bandwidth. This direct time-domain THz characteriza-
ion has been demonstrated by using a streak camera measuring the probe pulse
ntensity after the electro-optic crystal and polarizer [357].

he relation between time and frequency in a chirped optical pulse allows the
ncoding of a temporal modulation on the chirped-pulse optical spectrum,

hich can be measured in a single shot with an array detector at the focal plane
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f a spectrometer [203]. In this implementation, the chirped pulse is synchro-
ized with the THz waveform in the electro-optic crystal, and the polarization
odulation of the chirped pulse is analyzed by a polarizer followed by a spec-

rometer. The THz waveform field is recorded over the temporal duration of the
hirped pulse TCHIRPED. The bandwidth of such a diagnostic is limited by the
hirp rate, as the frequency content of the temporal modulation must be small
elative to the local frequency content of the chirped optical pulse. The temporal
esolution is of the order of �T0TCHIRPED, where T0 is the duration of the optical
ulse before chirping. Since encoding is not performed on a spatial coordinate,
his technique can be extended to single-shot spatiotemporal THz characteriza-
ion. The chirped optical beam is extended along one spatial dimension, and the
ptical spectrum measurement is performed along the corresponding direction
y using an imaging spectrometer [358].

ther setups for single-shot characterization of THz waveforms use time-to-
pace encoding. In these techniques, the modulation is induced on a short optical
ulse, and different times in the THz waveform are encoded onto different spa-
ial locations. An array detector measuring the spatial intensity after the polar-
zer therefore yields the THz electric field after proper calibration of the time-to-
pace encoding. Time-to-space mapping can be obtained by using
onfigurations similar to single-shot autocorrelators, for example, by using a
arge angle between the THz and the short optical pulse in an electro-optic crys-
al [359], using a large angle between an optical pulse modulated by a THz pulse
ia the electro-optic effect and a short optical pulse in a nonlinear crystal [360],
r using a probe optical pulse after a dispersive element that introduces pulse-
ront tilt [361]. A discrete version of a single-shot cross correlator has also been

Figure 45
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chematic diagram of a terahertz time-domain photoconductive detector. (a)
ontact geometry of the polarization-sensitive THz receiver, including (b) an
lectron micrograph of the gap region. A laser pulse forms a gate beam, which
enerates electrons in the detector material, onto which the THz radiation is fo-
used by using an off-axis parabolic mirror. The delay between the gate and the
Hz pulses is varied to map out the electric field of the latter. (c), (d) Examples
f the vector field of two THz pulses measured by using this device (figure cour-
esy E. Castro-Camus and M. B. Johnston).
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uilt with echelons [362]. Because these techniques do not rely on encoding of a
emporal modulation on the frequency component of the optical pulse, they are
imited in bandwidth only by the duration of the short optical pulse. Their tem-
oral range is limited by the temporal range covered by the time-to-space map-
ing of the optical pulse.

.4. Carrier-Envelope Offset Phase

he phase stabilization of trains of optical pulses generated by mode-locked la-
ers and the broad spectra generated by these lasers have become increasingly
mportant in the recent years as octave-spanning sources have been developed
363–365]. A truly complete characterization of a pulse field requires knowledge
f the carrier-envelope offset (CEO) phase �0 (also known as the “absolute”
hase). The CEO phase is usually not a concern for applications of pulses that
re significantly longer than the duration of an optical cycle (i.e., the oscillation
f the electric field) at the corresponding wavelength range. However, for pulses
ith durations of the order of a few optical cycles, the phase of the field oscilla-

ion under the envelope can significantly modify the shape of the real electric
eld. The effect of this phase can be seen in Fig. 46: an offset of the CEO phase
y � /2 leads to a very different electric field. For a pulse train generated by a
ode-locked laser, the CEO phase is usually different for each pulse in the train

