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2.1 QUANTIZED ELECTRIC FIELD & OPERATOR NOTATION

This section introduces some of the basic quantum optics notation found
in many textbooks, most closely following the treatments of Gerry and Knight
[16], Loudon [25], and Walls and Milburn [47]. Sections 2.2 and 2.3 then detail
the characteristics of single-photon sources, and detectors, respectively.

The quantized electric field at position T and time ¢ can be written as an
operator,

. A ) RN

E@En =3 (B G0+ B ), @1

J

where the sum is over j orthogonal modes. Each mode j can be defined as
having some particular spatial extent, propagation vector, center wavelength,
polarization, and spectral and temporal profiles. E;J”) (£,t) and I:I;_) (¥,1)
represent the positive and negative frequency components, respectively, of the
field in mode j. They are related as

o e At
B @ = [E5+ )(r,t)] , 2.2)

where 1 denotes the Hermitian conjugate.
The electromagnetic field is treated as a quantized harmonic oscillator with

a Hamiltonian .
H=Y ho;(ala 2.3
Z ] <a aj + 2) (2.3)

where i = h/2m and h is the Planck constant and Ehw ; is the energy of the

vacuum fluctuations in mode j. The single-mode creation operator &; denotes
the addition of one photon to mode j:

alin)j = Vn+1ln+1);, 2.4)

where the photon number state |n); indicates that exactly n photons occupy
mode ;. Similarly, the annihilation operator d; describes the removal of one
photon from the mode:
ajln)j = +/nln — 1), (2.5)
The number states are eigenstates of the single-mode number operator, 7 ;, such
that
ijln)j = a\a;in); = nin);, (2.6)

In perhaps the most commonly cited example of a single-mode field, the
mode j can be taken to indicate a plane-wave, monochromatic field with angular



Photon Statistics, Measurements, and Measurements Tools

frequency w;, wave vector Kk j» and polarization described by the unit vector €;.
The positive-frequency component of the field in this mode can be written as [ 1 6]

B F0) = £¢ja,e' T, 2.7
with £ = i,/hw;/2e0V, where gg is the vacuum permittivity and V is the
mode volume.

To describe fields that are not strictly monochromatic, and thus have some

non-zero spectral width, it is convenient to replace the single-mode creation
and annihilation operators &; and a; with their continuous-mode counterparts

&j (w) and a j(w). These operators obey the commutation relation [25]
[a;().4} ()] =8 — o). 2.8)
The number operator in this case is rewritten as
= / dwd (@) (), (2.9)
and the positive-frequency field operator becomes
E {0 = f dw&;8;d; (w)e! KiT-on. (2.10)

Fourier transformation yields the continuous-mode operators in the time
domain, [25]

1 N .
AT A~ —iwt
a.(t):—/da)a.a))e ,
I N2 '/(
~ 1 ~ —iwt
aj(t) = E dwa](a))e s 2.11)
A = /dtaj?(t)&,- (1),
with the commutation relation
[&j(t),&j.(t’)] =68 —1). (2.12)

To describe experiments with pulsed light, it is convenient to define a photon-
wavepacket creation operator [25]

‘A’;,f :/dffj(t)?lj(t) = /dij(w)&j-(w), (2.13)

where f;(t) and F; (o) represent the temporal and spectral profile, respectively,
of the photon wavepacket, and are normalized according to Eqs. (2.12) and
(2.13) [25]

/da)|Fj(a))|2 = /dt|fj(t)|2 =1. (2.14)
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In this case, the positive-frequency component of the field can be written
EYE0) = / dw;8; FF ()aj(w)e' i T=on. (2.15)

Substituting Fj(w) =8(w —w;) into Eq. (2.15) yields the single-mode
monochromatic case in Eq. (2.7). If the bandwidth over which F ]’f (w) is non-
zero is sufficiently narrow compared to the center frequency w;, one may make
the approximation

E5+) (F,l‘) ~ 8]é]el(R/F_w’t)/dwF/*(w)aj (a)) (216)

Time-dependence is incorporated into quantum optics calculations using
one of three representations: the Schrodinger picture, the Heisenberg picture,
or the Interaction picture. In the Schrodinger picture, the state vector | (7)) is
time-dependent but the operators representing observables 0® are independent
of time. In the Heisenberg picture, the state vectors | ) are time-independent,
while the operators oM (t) depend on time. The Heisenberg picture is often
used to describe pulsed experiments where the duration of the pulse is short
compared to the temporal resolution of the detectors. In this case it is common
to use a time-independent density matrix, which describes the state of the field
averaged over the duration of the pulse, and further averaged from pulse to pulse.
It may not always be trivial to calculate the average over the pulse duration, but
experimentally this is often what is measured given that single-photon detectors
are relatively slow in comparison to the duration of ultrafast laser pulses. In the
Interaction picture, both the state vectors WU (t)) and the operators o (1)
are allowed to depend on time. The Interaction picture allows the computation
of coherences that depend on time delay 7, such as g®(r). Each of these
three representations are used in this book, with the choice of picture based on
convenience for a given scenario. The superscript labels (S), (H), and (I) are
used here for illustration, but are typically not included elsewhere.

2.2 SOURCE CHARACTERISTICS
2.2.1 State Vector

If the light emitted by a source is in a pure state, it can be described by a state
vector. One can write a generalized multi-mode version of the state vector for
a quantized electric field in a pure state, at position ¥ and time ¢, as [25]

[y (£,0)) = Z Cnynans,... (B0 1) 1I2)2In3)3 2.17)

n1,n2,13,...

where cnl,nz,n&_,_(f',t) is the complex coefficient of the multi-mode number
state ket representing 71 photons in mode 1, n, photons in mode 2, and so on.
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This ket can be written as [15]

In1)1ln2)alnz)s - - - = 0), (2.18)

j=1.2.3,..

where |0) is the global vacuum, representing no photons in any mode. The
infinite set of these multi-mode number states form a complete orthonormal set
of basis states, so that [25]
[aj,a1 =6 x. (2.19)
In many situations treated in this book, only one mode contains any photons,
so the representation of the state can be simplified greatly. In the single-mode
case, we can write

[¥(F,0)) = ch(F,t)m), (2.20)
n=0

where we have dropped the mode subscript j on the number state. If the state
vector does not depend on r or ¢ over the region of interest, or if the information
about time- and space-dependence is incorporated into the definition of the
mode, we can use the simplified notation

¥) =D culn). 21

n=0

In this case an ideal single-photon source will emit light in the state

() =1[1), (2.22)

which contains exactly one photon in exactly one optical mode.

2.2.2 Density Matrix and Photon Number Probabilities

A more general quantum representation of a state is the density matrix, which
is valid for both pure and mixed states. The density-matrix operator for a mixed
state can be written as an ensemble average of pure states,

A=Y pilVi) (Wil (223)

where p; is the probability that the light field occupies state |/; ). For a pure state,
only one of the coefficients p; is non-zero, and is equal to one. The ensemble
average of an observable O can be found from the trace of its product with the
density matrix [25]:

(0) =Tr{pO}. (2.24)

When the photon number states are used as basis states, the diagonal
elements of p contain the photon number probabilities,

P(n) = Tr{pln)(nl} = (n|p|n), (2.25)
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where P (n) is the probability that a source emits n photons. The photon number
probabilities are normalized such that

> P(n)=Tr{p} =1, (2.26)
n=0

which satisfies the usual density-matrix normalization condition.
The notation P(n > m) refers to the total probability that a source emits

more than m photons
o0

P(n>m)= Z P(n). (2.27)

n=m+1

The probability of multi-photon emission, P(n > 1), is a special case of this:

Pin>1)= Z P(n). (2.28)

n=2

For a pulsed source, P (n) indicates the probability that the source emits n
photons per pulse. The mean number of photons per pulse is

1 = Tr{ph}. (2.29)

For typical photon sources, if P(1) > P(n > 1), then it is usually the case that
u >~ P(1).

For a continuous-wave (CW) source we define P(n; T') as the probability
that the source emits n photons in a time interval 7', and @ (7') as the mean num-
ber of photons present over the same interval. If P(1; T) > P(n > 1; T), then
for typical sources w(7) >~ P(1; T'). Care should be taken when choosing 7,
as there can be ambiguity in whether a source emits n photons simultaneously
or in succession over the duration of 7. This will be discussed in more detail
in Section 2.2.5.

2.2.3 Purity

In many applications, particularly those that require indistinguishable photons,
it is important that photons be emitted in pure states. The purity of a state can
be quantified as

P = Tr{p?}. (2.30)

Purity has an upper limit of unity for a pure state and a lower limit of 1/N for
a completely mixed N-dimensional state. A simple example of a mixed state is
a pulsed source whose state vector varies from pulse to pulse. If the variation
is small, P may be approximately unity.
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2.2.4 Source Efficiency and Generation Rate

For a pulsed source, the source efficiency nsource 1S defined as the probability that
the source delivers one or more photons to an experiment for each pump pulse:

Nsource = P(n > 0). (2.31)

When characterizing a source, the experiment is often simply a detector or
detection system (see Fig. 2.1). In the limit of low multi-photon probability,
P(1) > P(n > 1), the source efficiency can be estimated from the detected
count rate and the detection efficiency as

correct
Msource = P(1) = —40e—, (2.32)
NDE Rpump
where npg is the detection efficiency defined in Section 2.3.1, Rpump is the
repetition rate of the electrical or optical pump, and R{Jes" is the detected
count rate, corrected as necessary to account for detector nonidealities such as
dark counts, dead time, afterpulsing and differing response to single photons
as compared to multiple photons. These corrections, which may or may not be
important depending on the specific source and detector involved, are discussed
in Chapter 8.
In some cases, it may be possible to decompose the source efficiency into
two components,

TNsource = Tgen/lextracts (2.33)

where 7gen is the generation efficiency of the source itself and extract is the
extraction efficiency. The generation efficiency is the probability that one or
more photons are created within the source per pump pulse. The extraction
efficiency includes all optical losses incurred in extracting the photons from
where they are generated to where they are useful for an application. This can

Counter

nSH'LII'CE

FIGURE 2.1 Schematic showing how the source efficiency, nsource, is defined for a pulsed
source: as the total probability that a source can deliver one or more photons to an experiment
for each pump pulse. In the case shown here, the “experiment” is simply a single-photon detector
and a counter. The source efficiency is the product of the generation efficiency of the source itself,
Ngen, With the efficiency with which photons are extracted from the source and delivered to the
detector, Nextract-
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include losses due to spectral filtering for defining the emission bandwidth
and the rejection of any pump light, spatial filtering, geometric alignment,
and beam shaping optics. Extraction efficiency is often characterized by
measuring transmittance and mode overlap. If ngen and Nextract are identified,
their dependence on collection optics, spectral bandwidth of filters, pump power,
and other critical parameters such as the physical interaction volume defined
by the collection should also be given.

