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11.1 INTRODUCTION

Parametric down-conversion (PDC) is a nonlinear process in which a photon
from a strong pump laser is converted into two daughter photons under
conservation of energy and momentum. Despite its many contenders discussed
elsewhere in this book, PDC is still the most widely used technique for
generating single photons. The reasons are that PDC is well understood, simple
to implement, and produces photons in well-defined spatio-temporal modes at
high rates.

Photon pairs generated in PDC were first observed in the late 1960s and
early 1970s [1–4]. Two decades later, two independent groups started to
study the coherence properties of the created single photons: Shih and Alley
[5] realized that the photon pairs could be used to investigate fundamental
problems in quantum mechanics, such as John Wheeler’s delayed choice
Gedankenexperiment, or the Einstein-Podolsky-Rosen paradox. Meanwhile,
Ghosh, and Mandel observed non-classical interference effects between down-
converted photons [6]. Their work was a direct precursor to a landmark
experiment by Hong et al. [7], who used non-classical two-photon interference
on a beamsplitter to demonstrate that PDC photons were created within at least
sub-picosecond time intervals. The so-called Hong-Ou-Mandel dip, a drop in
coincident photon detection at the output of the beamsplitter as a function of
photon arrival time, firmly established PDC as an experimental tool in quantum
optics and has since been the key mechanism for many quantum information
processing protocols.

The biggest boost of PDC as a tool was, however, the fact that photon pairs
created in this process are naturally entangled. The first bright source of highly
entangled photons was demonstrated by Kwiat and co-authors in 1995 [8]. This
sparked a host of experiments studying the nature of entanglement, such as
Bell tests with space-like separated observers [9], quantum teleportation [10],
multi-particle entanglement [11], entanglement-based quantum cryptography
[12], and many more.

As these applications evolved, they placed increasing demands on photon
sources. The biggest improvement to both pair creation rates and flexibility
was due to rapid advances in nonlinear optics, specifically, the development
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of periodically-poled crystals. Another major development was waveguide
technology. Waveguides confine light fields over relatively large distances in
optical materials and thus lead to vastly increased PDC generation rates. They
also allow for optical integration of sources, optical circuits, and detectors into
small-scale devices. Waveguide PDC is however, compared to the more mature
bulk-crystal and periodically-poled PDC sources, still in its infancy and it will
take some time to eradicate issues such as coupling losses and pump mode
suppression.

We will start with a general theoretic description of parametric down-
conversion and then move on to the details of heralding photons with PDC. In
particular, we will discuss important concepts such as photon purity and phase-
matching. The subsequent sections discuss the practical aspects of generating
PDC in bulk crystals, in periodically-poled crystals and in waveguides. The
reader will find a list of selected experiments at the end of this chapter (see
Fig. 11.32). The list is by no means exhaustive, but should give the reader a
flavor of the possible variations in single-photon sources based on PDC.

11.2 SINGLE PHOTONS FROM PDC: THEORY

In this section we review the process of parametric down-conversion as a source
of single-photon states.

The overall process is sketched in Figure 11.1. A strong pump field is
propagating through a medium possessing a χ(2) nonlinearity. During this
interaction one of the pump photons decays into a photon pair, where we label
the individual photons signal and trigger. The trigger photon is subsequently
detected to herald the presence of its partner the signal photon, effectively
generating a source of heralded single photons. Heralded single-photon states
are also analyzed and discussed in this chapter, in the context of early (and less
efficient) atomic-cascade sources.

This introductory section mainly concentrates on the theory of heralding
single photons from PDC and is structured into four parts. In Section 11.2.1

FIGURE 11.1 Single-photon generation using PDC. A pump field is propagating through a

medium exhibiting a χ(2) nonlinearity. During this interaction a pump photon decays into a pair
of photons. One of the photons is detected to herald the presence of its partner, effectively creating
a heralded single-photon source.
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we give an overview of the classical description of PDC and its connection
to sum-frequency conversion. In Section 11.2.2 we present a quantum
mechanical treatment of PDC and derive the generated two-photon output state.
In Section 11.2.3, we elaborate on the process of detecting one photon to herald
the presence of its partner and discuss the properties of the heralded signal
photon. Finally, in Section 11.2.4 we review the intricacies of heralding pure
single-photon Fock states from PDC.

11.2.1 Classical Description of PDC

Although PDC can only be fully described using a quantum mechanical
formalisms, it is nevertheless instructional to study a classical form of a
nonlinear parametric process like sum-frequency generation. Many of the
relations between the classically interacting fields will also hold for the PDC
case.

An electro-magnetic field interacting with a dielectric medium will induce
a polarization in the material. The normal response of the material is linear,
i.e., the incoming electro-magnetic field is not altered in frequency. However at
high electric field strengths nonlinear properties cannot be neglected anymore.
The polarization P can be expanded in terms of the electro-magnetic field

P = ε0(χ
(1)E1 + χ(2)E1 E2 + χ(3)E1 E2 E3 + · · · ), (11.1)

where ε0 is the vacuum permittivity, χ(1) is the linear susceptibility, and
χ(2),χ(3), . . . are the nonlinear susceptibilities of the medium. The nonlinear
interaction implies that electro-magnetic waves with different frequencies can
interact and, under conservation of energy, frequency conversion can occur. In
the χ(2) process, which is also referred to as three-wave mixing, three electro-
magnetic fields interact in a non-centrosymmetric medium and energy can be
transferred from one field to another. Since PDC is a three-wave mixing process,
the χ(2) interaction will be discussed in detail here. The higher-order four-wave
mixing process with χ(3) nonlinearities will be discussed in Chapter 12: Four-
wave mixing.