ecause of the difference between phase velocity and group velocity in the laser
avity and because of various noise sources. None of the methods described in
his review provides such knowledge because their experimental trace does not
epend upon �0, and, in general, only highly nonlinear processes with ultrashort
ptical pulses depend on it [315]. Time-domain measurements of the relative
hase of successive pulses in a pulse train can be performed, however [366,367].
t is possible to use a feedback control loop to stabilize the CEO phase to a par-
icular value using the f-2f interferometer [364]. The way in which this is
chieved is to measure the beating between modes of the spectrum of the pulse-
rain fundamental and its second harmonic. The spectrum of a pulse train is a fre-
uency comb—a set of discrete modes separated by the pulse repetition fre-
uency frep, as illustrated in Fig. 46. The modal frequencies are nfrep+ fCEO, where

CEO is a frequency between 0 and frep. In the time domain, the envelope of the
lectric field is periodic, with period frep. However, the phase of the field oscilla-
ion under the envelop changes by 2�fCEO/ frep between two successive pulses:
he electric field is periodic only if fCEO=0. The second-harmonic comb frequen-
ies are at 2nfrep+2fCEO. For two modes in an overlapping frequency region of
he fundamental and second-harmonic spectra, beating in the time domain oc-
urs at the frequency fCEO. This beat frequency can be directly measured by a
hotodetector, and the value of fCEO can be adjusted, for example, by changing
he intracavity path length of the laser oscillator. Of course, in order that the fun-
amental and second-harmonic spectra overlap, the former must have at least a
ne-octave-wide spectrum. It is possible to obtain this directly from an oscilla-
or, but more commonly it is obtained by expanding the bandwidth of the spec-
rum by means of a nonlinear optical process, such as self-phase modulation in a
hotonic crystal fiber. Several methods have been proposed to determine the
EO phase for individual pulses (or the common CEO phase of the pulses com-
osing a train of pulses with a CEO frequency equal to zero) [368,369]. These
ethods use the asymmetry of the direction of motion of electrons ionized by

he pulse. For sinelike pulses, this distribution will be symmetric; for cosinelike,

t will not be.
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.5. Conclusions

he establishment of general principles of pulse characterization, and the instan-
iation of these principles in several different techniques, suggests that the field
f ultrafast pulse characterization is a mature one. Indeed, some of the methods
ave proved commercially viable, so that they have passed from being labora-
ory tools to being workaday devices.

onetheless, challenges remain. There is a clear need, evidenced by some of the
pplications and current areas of research, to extend metrology to more extreme
avelengths, larger bandwidths, shorter durations, and greater complexities, as
ell as to encompass all the degrees of freedom of the electric field, including its
uantum state. Even for a single pulse, unless it is close to transform and diffrac-
ion limited (and in a pure polarization state, not to say a pure quantum state!) the
mount of data required for specifying the pulse is enormous, and itself poses
ignificant processing challenges. Coupled with the rapid repetition rates of la-
er oscillators and amplifiers, this demands new ways of extracting the appropri-
te quantities. Extracting the field itself from this vast data set in a reliable way
emains a challenge.

s technology improves, so will the sensitivity and compactness of the current
eneration of devices. This is already becoming evident in the burgeoning num-
er of applications based on linear shearing interferometry and spectrography,
ven though these were proposed and analyzed more than a decade ago. This
pens new capabilities and applications based on ultralow-light level devices
ith integration capability. This will likely be very valuable for system-level

ontrol loops.

nderlying all of this, however, it is fundamental that the development of new

Figure 46
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ools underpins scientific discovery, so that as new methods arise and old ones
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volve, we can be sure there will emerge new phenomena. Conversely, new sci-
nce underpins the development of new technology, so we can also be sure that
here will be new techniques and applications arising from new discovery. The
ymbiosis between science and technology is clear in ultrafast optics: the gen-
ration, amplification, and measurement of short electromagnetic pulses have
pened new vistas in physics, chemistry, and materials science, as well as in ap-
lications such as biomedicine and telecommunications. This will continue.
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