A pulsed source may also be characterized by the maximum repetition rate at
which it could deliver photons to an experiment, Ryep*. If RiZp™ is identified, any
effects that increased rate has on other characteristics, such as the multi-photon
emission probability, should also be identified.

For a CW source, the generation rate Rge, is typically a more relevant
quantity than efficiency. Rgey is the total rate at which photons are delivered to
a detector, corrected, as in the pulsed case, for detection efficiency and other

detector non-idealities:
correct

Rgen = —3etect (2.34)
IDE

2.2.5 Second-Order Coherence, g»

The second-order coherence, g(z), is by far the most common measurement
used for determining the quality of a single-photon source, because it gives
information about the source’s multi-photon emission probability. g is also
referred to as the second-order correlation function or the normalized intensity
correlation. The second-order coherence between mode j, measured at position
Fl) and time #, and mode k, measured at position r_2> and time t; is [25]

O B (B @B (5. (15.0)E (7 .0)
g',k ry,h;ra,h2) = A; A ~(_ ~ 5
! (BB (7)) B (5 )BT (7 ,0)

(2.35)
where the angled brackets denote an ensemble average; in a laboratory
experiment, this typically entails an average over a large number of detected
photons. Writing in terms of creation and annihilation operators, and cancelling
common factors in the numerator and denominator, this becomes

A AT > A > A >
(a}(l‘l,tl)az(l‘zJz)ak(l’z,tz)aj(l'l,tl))

— 8 — . . (2.36)
@ (¥1,ma; (¥1,1))(@ (73,12)ax (73 ,12))

2) — —
g;,;)((l’l,ll; r,n) =

For measurements on a single mode (j = k), the j and k subscripts are typically
omitted.

This can be written more compactly for a stationary source—one whose
properties depend on a time delay T = f, — #; but not on specific values of
t1 and r,. Stable CW sources are typically stationary, whereas pulsed sources
are inherently not stationary. For a single-mode, stationary source measured
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1 N 4
BS |,

FIGURE 2.2 TIllustration of the ports (modes) of an optical beamsplitter (BS). Here an arbitrary
field is incident on port 1, and the vacuum field is incident on port 2. For a BS with a field reflection
coefficient R and field transmission coefficient 7, the destruction operators can be related as
a3 =TRa; +7Tay and aqg = Tay + Ray.

at a single position (f; = F,)—or two positions that can be considered as

equivalent—this simplifies to the more familiar form:

(@' ma’e +vae + vaw)
(@ na))?

Itis tempting to try to express g ® (1) in terms of the time-dependent number

operator, 7i(t) = a'(1)a(t). However, because & and @' do not commute, the
normally ordered operators in this expression cannot be rearranged and

(n@n(t + 1))
(n(1))?

In the special case of 7 = 0, on the other hand, it is possible to write g® in
terms of 71(¢) as [25]

¢?@) = (2.37)

g9 # (2.38)

(@) @) — 1)

@)
Fortunately, this zero-delay value is typically the most relevant for
characterizing a single-photon source. Using this expression, g (0) can be
related to the photon number probabilities P (n); this will be discussed in the
next section.

One important property of g‘® () for a light source is that its value does not
change with loss as long as all modes experience the same loss. To show this, one
need only verify that transmission through a beamsplitter (BS) does not change
the second-order coherence, since loss can be modeled as transmission through
a lossless BS with arbitrary reflectance and transmittance [26]. An example of
such a BS is shown in Fig. 2.2. The input and output destruction operators can
be related as [25]

¢20) = (2.39)

az = Ray + Tay,
as =Ta) + Rar.
The electric-field reflection and transmission coefficients, R and 7, are com-
plex numbers that satisfy |R|> +|7|> = 1 and RT* + TR* = 1 for a lossless
symmetric BS. For an arbitrary field input at port 1 and a vacuum field input at
port 2, one can readily show that [25]
O TIME (0a] (¢ + Dan (e + 1)ar (1))
T 12(@] (a1 ()| TP@] (¢ + ©)ar e + )

(2.40)

(2.41)
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with a similar expression for g%)(‘[). Thus the second-order coherence of the
transmitted and reflected fields is equal to that of the incident light [25]:

g0 =g @ =53 . (2.42)

As a result, g® (1) can be measured accurately in an optical system that has
low transmission or low extraction efficiency.

2.2.6 Relating g'® to P(n)

To gain more insight into the information contained in the second-order coher-
ence it is useful to see how it can be related to the photon number probabilities.
Here we examine this relationship for both pulsed and CW sources.

2.2.6.1 Pulsed Sources
Pulsed sources are inherently not stationary, and Eq. (2.37) is not valid. In this
case, it can be convenient to define a discrete version of g(z) [40]

(@'nal + mlafl + mlafl])

@ —
goiml = (@narmyatu + miafl +mi’

(2.43)

where [ and m take on integer values denoting pulse number, and the angled
brackets indicate an average over /. Thus g(z) [0] is the autocorrelation of the
pulse train, while g [1] is the cross-correlation of each pulse with its nearest
subsequent neighbor (see Fig. 2.3).

In this chapter, square brackets are used to distinguish the discrete form
g(z) [m], valid for pulsed sources, from the continuous form g @ (1), valid for CW
sources. In the discrete notation, g®[0] is the relevant metric for quantifying
the multi-photon emission probability of pulsed single-photon sources, while
2@ (0) is relevant for continuously pumped sources. The remaining chapters
of this book drop this distinction and follow the usual convention of using the
notation g®(0) to characterize both pulsed and CW sources.

The zero-delay value can be written as

(AR = 1))
g?[0] = ———, (2.44)
(n)
/-2 11 / /+1 [+2 1+3
Intensity
<>
Trep t

FIGURE 2.3 Optical pulse train illustrating the labeling scheme used in the discrete notation.
Trep is the repetition time of the system, which is typically set by the repetition time of the optical
or electrical pump.
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where the number operator 72 = a'[[]a[l] measures the number of photons in
the /th pulse. The expectation values can be rewritten in terms of the density
matrix as

Tr{pn(n — 1)}

(Tr{pn})?

Only the diagonal terms of the density matrix (when written in the photon-
number-state basis) contribute to g(z) [0]. Thus we can rewrite this in terms of
the per-pulse photon probabilities as

Yoo (n — 1) P(n)
[>_n2onP(m)]?
_2P2)+6P(3)+ 12P(4) +---
~[P()+2PQ)+3PB)+ -2
_2P(2)+6P3)+12PA) +---
= 2 ,
where u is the mean photon number per pulse. This expression can be used to
bound the probability of multi-photon events by relating this probability to the
numerator of g(z) [0] as [8,45]

g?[0] = (2.45)

g?101 =

(2.46)

Pin>1) = Z P(n) < %Zn(n — 1P (n). (2.47)
n=2 n=0

As a result, a measured g®[0] can be used to place an upper limit on the
multi-photon probability:

1
Pin>1)< z;ﬁg@)[m. (2.48)
If P(2) > P(n > 2), Eq. (2.46) can be approximated as
2P(2)
g?[0] ~ ——. (2.49)

2
"
In the special case where P(1) > P(2) > P(n > 2), which holds for many
low-efficiency sources, this simplifies to

2P(Q2)
[P(DI>

Note that g(z) [0] does not directly reflect the two:one photon ratio P(2)/P(1),
as one might naively expect. Although g™ [0] is the most commonly cited
metric of single-photon source quality, for some applications P(2)/P (1) is the
more relevant quantity.

The discussion above assumes each pulse is treated as a whole, and photon
statistics are averaged over the pulse duration. More information about a source
can be obtained by studying the detailed time evolution of g‘® during each
pulse [1,12].

g@0] ~ (2.50)
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2.2.6.2 CW Sources

IfP(1;T)> PQ2;T) > P(n > 2; T) foratime interval T over which g® (7)
is approximately equal to the zero-delay value (i.e., g®(T) ~ ¢g®(0)), then
this can be approximated as

2P(2;T)

2) ~
T O=Bane

(2.51)
Care should be taken when choosing 7', given that a source may be able to emit
two photons simultaneously or in succession.

To illustrate this point, it is useful to consider an example. Suppose we
have an approximation to a single-photon source that emits photons at a rate
Rgen = 10° s—! and has the g(z)(r) shown in Fig. 2.4, where g(z) 0) =0.1
and g® (1) is approximately constant over a time delay range >1 ns about the
origin, as shown in Fig. 2.4b. Thus, over atime interval T = 1 ns, the probability
of the source emitting one or more photons is

P(n>0;1ns) =107 s x 10° s~ = 1073, (2.52)

Given this very low probability, we can make the approximation P(1; 1 ns) ~
P(n > 0; 1 ns). Solving Eq. (2.51) for the two-photon probability over a 1 ns
interval yields

P(2;1ns) ~ %g@) (0)[P(1; 1 ns)]%. (2.53)
Using the numbers for this example source, we find
P(2;1ns)~5x 1078, (2.54)
The two:one photon ratio in this case is

P(2; 1 ns) N

~5x107°. (2.55)
P(1; 1 ns)

(@) 1.0 (b) 0.2f

0.8}
s s 0.1} 1
> 04} >

02}

0000 =50 0 50 100 0.05 0 5

7(ns) 7(ns)

FIGURE 2.4 Second-order coherence of the example non-ideal single-photon source discussed
in the text. Plot (b) is a close-up view near zero delay of the data in (a).
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By contrast, a source with Poissonian photon statistics and the same generation
rate would have

P(2;1ns)~5x 1077 (2.56)
and PO 1

P@I09) 5o 04 (2.57)

P(1; 1 ns)

The two:one photon ratio is an order of magnitude worse in the latter case,
although neither is particularly large when considering such a short time
duration. Judging from the width of the antibunching dip, however, the photons
emitted by this source are likely to have wavepacket envelopes with durations
much longer than 1 ns, leading to much higher two-photon probabilities.
Calculations over time scales where g(z)(r) is not constant are outside the
scope of the simple treatment outlined here.

2.2.7 Ideal and Non-Ideal Single-Photon Sources

As mentioned in Sections 2.2.1 and 2.2.4, an ideal single-photon source will
emit exactly one photon into a well-defined optical mode that can be efficiently
collected and delivered to an experiment. Two important and distinct features
of an ideal source are: (1) it never emits more than one photon at a time, and (2)
it emits single photons with unity source efficiency. An ideal pulsed source thus
has ngource = 1 and g(z) [0] = 0. For an ideal CW source, the generation rate is
limited only by the temporal duration of each photon wavepacket (often referred
to as temporal coherence) and g® (0) = 0, with g@(r) — 1 as T — oo.

To illustrate the distinction between these two features, consider a non-ideal
source in the form of a pulsed source that never emits two or more photons in the
same pulse, yet has ngource < 1. Such a source could emit light into the pure state

[¥) =V PO)0) + v P(DIL), (2.58)

or the mixed state
p = P(0)[0)(0] + P(1)[1)(1]. (2.59)

The multi-photon emission probability of either source is zero,
P(n>1)=0, (2.60)
as is the second-order coherence at zero delay,
g@01=0. 2.61)

The source efficiency, mean photon number, and probability of one-photon
emission are all equal:
Nsource = 1 = P(1). (2.62)

In practice, no single-photon source is ideal in all ways—yet much can
be done with non-ideal sources. To determine whether a source is useful
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in a given application it is necessary to establish whether the multi-photon
emission probabilities are sufficiently small and whether the source efficiency
(or generation rate) is sufficiently large for that application.

2.2.8 To measure P(n) or g'»?

It might seem that measuring the photon number distribution P (n) would be
the most direct way to characterize a single-photon source. One could then
compare the single-photon probability P (1) with the multi-photon probabilities
P(2),P(3), etc. Photon-number-resolving detectors do exist (they are discussed
in Section 2.3 and in subsequent chapters); to date, however, even the best
devices do not yet combine very high efficiency with low timing jitter and short
dead times [31,46,27]. Unless the detection efficiency of a number-resolving
detector is 100%, the measured photon statistics will be skewed by loss. In
principle, the loss matrix can be inverted to reconstruct the statistics of the
optical state [46,27,5], but such an inversion works best with efficiencies as high
as possible. By contrast, g® can be measured accurately even with click/no-
click detectors with low detection efficiencies. This is one of the key reasons
that g is used to characterize the vast majority of single-photon sources.

2.2.9 Hanbury Brown-Twiss Interferometer

Typically, g (t) is measured with a Hanbury Brown-Twiss (HBT) interfero-
meter [19], such as the one shown in Fig. 2.5. This consists of a beamsplitter,
two discrete single-photon detectors, and some form of timing or coincidence
electronics. An incoming optical field in mode 1 is divided at the beamsplitter
and sent to two output ports, modes 3 and 4, which are incident on two detectors,
D3 and D4. One can appreciate how the HBT interferometer works qualitatively
for an ideal single-photon source: if only one photon at a time is input in mode 1,
there is no way for both detectors D3 and D4 to detect a photon simultaneously,
and g (0) = 0.

The timing electronics record the relative time delay between the two
detection events at D3 and D4. In the original HBT experiment [19], and for
many years thereafter, the timing electronics consisted of a simple start-stop

Timing
Electronics

FIGURE 2.5 Hanbury Brown-Twiss interferometer. The light field to be measured is incident
on input port 1 of the beamsplitter (BS), while a vacuum field is incident on input port 2. With
appropriate normalization, a histogram of the correlations between photon numbers measured by
detectors at output ports 3 and 4 can yield a good approximation to g(z) (7).
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timing circuit. In this case, the timer starts when detector D3 registers a photon
and stops after a time delay t, when detector D4 records a photon. The timing
electronics record a histogram of these start-stop delay times that is ideally
proportional to g (t). It is not critical that the optical path length from the BS
to D3 is equal to that from the BS to Dy, as any difference in photon arrival time
can be compensated by changing the length of electrical cables or adjusting
internal delays in the electronics. In the case of a simple start-stop timer, the
stop pulse is often purposely delayed from the start, so that negative delay data
(r < 0) can be recorded. In recent years, more sophisticated electronics have
been employed. For example, time-tagging electronics can record the arrival
times of all detected photons and data can be post-processed to form multi-
start, multi-stop correlation histograms that more accurately resemble g™ (z),
especially at higher count rates.

In the remainder of this section we examine the HBT interferometer more
quantitatively and explore how well real HBT experiments recover g (7).

2.2.9.1 HBT with Photon-Number-Resolving Detectors

If D3 and D4 are ideal photon-number-resolving detectors with unity detection
efficiency, they can accurately measure 73(¢), the number of photons in mode
3 at time ¢, and 7i4(f + 1), the number of photons in mode 4 at time ¢ + 7. Such
detectors could be used to obtain a normalized correlation between the photon
numbers in the two outputs,

Y2 (r) = AU F D) (2.63)
(n3(0))(n4(r + 7))
where the subscript PNR denotes the use of photon-number-resolving detectors.
Given that [&3,&T] = 0, the operators in the numerator can be rearranged to
show that this correlation is equal to the second-order coherence between these
two modes [13,25]:

(@3 (Hay(t + )aa(t + v)as (1))
(@l (as )@l + Dastt + 1)

VR (1) = =% ), (2.64)

Using the beamsplitter transformations in Eq. (2.40) one can show that the
measured photon number correlation between D3 and Dy is exactly equal to the
second-order coherence of the incident light:

O (0 = IRPITIHa](0a] (¢t + Dar( + Dan ()

(2)
(7). (265
VR IR an )T 2@ ¢+ vae + 1)

So far we have assumed 100% detection efficiency, but we can relax this
requirement and still recover gﬁ)(r) exactly. To show this, we model the
detection efficiencies, 13 and 14, as a beamsplitter with transmittance 73 in front
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FIGURE 2.6 Model of a Hanbury Brown-Twiss interferometer employing detectors with non-
unity detection efficiency. The detection efficiency of the detectors in modes 3 and 4 are taken to be
n3 and 74. These efficiencies are modeled here as beamsplitters BS3 and BS4, with transmission
coefficient 73 = /3 and 74 = /74, followed by detectors D3 and Dy, respectively. D3 and Dy
are both modeled as ideal photon-number-resolving detectors with npg = 1.

of D3 and a beamsplitter with transmittance 74 in front of D4. The normalized
correlation between the number of photons detected by D3 and Dy is also equal
to g (1) of the incident field [25,26] (see Fig. 2.6).

mna(iz(Oist +1)) ()

N B = ~ 2.66
© n3(n3())na (st + 7)) 811 (™) (2.66)

YPNR(13,74)

2.2.9.2 HBT with “Click” Detectors
Since ideal PNR detectors with sufficient timing resolution are not readily
available, HBT interferometers have typically employed single-photon
detectors that can be described as “click,” or “click/no-click,” detectors. Such a
detector will give an output response if it detects one or more photons, but has
no way of distinguishing two or more photons from one photon. Click detectors
are discussed in more detail in Section 2.3.3.

To explore the conditions under which an HBT interferometer with click
detectors correctly measures the second-order coherence, we can define the
measured temporal correlation function

@ p3.4(click(),click(t + 7))
Vcﬁck(f) = - - ,
p3(click(?)) pa(click(t + 7))

(2.67)

where p3 4(click(?),click(z + 7)) is the probability that detector 3 clicks at time
t and detector 4 clicks at time ¢ 4 t; p3(click(?)) is the probability that detector
3 clicks at time #; p4(click(z + 7)) is the probability that detector 4 clicks at
time ¢ 4 7; and the average is taken over all time 7. We can estimate this quantity
from measurements by using

N.(t; AT)

R ram— (2.68)
R3R4 AT Tint

~(2)

Veliek (T) =
where N.(t; A7) is the number of correlation events recorded by the timing
electronics in the histogram bin centered at delay t having width At. This
quantity represents the number of times that a click on detector 3 is followed by
a click on detector 4 after a delay ranging from t — At/2to v + At/2. R3 and
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R4 are the singles count rates on detectors D3 and Dy, and Tiy, is the integration
time or experiment run time. For a CW source, At is often set at the minimum
value allowed by the timing resolution of the detectors and electronics, but in
some cases a wider bin can be chosen if g (1) evolves more slowly with t.

For pulsed sources, the measured correlation function can be normalized to
find the area of each pulse in the histogram as

~(2) N[m]
Velieklml = ————, (2.69)
click R3Ry4 Trep Tint

where m takes on integer values and At has been replaced by the pump
repetition period Trep. Assuming a lossless BS with arbitrary R and 7 and
click detectors with detection efficiencies 13 and 14, the pulsed measurement
outcome at zero delay can be written as a function of the photon probability
distribution of the incident light by computing the joint probability distribution
of photons detected by D3 and D4 [44].

In general, ychck[O] is not equal to g®[0], but under appropriate

experimental conditions ycnck[O] can approximate g®[0] quite well. It is
illustrative to write out the first few terms of each factor in the numerator and
denominator [44]:

mmaREIT P [2P@) +6P3) (1= bR = Jnal T12) + -]
BIRE [P +2P@) (1= §nsIRE) +- |l TR [P) +2P@) (1= dmal ) + -]
(2.70)

where the P(n)’s represent the photon number probability distribution of the
light input in mode 1. If we keep just the lowest order terms in Eq. (2.70),
we can see that it reduces to Eq. (2.50). For higher photon numbers, R, 7,73,
and n4 appear as correction factors, indicating that the higher photon number
terms tend to be underestimated by the click detectors. In the limit of very
low detection efficiencies, these corrections to the higher photon number terms
become negligible. Applying 1I’Hopital’s rule to Eq. (2.70) yields

2
V(.lu.k[ 1=

lm o, sinl01 = g@[0], 2.71)
3

regardless of the values of R and 7. Alternatively, if the source has very low
multi-photon generation probabilities so that P(1) > P(2) > P(n > 2), then

) 2P (2) 2) [0].

Clle[ ] [P(l)]2 - (272)

Although the coincidence probability is maximized for R = 7 = 1/2,
because of the way Vchck [0] is normalized, it can still give a good approximation
to g™ [0] even when R # T or when the detection efficiencies are not matched,
m3 # n4. Because loss does not change g, even though it alters the photon
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probabilities P (n), the measurement fidelity can be improved by introducing
additional loss to the system. Care should be taken to ensure that any additional
loss is the same for all modes; for example, any additional spatial or spectral
filtering should be avoided.

2.2.9.3 Summary of HBT Interferometry in the Characterization of
a Single-Photon Source

The HBT interferometer has several important properties that make it especially

useful for accurate measurements of g(z) (7).

(1) The BS reflectance:transmittance ratio does not need to be perfectly 50:50.

(2) The detection efficiencies of D3 and D4 do not have to be 100 % or even
matched to one another.

(3) Threshold or click detectors can be used without sacrificing accuracy, as
long as P(1) > P(2) > P(n > 2).

(4) Loss does not change g(2)(t), so it can be measured accurately even in a
system with unknown and potentially large losses.

There are a number of key experimental limitations to the HBT
interferometer. For example, if g (r) varies significantly over time delays
that are short compared to the timing jitter of detectors and/or electronics,
then the measured ¥ () will be a convolution of g (t) and an instrument
response function. While it may be possible in some cases to deconvolve these
two components and obtain a better estimate of the source g® (1), it is generally
not an easy task. In addition, normalizing by count rates, as in Eqgs. (2.68) and
(2.69), may prove inaccurate if the count rates vary during the acquisition time.
In this case, it might be preferable to perform a piece-wise normalization over
shorter time intervals, if possible.

Finally, it is worth noting that a beamsplitter is not necessarily required to
measure the second-order coherence. Beamsplitters are used chiefly because
readily available single-photon detectors have non-zero dead time and a limited
ability to resolve photon number. Recent demonstrations have shown that
g@ (1) of single- or few-photon states can be measured with one detector,
provided that the detector either has a very short dead time [42] or the ability
to resolve photon number [51].

2.2.10 Bunching, Antibunching, and Poissonian Photon Statistics

A source exhibits bunching if photons are more likely to arrive closely spaced
in time than they are to arrive further apart. Conversely, a source exhibits
antibunching if photons are more likely to arrive far apart in time than close
together. These conditions are typically expressed as g™ (0) > g@ (¢ # 0) for
bunching and g(2) 0 < g(2) (t # 0) for antibunching [25,50]. (These relations
break down for a source that is antibunched over some time scales and bunched
over others [48].)
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A source with Poissonian photon number statistics, such as the coherent
state discussed in Section 2.2.13, is neither bunched nor antibunched, and has
g@(7) = 1 forall 7. In this case photon arrival times are distributed randomly,
with two photons displaying no preference for arriving separated by short or long
time delays [25,50]. Note however that ¢® (z) = 1 does not necessarily imply
that the photon number distribution follows a Poisson distribution. One example
is a statistical mixture of three sources (single-photon, thermal, and coherent)
in three modes that can add up in the right proportion to yield g () = 1
and yet have a probability distribution that cannot be described by a Poisson
distribution [18].

Nevertheless, it is useful to define terms that delineate how g(z) varies from
the value it takes for Poissonian sources. One way of looking at g is as a
quantity relating the mean photon number to the magnitude of the variation
in photon number. To see this, we can examine the pulsed case and rewrite
Eq. (2.44) as [25]

An)? —
g@p0y =14+ 8 —# = 2.73)
7
where u = (n) is the mean photon number and the variance is
(An)? = (%) — (A)% (2.74)

Thus g@ is a measure of the relative magnitude of the mean and the variance.
For a Poisson source or any other source with g(z) = 1, the mean and variance
are equal: 1 = (An)?. If the variance in photon number is larger than the
mean, then ¢ > 1 and the source exhibits super-Poissonian behavior. If
the variance is smaller than the mean, then g(z) < 1 and the source exhibits
sub-Poissonian behavior. Because classical light fields are constrained to
g® > 1, sub-Poissonian statistics can only be described using a quantized
electromagnetic field [17,25].

Because of the timing jitter limitations of detectors and electronics, a mea-
sured y® (7) may not fully capture the fastest temporal dynamics of g@ (7).
As aresult, measuring y @ (0) = 1 does not necessarily imply that g (0) = 1.
Most thermal sources, for example, have coherence times far too short (<1 ps)
for the consequent bunching to be resolved in a typical y ® (r) measurement.

Most single-photon-source approximations exhibit both antibunching and
sub-Poissonian photon statistics. However, an antibunched source does not nec-
essarily have sub-Poissonian photon statistics [30,48]. One example is a source
that exhibits “blinking,” displaying antibunching on very short time scales and
bunching on longer time scales [4]; an illustrative example of this is plotted in
Fig. 2.7b. This highlights the importance of correctly normalizing y ® (7): if
such a source is bunched over a much longer time scale than the antibunching
(so that the bunching peak looks flat over the measured delay range), then a
source may appear to have sub-Poissonian statistics, when in fact g () > 1.
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FIGURE 2.7 (a) Plot showing the relationships among bunching, antibunching, sub-, super- and
Poissonian photon statistics. Plotted are three ideal sources: a chaotic, thermal-like source (solid
black curve), a coherent source (dotted black curve), and a single-photon source (solid gray curve).
Tc is the coherence time of the bunched and antibunched sources. (b) Illustration of how a source
could be antibunched without exhibiting sub-Poissonian photon statistics.

Likewise, sub-Poissonian photon statistics do not necessarily imply that a
source will be antibunched, although this requires a light source that would be
difficult to implement in a practical setting [30,48].

2.2.11 High-Order Coherences

In some cases, it may be relevant to measure coherences higher than second
order, given that in principle one needs to know all orders to fully reconstruct
the density matrix [17]. The third-order coherence for a single-mode stationary
source can be written:

@matt +)att + n)at + n)al + ta))

(@ (na)? 27

¢, =

For a pulsed source, we can write a discrete version for the zero-delay value in
terms of the density matrix:

_ Te{piGi — D@ — 2))

Y1001 = ~a 2.76
e 00 (Tr{pi})3 (2.76)
In terms of photon probabilities, this is
®[0,0] = 2nm02 = D(n =2 P(n)
¢ 00 [>ongnPm)]?
_ 6P(3) +24P(4) + -
T P()+2PQ) +3PG) + P
6P(3)

(2.77)

PP
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where the approximation in the last line holds provided P(1) > P(n > 1) and
P(3) > P(n > 3). The temporal coherence can be generalized to arbitrary
order m as

@ O a" ¢ + I T + 1)1a(0))

(@) = 2.78
smw @ a)" I
where T = (71,72, ...,Tm—1). The leading-term approximation for a pulsed
source when all delays are zero is
> 1P (m)
m 5] ~ 2 2.79
g 0] PO (2.79)

assuming P(1) > P(n > 1) and P(m) > P(n > m). Thus, in sources with
low mean photon number, to first order the m™-order coherence will tend to be
dominated by the m-photon contribution. For an ideal single-photon source, all
P (n) are zero for n > 2, and so all higher-order coherences are also identically
zZero.

Because g(z)(r) has the form of an autocorrelation, it must be symmetric
about t. Higher-order coherences lack this constraint. It has been proposed
that asymmetry in g® (r1,72) can indicate irreversible processes, which could
be used to distinguish a non-equilibrium steady state from true equilibrium in
chemical reactions, for example [38].

2.2.12 Indistinguishability

As discussed above, while an ideal single-photon source will emit exactly one
photon at a time, many applications further require indistinguishability of the
emitted photons. This may mean that two or more successive photons from a
single source are emitted into identical quantum states. It may also mean that
multiple single-photon sources should emit photons that are indistinguishable
from one another.

Two photons are perfectly indistinguishable if their density matrices p; and
02 are equal. To quantify the difference between two unequal density matrices,
we can define the indistinguishability of these two photons as

. 1. .
wam=1—ﬂm—mw, (2.80)

where ||p1 — p2|1? is the operational distance between p; and 5> [23,35]. This
operational distance has a maximum value of two, and 7 (01, 02) has a minimum
value of zero, if p; and p, are perfectly distinguishable. If p; = g3, then
51 — p21I> = 0 and T (p1,p2) = 1. If the two input photons are in pure states,
then the density matrices can be written as o1 = |¥1) (1], and o2 = |2} (Y],
and the indistinguishability is [23,35]

T (B1,2) = 1{¥r11¥2) 1> (2.81)
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FIGURE 2.8 Left panel: Schematic for measuring HOM interference. The time delay 717 is the
elapsed time from when photon 1 arrives at the BS to when photon 2 arrives at the BS. This
delay, which can be scanned by adjusting the optical path length of one of the input arms, can be
varied in steps much smaller than the timing resolution of the single-photon detectors D3 and Dg4.
Alternatively, a half-wave plate (A/2) can be inserted into one input port (port 1 here) to rotate
the polarization of p| so that it is orthogonal to that of py, making the two photons perfectly
distinguishable. The time delay t34 is the elapsed time from when a photon is detected by D3 to
when a photon is detected by D4. Coincidences are events where 134 = 0: both D3 and D4 detect
photons at the same time. Right panel: Theoretical plot of HOM dip for Viyopm = 0.8.

This is recognizable as the fidelity [49]. In principle, indistinguishability could
be computed by separately measuring all the quantum properties of the two
states, including the spectral, temporal, and spatial profiles, and the polarization
state, and fully accounting for all measurement bias, such as mode selectivity.

In practice, the indistinguishability of two photons is instead typically
quantified by observing Hong-Ou-Mandel (HOM) interference between them
[20]. In an HOM interferometer, if two photons are incident on the two input
ports of an ideal 50:50 beamsplitter, their paths can interfere such that both
photons must exit the same output port of the BS.

A typical experimental setup is shown in Fig. 2.8. If two indistinguishable
single photons in pure states are incident on the BS, one each at ports 1 and 2,
they transform as |1)1]1)2 — (]2)3]0)4 +10)3 |2)4)/ﬁ. Both photons could be
detected by either detector D3 or detector D4, but the probability of a coincidence
between the two detectors, P, is zero. The visibility of the HOM interferometer
is found by comparing this coincidence probability to the coincidence
probability when the two input photons are made perfectly distinguishable.

One method of measuring the visibility is to vary the time delay, 712, between
the photons incident to ports 1 and 2. The probability of coincidences (events
where 134 = 0) between detected photons in output ports 3 and 4 is measured
as a function of this time delay, P;(t12). In the ideal case, P.(0) = 0. One can
define a visibility [34]

Pe(T12 > ATf'dip) — P.(0)
Pc(t12 > Atgip)

Viaom = , (2.82)
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where the long-delay limit is measured at a delay 712 much longer than the
width of the HOM dip Ayjp; in other words, the time delay is large enough
that the photon wavepackets do not overlap in time.
As an alternative to scanning the delay, if all photons are linearly polarized,
a half-wave plate can be inserted into one of the input ports of the beamsplitter.
In this way, the two photons can be made perfectly distinguishable by setting the
polarizations orthogonal to one another. The measured coincidence probabilities
for parallel polarizations, P;(||), and for orthogonal polarizations, P.(L), can
then be used to determine the visibility as [11]
Pe(L) — Pe(ID
Viom P . (2.83)
The HOM visibility can reach its maximum value of unity only if three
conditions are met: (1) there must never be more than one photon in either
input port, (2) the two photons must be indistinguishable from one another, and
(3) both photons must be in pure states. If there is exactly one photon at each
input port and the BS has a 50:50 split ratio, Vigom can be written in terms of
the input density matrices p; and 0, as [35]
~2 ~2 A A2
Vios = Tr{p1pa) = Tr{pi} + Tr{pzz} [1P1 = P2l (2.84)
Because Tr{,élz} < 1 and Tr{,é%} < 1, this visibility serves as a lower limit to
indistinguishability

Viom < J(p1,02)- (2.85)
If the two input photons are in pure states |11 ) and |1 ), then Tr{ ,512} = Tr{ ,5%} =
1, and hence the visibility and indistinguishability are equivalent [23,35]:

Viiom = J (B1,/2) = |(¥1[y2)1*. (2.86)

VHowm can be reduced below unity by many mechanisms, including background
counts, multi-photon events, and other experimental imperfections. This
makes HOM interferometry a powerful tool for identifying any unforeseen
imperfections in a source or an experimental setup that need to be addressed.

2.2.13 Other Sources

In addition to single-photon sources, several other sources will be discussed
throughout this book, both to highlight the ways they contrast with single-photon
sources, and as sources that have important applications in their own rights.

2.2.13.1 Coherent Source
A coherent state is defined as [17]

la) = exp <——|a| ) Z (2.87)

n=0
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FIGURE 2.9 Photon number probability distributions of four pulsed sources, each with a mean

photon number . = 1. (a) Ideal single-photon source, g(z) [0] = 0. (b) Non-ideal single-photon
source, g(z) [0] = 0.1. (c) Coherent source, g(z) [0] = 1. (d) Thermal source, g(z) [0]=2.

The photon statistics for a pulsed coherent source follow a Poisson probability
distribution

—uon
Py =" (2.88)

n!
where it = |«|? is the mean photon number per pulse. This distribution is

shown in Fig. 2.9¢ for © = 1 and in Fig. 2.10c for 4 = 0.1. The second-order
coherence of a coherent state is g(z) () = 1 forall t, as shown in Fig. 2.11c for
a pulsed coherent source. Higher orders of coherence are also equal to unity:
g"(7) = 1forall 7. A stable single-mode laser operated well above threshold
typically emits light that is a good approximation to a coherent state [25, 15].
The photon probability distribution of a coherent state remains Poissonian

after attenuation. Nonetheless, by attenuating a coherent state it is possible to
make the two:one photon ratio

LAY . (2.89)

P 2
arbitrarily small; however, this improvement comes at the expense of a lowered
mean photon number, w, and hence a lowered source efficiency. As discussed
in Sections 2.2.2 and 2.2.9, attenuation does not change the second-order
coherence.
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FIGURE 2.10 Photon number probability distributions of four pulsed sources with mean photon
number u = 0.1. (a) Single-photon source with g(z) [0] = 0. (b) Non-ideal single-photon source
with g(z) [0] = 0.1. (c) Coherent source, g(z) [0] = 1. (d) Thermal source, g(z) [0] = 2. Note the
log scale on the P (n) axis.

2.2.13.2 Thermal Source
The density matrix for a thermal source can be written [25]

n

) 1
p= Xn: WM)("L (2.90)

This source has a photon probability distribution

n

= *
(14 pytt

The zero-delay values of the temporal coherences are ¢®(0) = 2 and
g™ (6) = m!. Thus a thermal source is both bunched, since the zero-delay
values of the coherences are higher than the values at non-zero delays, and
super-Poissonian, since those values are greater than one.

In practice, a true thermal source is difficult to implement and characterize
experimentally because coherence times of thermal sources are typically much
shorter than the temporal resolution of single-photon detectors. As a substitute,
one can make a pseudo-thermal source by scattering a CW laser off a time-
dependent scattering medium, such as a rotating wheel of ground glass [2]. The

P(n) (2.91)
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FIGURE 2.11 Second-order coherences of the four pulsed sources in Figs. 2.9 and 2.10: (a)
single-photon source with g(z) [0] = 0, (b) non-ideal single-photon source with g(z) [0] =0.1, (¢)
coherent source, and (d) thermal source. The height of each bar represents the total area of each
pulse in the normalized correlation histogram.

resulting time-dependent speckle pattern is then sampled in the far field over an
area small compared to the mean speckle size. The effective coherence time of
the source can then be modified by adjusting the speed at which the scattering
medium changes, for example, by adjusting the rotation speed of the ground
glass wheel.

A thermal or pseudo-thermal source is sometimes referred to as a chaotic
source, although it is chaotic only in the sense that it appears random, and has
nothing to do with chaos theory. The bunching exhibited by a thermal source

can be fully explained as intensity fluctuations of a classical electromagnetic
field [25].

2.2.13.3 Pair Source

Photon pairs can be generated in many different ways. Common examples
include atomic cascades (see Chapter 11), parametric downconversion
(Chapter 12), and four-wave mixing (Chapter 13). The specifics of photon
number distributions and coherences will depend on the details of the source,
and are detailed for each type of source in subsequent chapters. Here, we focus
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on one example, a two-mode squeezed state, which is the model state for photon
pairs generated via parametric downconversion [16]:

|&2) = exp (§*a5a; — £aa])10)510);, (2.92)

where & = re'? is the squeezing parameter and Ez; and &j denote creation
operators acting on the signal and idler modes, respectively. For each photon
created in the signal mode, a corresponding paired photon is created in the idler
mode:

1

coshr

|&2) = > e (—tanh r)"|n);|n);. (2.93)

n
The photon number probabilities for signal and idler are identical, Ps(n) =
Pi(n) = P(n), and can be written in terms of the mean photon number
Hs = Ki = K as
_ (tanh r)?" w"
~ (cosh )2 (14t

Thus the number of photons in each follows a thermal distribution, with u the
average number of pairs generated.

One important application of a pair source is a heralded single-photon
source, where detection of one member of the pair (idler) is used to herald
the presence of the other (signal). Conditioning on detection of an idler pho-
ton decreases the probability of finding no photons in the signal field. This
increases the effective (conditional) mean photon number effective Without sig-
nificantly changing the two:one photon ratio P(2)/P(1); as a result the ratio
2P(2)/ [P(1)]?* decreases and g(z) [0] can drop below unity (see Eq. (2.50)).
This can be seen by comparing Fig. 2.12a and b. If the mean pair number u is
lowered, this conditional g(z) [0] can be made arbitrarily close to zero. If there
is loss in the heralding arm, the overall rate of heralded photons will drop,
increasing the conditional g [0] compared to lossless heralding detection, as
illustrated in Fig. 2.12¢c. Channel losses in the heralded arm will cause a drop
of only the overall rate of photons, but will not affect multi-photon suppression
or g(z) [0] (see Fig. 2.12d). Practical issues related to heralded sources will be
covered in greater detail in Chapters 11-13.

Taking into account the spectral composition of the signal and idler, and
taking the low-squeezing limit, Eq. (2.92) can be approximated as [28]

P(n) (2.94)

2) = VT E100100 + VE [ do [ don¥@n.ed] @0 @010} 0%
(2.95)
where W (wg,w;) is the signal-idler joint wavefunction, which describes the
amplitude distribution for creating a photon pair with signal frequency ws
and idler frequency wj. This joint wavefunction is determined by both energy
conservation and phase-matching conditions, and can be characterized by
measuring the joint spectral density. This will be discussed in Chapter 12.
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FIGURE 2.12 Basic principles of a heralded single-photon source based on a pair source,
assuming a click/no-click single-photon detector (see Section 2.3.3.1) in the heralding arm. (a)
Unconditional photon number distribution in each arm. Conditional photon number distribution of
the heralded arm with (b) lossless heralding; (c) loss in heralding channel only; (d) loss in heralded
channel only. feffective 1S the mean photon number in the heralded arm after conditioning on the
heralding field and P (1) is the overall, unconditional probability of producing one photon in the
heralded arm. Image courtesy of Elizabeth Goldschmidt.

2.3 DETECTOR PROPERTIES

In its simplest, ideal form, a single-photon detector is a device that produces
one electrical output pulse in response to a single input photon. The perfect
detector would have a detection efficiency of 100 % and ideally would be able
to resolve photon number. Timing latency, timing jitter, and dead time would
all be zero. The ideal device would have no dark counts and zero probability of
afterpulsing.

Not surprisingly, no existing detector satisfies all these criteria, and no
one type of detector outperforms all others in all these metrics. For a given
application, the choice of detector will typically involve trade-offs, where some
of these characteristics are improved at the expense of others. This section will
formally define the properties used to evaluate the performance of the detectors
discussed in this book.
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The single-photon detectors covered in this book can in general be
categorized as photon counters. They give information only about the terms
on the diagonal of the density matrix, when the density matrix is written
in the photon-number-state basis. Photon-counting measurements, including
¢® measurements performed with photon-counting detectors, typically are
sensitive only to certain characteristics of the modes of the photons under
study. For example, photon-counting experiments are not typically sensitive
to the details of the spatial, spectral and temporal mode profiles, except in the
sense that detectors only count photons in the modes that reach the detectors,
at wavelengths the detectors are sensitive to, and at times when the detectors
are active. Hong-Ou-Mandel interference is a notable exception to this, as it is
highly sensitive to overlap of the spatial, spectral, temporal, and polarization
modes of the two incident photons. Other measurements, such as those of high-
order coherences g(n), can yield information about the number and nature of
multiple modes having different photon statistics [18].

Several other methods exist for measuring signals at the single-photon level,
many of which involve mixing the single-photon field with a strong optical field
and using a conventional (as opposed to single-photon) optical detector. These
methods, which include homodyne tomography [29,36], heterodyne detection,
and spectral interferometry [10], can yield information about the off-diagonal
elements of p. These techniques tend to be exquisitely sensitive to the mode,
since they give information about only the modes of an optical state that overlap
with the separately prepared strong optical field, which is often referred to as
the local oscillator. These techniques are outside the scope of this book.

2.3.1 Detection Efficiency

One of the most important characteristics of a single-photon detector is its
detection efficiency, npg. For a free-space coupled detector, npg represents the
probability that a photon incident on the active area of the detector results in
an electrical output of sufficient magnitude to be registered by the external
electronics, provided that the detector and its electronics are armed and ready
to sense an incoming photon. It should be noted that a detector often appears as
a single package, which may have components required for its operation, such
as a window on a hermetic package, or more sophisticated optics to guide light
onto the active area of the detector. Because these components are inseparable
parts of the device, their overall transmittance should be included in 7pE.

In a fiber-coupled detection system, the term detection efficiency can be
somewhat more problematic to define because one must decide where the source
to be measured ends and the detector begins. The preferred dividing line is
within the portion of the detector’s input fiber that is accessible for a connector
or fusion splicing. Thus npg represents the fraction of photons that have been
coupled into (or generated in) the optical fiber that yield a measurable electrical
output, and is sometimes referred to as the “system detection efficiency” to
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FIGURE 2.13 Illustration of decomposition of detection efficiency for (a) fiber-coupled and (b)
free-space-coupled single-photon detector systems, where the dashed line indicates the demarcation
between efficiencies associated with the detector and those associated with the experiment.

distinguish it from the detection efficiency of the bare detector. While this
definition does not include the (invariably non-unity) efficiency of coupling
from a free-space optical experiment into fiber, it does include losses within
the fiber and losses associated with coupling light out of the fiber and onto the
active area of the actual sensor. Thus it is important to remember that when
using a fiber-coupled detector in a free-space experiment, npg must be reduced
by the fiber input coupling efficiency to find the detection efficiency for that
situation (see Fig. 2.13).

For a fiber-coupled detector, the system detection efficiency, npg, can be
decomposed into a product of several discrete efficiencies [33]:

DE = Nfiber ﬁggflple Nabsorb niQE Nthreshold - (2.96)

The first two component efficiencies quantify the efficiency with which
light reaches the sensitive region of the detector. The fiber transmission,
Nfiber, 18 typically quite high for visible and near-infrared wavelengths, unless
particularly long fiber is used. The output coupling efficiency, nggflple, is a
measure of the spatial overlap of the optical mode exiting the fiber with the active
area of the detector. noultl accounts for any misalignment or size mismatch
between the output mode of the optical fiber and the active area of the device.

The third and fourth component efficiencies are intrinsic to the detector ele-
ment itself. The absorption efficiency, napsorb, is the fraction of photons incident
on the detector active area that are absorbed. The internal quantum efficiency,
niQE, is the fraction of absorbed photons that yield an output electrical signal.
When a fiber-coupled detector is used with a free-space experiment, remember
to include nic‘;uple, the coupling efficiency of the input light into the fiber, as a
prefactor.

The threshold efficiency, nireshold, quantifies the efficiency with which the
output electrical signal is registered by external counting or timing electronics.
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While nreshold 1S often unity or very close to it, this may not always be
the case. For example, if electrical pulses resulting from dark counts (or
background counts arising from detected background blackbody radiation)
have a comparable but somewhat smaller amplitude than signal pulses, then a
threshold in the external electronics may be adjusted to reduce the background
count rate. In some cases, a trade-off can be made between nreshold—and hence
detection efficiency—and this background count rate [32,14].

For a free-space-coupled detector, the detection efficiency is the probability
that a photon incident on the detector is recorded by the measurement
electronics. In this case, the decomposition simplifies to

1IDE = MNabsorb niQE Nthreshold - (2.97)

There may be special cases for a free-space-coupled detector where the optical
coupling system has a significant impact on the detector performance, for
example if the detector’s active area is especially small. In such a case, as
for the fiber-coupled detector case, a coupling efficiency term, ncouple, should
also be included in npg.

2.3.2 POVM Elements

The set of POVM (Positive-Operator-Valued-Measure) operators are useful for
characterizing the outcome of measurements with a single-photon detector or
detection system. The probability of obtaining result m, given an optical field
described by the density matrix 6 and a detector with detection efficiency npg
can be written as [37]

PpE(m) = Tr{p7,}, (2.98)

where 7, is the detector POVM operator for outcome m and depends on npg.

The POVM operators of a detector that is only sensitive to the number of
photons in an optical field (i.e., the diagonal elements of p in the number state
basis) can be written as

A=y plmin)|n){nl, (2.99)

n=m

where p(m|n) is the conditional probability that detector records m photons at
the output, given n photons at the input. In this case, we can write [9]

poE(M) = Y p(m|n) P(n). (2.100)

n=m

The form of the 77, matrices are given in the following section for two ideal
detector types. In a real measurement system, the POVM elements will only
approximate these ideal cases. Nonetheless, the 7, for each outcome m can be
determined by performing detector tomography, as discussed in Chapter 9.
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2.3.3 Photon-Number-Resolving (PNR) Capability

Single-photon detectors can be broadly grouped into three categories of PNR
capability: “no,” “some” or “full” PNR capability [7]. While these categories
are of course somewhat arbitrary, they capture some essence of the fundamental
operation of each type of device.

PNR capability can be useful in multiple distinct ways. For single-shot
measurements, if the detector is to correctly identify the number of incident
photons it is essential that npg be very close to 100%. For averaged or ensemble
measurements, high detection efficiency is less critical: if one can determine
the detector POVM elements with low uncertainty, then it should be possible
to invert these POVM elements and recover the photon statistics of the incident
light with high accuracy. Of course, this procedure works best with high
detection efficiency.

2.3.3.1 No PNR Capability (“click/no-click” Detectors)
These are detectors that operate (or typically operate) as a one-or-more-photon
or no-photon device. That is, they register only whether photons were detected,
but do not provide information on the number of detected photons. These
are variously referred to as “threshold,” “click” or “click/no-click” detectors,
and are the most readily available and widely used type of single-photon
detectors. Examples discussed in this book include photomultiplier tubes
(PMTs) in Chapter 3, single-photon avalanche diodes (SPADs) in Chapter 4,
and superconducting nanowire single-photon detectors (SNSPDs) in Chapter 6.
For an ideal threshold detector, with no dark counts or afterpulsing and with
detection efficiency npg, the POVM for no output is [22]:
o0
A=) (1= npp)"|n){nl. (2.101)
n=0
The probability of the detector delivering no output for this detection efficiency,
ppEe(0), can be expressed in terms of the photon number probabilities of the
incident light, P (n), as

ppe(0) = Z (1 — npg)" P(n). (2.102)
n=0

For this detector, the POVM for yielding a click is [21,22]

Aetick = Y _[1— (1 = npp)"1n) (nl. (2.103)

n=1
Thus the probability of a click at the output is

[e.e]

ppE(click) = 2[1 — (1 —npp)"1P (). (2.104)

n=1
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2.3.3.2 Some PNR Capability (Number Resolving Through
Multiplexing)

This category consists of devices that are constructed by multiplexing individual
non-PNR detectors. The maximum number of photons that these devices can
resolve is obviously limited by the number of individual detectors and/or
multiplexing pathways. Characteristics of the device can change with the
number of photons detected and the spatial distribution of the illumination,
since some of the individual elements or areas become unresponsive after firing.
Crosstalk between individual elements may also degrade these characteristics,
so any crosstalk—or evidence for lack thereof—should be discussed. Time-
multiplexed systems will necessarily operate with an increased dead time
compared to the individual elements, thus limiting the overall repetition rate.

Despite the potential downsides, these detectors can be quite useful provided
the crosstalk is minimal and the number of individual elements or pathways is
large compared to the number of incident photons. In fact, some detectors in
this category outperform many detectors considered to have full PNR capability,
most notably because some detectors in this latter category have very low system
detection efficiencies.

Examples of detectors classified as having some PNR capability include the
multi-element SNSPDs discussed in Chapter 6 and the time-multiplexed and
space-multiplexed detection schemes described in Chapter 7. The visible light
photon counter (VLPC) covered in Chapter 5 is a somewhat unusual example in
this category, since it does not consist of individual, discrete detection elements;
nonetheless, we include it in this category because a region of the detector
is effectively “dead” (or “blocked”) after detection of one photon leads to a
controlled avalanche in that region.

2.3.3.3 Full (or Intrinsic) PNR Capability
Detectors with full PNR capability are devices whose output is inherently
proportional to the number of photons, excluding usual saturation limits to
which all detectors are subject. It has been suggested that a detector with full
PNR capability is a device whose probability of detecting n photons scales only
as npg without any other n-dependence. Detectors satisfying this definition of
full PNR capability include the solid-state photomultiplier (SSPM) and quantum
dot optically gated field effect transistor (QDOGFET), which are discussed in
Chapter 5, and the transition edge sensor (TES) described in Chapter 6.

In the absence of dark counts and afterpulsing, the POVM describing how an
ideal photon number-resolving detector gives an output indicating m detected
photons is [22,41]

o = Z (;) npe(1 — npe)" " n)(n|. (2.105)
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Thus, the probability of this PNR detector registering m photons, for a detec-
tion efficiency of npg, can be computed from the photon number probabilities
P(n) as
[ n
poE(m) =Y (m) el — npE)" " P(n). (2.106)
n=m

The conditional probability that the detector records m photons at the output,
given exactly n photons at the input, is

p(min) = (;) npe(1 — noe)" ™. (2.107)

As an example, the probability of a PNR detector yielding a one-photon output is
(0]

poe(1) =Y nupe(l — np)" ™' P(n). (2.108)
n=1

Expanding out the first few terms, we find

poE(1) = npe[P(1) +2(1 — npe) P(2) + 3(1 = npp)*P(3) + -] (2.109)

If npg = 1, then ppg(1) will tend to be dominated by the one-photon compo-
nent of the input light. By contrast, if npg < 1, higher photon number terms
will play a more important role.

One way to characterize the number-resolving capability of a detector is
to compute the fidelity of the measured 7, with the ideal 7, for each value
of m, following the approach used by Feito et al. with classical input states
sent to time-multiplexed detectors [9]. Brida et al. showed that this scheme
can be improved by leveraging the nonclassical correlations of a parametric
downconversion source [5].

An even more stringent test is to compute the fidelity with the ideal POVM
elements for a PNR detector with npg = 1; in this case, each ideal POVM
element has a single component: 7, = 8, »|n)(n|. A PNR detector having
high fidelity with these POVM elements would be immensely powerful for
single-shot measurements of photon number.

Another way to characterize PNR capability is to invert the measured POVM
and find the fidelity of the reconstructed photon probability distributions with
the incident P (n)’s.

In the situation considered so far in this section, outcomes m will only
be incorrect because not all photons are detected (npg # 1). In this case,
p(m|n) is zero for all m > n: one incident photon will never be misidentified
as two photons, two will never be misidentified as three, and so on. Realistic
PNR detectors can also misidentify the number of incident photons if there
is significant variation in the amplitude of the output electrical pulses for a
fixed number of incident photons. This variation is typically characterized
by measuring a histogram of the distribution of pulse heights or areas, as is
illustrated in the next section for the example of an energy-resolving detector.
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2.3.3.4 Energy-Resolving Detectors

An energy-resolving detector is one whose output electrical pulse height (or
area) is directly proportional to the energy of each absorbed photon. A notable
example is the TES discussed in Chapter 6. The pulse-height distribution, when
plotted with photon energy on the x-axis, can be used to determine the energy
resolution, AE, which is the full-width-at-half-maximum (FWHM) of each
peak in the distribution. For some detectors, the energy resolution depends on
either the photon energy or the photon number; if so, A E (hw) or A E (n) should
be specified or plotted.

However, AE contains somewhat limited information about a detector’s
ability to resolve photon number. In many applications the most relevant
quantity is the probability that detection events are associated with the wrong
photon number. Unfortunately, it is typically not possible to independently
measure the distributions for each individual photon number. Instead, a source
such as an attenuated laser pulse with a Poisson distribution is typically used,
and all the photon number peaks are measured at once. The overlap of adjacent
peaks can be quantified by measuring the peak visibility, defined as [24]

(max — min)

Vipeak = (2.110)

(max + min)’
where max is the average maximum value of two adjacent peaks and the min is
the lowest value between these two maxima. Vpeax may be determined from the
raw histogram data or from more sophisticated multi-peak fitting routines [24].

Figure 2.14 illustrates simulated pulse-height distribution histograms for
detectors with three different energy resolutions and two different photon
energies. Each individual photon peak in this conceptual model has an ideal
Gaussian shape—something that cannot necessarily be assumed about practical
detectors [24]. In all four panels, the source is assumed to follow Poissonian
statistics with mean photon number u = 2. Panels (a)—(c) illustrate the effect
of changing the energy resolution for a fixed photon energy of iw = 1 eV. The
individual photon peaks are clearly well separated from one another in (a), where
AE = 0.2hw and Vpeax = 1forall peaks. In (b), each peak overlaps just slightly
with its neighboring peaks, yet only ~1% of detection events will misidentify
the photon number. In this case, Vpeax ranges from ~0.88 to ~0.90 for the peaks
shown. In (c), the resolution is further degraded such that AE = hw = 1 eV,
and peak visibility is undefined for all minima but one. In this case, a large
fraction of photon numbers will be misidentified.

Figure 2.14d shows what happens when AE is held fixed at 1 eV (the same
value as in Fig. 2.14c), but the photon energy is increased to 2.2 eV. The result
looks much the same as in Fig. 2.14b. This illustrates another feature of energy-
resolving detectors: in addition to resolving the number of photons at a fixed
wavelength, they can also be used to distinguish single photons of different
wavelengths, provided the photon energies are separated well enough to be
resolved [6]. This can also present experimental challenges. For example, in a
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FIGURE 2.14 Simulated pulse energy distributions for an ideal energy-resolving detector,
assuming Gaussian distributions for each photon number peak. Gray lines are individual photon
number peaks and black lines are the sum of all the individual peaks. (a)—(c) Simulated histograms
for a photon energy hw = 1 eV for three different energy resolutions: (a) AE = 0.2 eV, (b)
AE =0.45¢eV, (c) AE =1eV = hw. (d) Simulation for AE = 1 eV, which is the same energy
resolution as in (c), but with a higher photon energy of iw = 2.2 eV. In these simulations, AE
does not depend on energy or photon number. Visibilities (dots) are derived using Eq. (2.110).

parametric downconversion experiment, a single pump photon of energy 2hw
can be misidentified as two downconverted photons of energy hw + hw.

As well resolved as the individual photon peaks are in Fig. 2.14a, a detector
with such a histogram is only useful for resolving photon number in a single-shot
measurement if the detection efficiency is quite high. By contrast, a detector
with the pulse-height distribution in Fig. 2.14c with npg =~ 1 would in many
respects outperform a detector with the distribution in Fig. 2.14a, even if the
latter had a relatively high detection efficiency of npg = 0.76. This point is
illustrated in Tables 2.1 and 2.2, which display the probability of outcome m
given n input photons, p(m|n), for the first few values of m and n. Table 2.1
shows these the probabilities for AE = hw and npg = 1; Table 2.2 shows them
for AE = 0.2hw and npg = 0.76.

Note that in both cases, the probability of correctly identifying one photon
at the input as one photon at the output is p(1|1) =~ 0.76. As the incident
photon number increases, the high-efficiency detector maintains p(n|n) >~ 0.76,
whereas the detector with better energy resolution but lower efficiency quickly
degrades: p(2]2) >~ 0.58 and p(3|3) ~ 0.44.
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mBLE 2.1 Expected values of p(m|n), which is the probability of \
detector outcome m, given that n photons are incident on a detector
with full (but non-ideal) number resolving capability (AE ~ hw) that
has ideal detection efficiency ypg. In Tables 2.1-2.3, all values are
rounded to the nearest 0.01 and values < 0.01 are omitted for clarity

n
0 1 2 3
0 0.88 0.12
m 1 0.12 0.76 0.12
2 0.12 0.76 0.12
3

K 0.12 0.9

TABLE 2.2 Expected values of p(m|n) for a near-ideal number resolvi&
detector (AE ~ 0.2hw) with non-ideal detection efficiency npg = 0.76.
Such a detector would have a pulse energy distribution shown in Fig.
2.14a

n
0 1 2 3
1 0.24 0.06 0.01
m 0.76 0.36 0.13

0.58 0.42
\Z —/

As athird example, Table 2.3 shows p(m|n) for a detector that combines the
sub-optimal energy resolution of the detector in Table 2.1 (AE = hw) with the
efficiency of the detector in Table 2.2 (npg = 0.76). The matrix for in Table 2.3
is simply the product of the two matrices in Tables 2.1 and 2.2.

It should be emphasized that these tables have been computed for the
conceptual model described in the text, about which we have much more
information than we could typically obtain for a realistic PNR detector—unless
ithad very well-resolved photon number peaks like those in Fig. 2.14a. In nearly
all cases, there will be some finite overlap of adjacent photon number peaks,
and conclusions about the probability of photon number misidentification can
only be drawn by making assumptions about the shape of the peaks in the
overlapping region.

Also note that multiplexed detectors that operate by taking a digital
summation of the number of elements that detect a photon will typically

W N =S
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TABLE 2.3 Expected values of p(m|n) for a non-ideal number resolving

detector (AE = hw) with non-ideal detection efficiency npg = 0.76
n
0 1 2 3
0 0.88 0.30 0.10 0.03
m 1 0.12 0.61 0.35 0.15
2 0.09 0.48 0.38
3

\ 0.07 O.SSJ

not suffer from the problem of overlapping peaks, and thus a pulse-height
distribution plot is not necessary.

2.3.4 Timing Latency and Rise Time

The timing latency of a detector, #jaency. is the time that elapses between when
a photon is incident on a detector or detector system and when the subsequent
output electrical pulse crosses a given threshold level, as shown in Fig. 2.15. The
choice of the threshold level is based on a variety of factors specific to a given
detector: timing resolution, tradeoffs between signal strength and electronic
noise, and the ability to trigger subsequent timing electronics are some examples
of considerations relevant to the choice of threshold. The rise time of the output
pulse, Tise, is often characterized as the time required for the electrical output
signal to rise from 10 % to 90 % of its maximum value.

2.3.5 Timing Jitter

Timing jitter is a measure of the pulse-to-pulse variation in fiaency, and is
typically determined by characterizing the instrument response function (IRF)
of a detector [3]. A typical measurement scheme is shown in Fig. 2.16. A
very short optical pulse from a laser is split at a beamsplitter. One beamsplitter

Optical
Input
36 tlatency —>i ) t
Electrical e
Output "o
\<—>: t
Trise

FIGURE 2.15  llustration of definitions of timing latency, f|atency, and rise time, Trise-
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FIGURE 2.16 Typical setup for measuring a single-photon detector’s instrument response
function, which can be used to determine jigter. The timing electronics here are operated in forward
start-stop mode, where the fast photodiode (or alternatively the laser clock output, if available)
starts a timer, and the signal from the single-photon detector stops the timer. For practical reasons,
timing electronics are sometimes operated in reverse start-stop mode [3], where the single-photon
detector starts the timer and the conventional fast photodiode stops it; this results in a time-reversed
histogram, but will give the same value for Tiger-

output—comprised of a large, classical signal—is incident on a conventional
fast photodiode. The other output of the beamsplitter is heavily attenuated
before impinging on the single-photon detector. The timing electronics record
a histogram of start-stop time delays that is proportional to the IRF.

The IRF measured using such a scheme will, in general, contain jitter
contributions from several components, including the fast photodiode, the
single-photon detector, and the timing electronics. The IRF may also be
broadened due to the finite duration of the laser pulse. Ultrafast lasers with
pulse durations < 1 ps and low-jitter (< 1 ps) conventional fast photodiodes
are readily available; if these are used, the jitter is then largely dominated by
contributions from the single-photon detector and the timing electronics, both of
which are almost always greater than ~20 ps FWHM, as discussed in Chapter 1.
In some cases, it may be possible to deconvolve the various contributions to the
IRF to estimate the jitter of the single-photon detector alone, but deconvolution
should be performed with due care.

Figure 2.17 shows a measured IRF of a silicon SPAD, illustrating the
definition of timing jitter, Tjier, Which is the FWHM of the IRF. One can also
1% \Which is the full-width at 1% of maximum of the IRF. For single-

jitter °
photon avalanche diodes, Tj(itltzor) is often significantly larger that the FWHM,

and is relevant when the signals of interest may arrive at a comparable time
scale, such as in the case of quantum communications at GHz rates.

In some cases, the timing performance of a detector can depend on the
detected count rate. In SPADs, for example, both jitter and latency have been
shown to vary significantly for count rates above ~1 x 10°/s [39]. Pile-up may
also affect a jitter measurement. Pile-up occurs when the timing electronics
record only the first photon from an optical pulse, and are unable (during the
recovery time of the detector and/or electronics) to record a second or third
photon from that same pulse [3]. This will typically lead to an underestimate
of the timing jitter. Careful measurement of jitter typically requires attenuating

specify
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FIGURE 2.17 Example instrument response function illustrating the definitions of tjjyer and
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the optical pulse so that the count rate of the detector is much lower than the
repetition rate of the laser. One can also test whether pile-up has affected a jitter
measurement by observing whether Tjier is a function of the single-photon
detection rate by decreasing the incident photon flux. Because of the potential
for pile-up, and because it is important to know the effective timing jitter in a
given measurement, the count rate and pump repetition rate (or the fraction of
pump pulses in which a photon is detected), should accompany reported jitter
measurements.

The timing jitter of detectors with partial or full number resolving capability
may depend on the number of photons detected, so timing jitter may be specified
separately for 1-photon events, 2-photon events, and so on.

2.3.6 Dead Time, Reset Time, and Recovery Time

The dead time, #4eag, is the duration of time, beginning at the start of a detection
event, during which a detection system is incapable of producing an output
electrical signal in response to additional incident photons. During the dead
time, the detection efficiency is zero, as illustrated in Fig. 2.18. The dead time
may be caused by intrinsic processes in the photosensitive system or it may be
induced by external control systems in order to produce a particular performance
characteristic.

The reset time, treget, 1S the time over which the detection efficiency increases
from zero back to its initial value. If the detection efficiency approaches this
initial value very slowly, it may be necessary to specify freset as the elapsed time
after which the detection efficiency changes by less than some small percentage
of its value.
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Detection
Efficiency Photon detected
b3 ""'"""'"""""""""'i"'ﬁi
trecovery i i
dead i treset"‘

FIGURE 2.18 Example of detection efficiency plotted as a function of time. If the efficiency
drops to zero after a photon is detected, then the dead time, f4eaq, is the elapsed time until the
efficiency is non-zero again. The reset time, freget, is the time required for the detection efficiency
to recover to its initial value, npg. The recovery time, frecovery, is the sum of Zqeaq and freset-

The total time required for the detection efficiency to recover to its steady-
state value after a detection event is the recovery time, frecovery = Idead + freset-
In detectors or systems with a very short reset time, fdead 2 frecovery, and the
terms can be used interchangeably.

The operation of the detector during its reset requires some special
consideration. The fact that the detection efficiency is in transition during its
reset can strongly affect measurements at high count rates. In addition, the reset
action in some types of detectors (notably SPADs) can affect the ability of the
electronics to sense a detection event that may have occurred during the reset.
This is the origin of the so-called twilight events in some actively quenched
SPAD detectors, and is discussed in Chapter 8.

2.3.7 Dark Count Rate

The dark count rate, Rgark, is the average number of counts registered by a
detector per second when all input light to the detector is blocked.

2.3.8 Background Count Rate

In situations where not all background photons can be adequately blocked from
reaching a detector, the background countrate, Rpackgound, i Sometimes quoted.
While Rpackgound is not an intrinsic property of a detector, some detectors are
more susceptible to it than others, especially those that are sensitive to mid- or
far-infrared photons present in room-temperature blackbody radiation.

2.3.9 Afterpulse Probability

The afterpulse probability, Pateerpuise, 1S the excess probability for a detector
to output an additional dark count due to a preceding detection event. The
time interval over which the dark count probability is elevated should also be
specified. Because Pafierpulse can depend on the overall count rate, the afterpulse
rate at the zero-count-rate limit should be distinguished from the afterpulse
probability at higher count rates. In cases where the afterpulsing probability is
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especially high, it may be reduced by gating the detector. Afterpulsing is most
commonly observed in SPADs.

2.3.10 Active Area

The active area of a detector, A,cive, iS the area of the absorbing region of the
device, assuming normal incidence. It is typically fairly easy to couple all of
the incident light to a device with Agive > 100 x 100 /Lmz. By contrast, for
devices with active areas 10 x 10 ;Lmz of or less, ncouple may be compromised
and may have to be included in the definition of npg.

2.3.11 Operating Temperature of Active Area

The operating temperature of a detector can present obstacles to
implementation. For example, superconducting detectors can exhibit many
outstanding characteristics, but must operate in cryogenic systems. As a result,
light must typically be coupled to the devices through an optical fiber.
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