The χ(2) frequency conversion can be roughly divided into two types. The
first type has two input fields and produces a single output field. The produced
field can have frequencies corresponding to the sum of the input fields, as in
sum-frequency generation, or frequencies corresponding to the difference, as
in difference-frequency generation. The other type of interaction to which PDC
belongs has a single input field that is converted to two output fields, as shown
in Fig. 11.1. Historically the resulting fields have been named signal and idler,
with the former having the higher frequency. In this book we will refer to the two
output fields as trigger and signal, without specific relation to the frequency.
In the quantum mechanical description (Section 11.2.2), PDC gives rise to the
spontaneous generation of photon pairs and the presence of a photon in the
trigger mode heralds the partner photon in the signal mode.
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The susceptibility χ(2) is a tensor of rank 3 and its components are defined
through the nonlinear part of the polarization and the electric field components
in Eq. (11.1)

PNL
i = ε0

∑
j,k=1,2,3

χijk Ej Ek, (11.2)

with i = 1,2,3. It is customary to assign the cartesian axes x,y,z to the indices
values 1, 2, 3. Since the fields Ej and Ek can be permuted without changing the
polarization, the 27 elements of the χ(2) tensor can be reduced to a matrix with
only 18 independent elements dij

⎛
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⎞
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⎞
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z
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11.3)

The dij coefficients and other optical properties for some well-known
nonlinear crystals are summarized in Fig. 11.33.

If the nonlinear interaction couples pump, trigger, and signal fields with
the same polarization, it is referred to as a type-0 interaction. If the pump
polarization is orthogonal to the signal and trigger polarization the process is
labeled type-I PDC, and if the two output fields are orthogonally polarized the
interaction is called type-II PDC.

The additional nonlinear part of the polarization can be added to the
macroscopic Maxwell’s equations to derive the electric fields. Assuming
collinear propagation of the waves along the x-direction the following wave
equation is obtained

∂2 E

∂x2 = −μ0

(
ε0
∂2 E

∂t2 + ∂2 PNL

∂t2

)
. (11.4)

In the case of sum-frequency generation, assuming monochromatic fields, two
incident plane waves in the form of

E1,2 = A1,2(x)e
i(ω1,2t−k1,2x), (11.5)

with frequencies ω1 and ω2, propagation constants k1 and k2, and a possible
varying amplitude A1,2(x) along the propagation direction will induce a
periodic modulation of the polarization at a frequency of ω3 = ω1 + ω2.
This, in turn, creates a new field E3 at frequency ω3. The solution of the new
field can be found from Eq. (11.4) by substituting PNL with the input fields
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E1 and E2 coupled via χ(2). The electric field amplitude of E3 along the
propagation direction is then found to be

d A3

dx
= −iω3

2n3c
dij A1 A2ei(�k)x , (11.6)

using the slowly varying amplitude approximation
(

d2 E
dx2 << k d E

dx

)
. Similar

expressions can be derived for the input fields E1 and E2. The nonlinear coeffi-
cient dij is derived from the appropriate matrix element in Eq. (11.3) depending
on the polarization of the fields. The wave-vector mismatch �k is given by

�k = k3 − k1 − k2 = n3ω3

c
− n1ω1

c
− n2ω2

c
, (11.7)

where nj, j = 1,2,3 are refractive indices of the three propagating fields. The
amplitude of the generated field after a propagation distance L can readily be
found by integrating Eq. (11.6)

A3(L) = −dijω3 A1 A2

2n3c

(
ei�kL − 1

�k

)
, (11.8)

where we assumed that the fields E1 and E2 are constant throughout the inter-
action (the undepleted-pump approximation). The intensity of the E3 field after
length L is obtained by using the relation I = 1

2 nε0cE E∗ and results in

I3(L) = d2
ijω

2
3 I1 I2 L2

2n1n2n3c3ε0
sinc2

(
�kL

2

)
. (11.9)

The efficiency of the conversion process is strongly dependent on the wave-
vector mismatch�k. If�k �= 0, then the generated field becomes out of phase
by π after an interaction length of

Lc = π

�k
, (11.10)

which is also called the coherence length. At this point the generated field starts
to interfere destructively, in effect lowering the conversion efficiency until it
reaches zero at 2Lc. Therefore, it is paramount that the phase-matching con-
dition �k = 0 is fulfilled to obtain optimal frequency conversion. Methods
of achieving the phase-matching condition are described in the proceeding
sections of this chapter. The above derivation strictly holds only for interac-
tions when at least two fields are present, as in sum-frequency generation. In a
PDC interaction, however, only the pump field is present and a purely classi-
cal treatment cannot explain the creation of the other two fields. In a quantum
mechanical picture employing second-quantization formalism discussed in the
following section, the zero-point quantum noise gives rise to a field at ω1 and
ω2. Through the interaction with the pump, the noise fields at ω1 and ω2 are
amplified via the nonlinear frequency conversion. If the nonlinear interaction
is strong, a macroscopic intensity at ω1 and ω2 can be observed.
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The classical Hamiltonian for the electric field is given by [13]

HEM ∝
∫

E(r ,t) · D(r ,t)dr3. (11.11)

By only keeping the 2nd-order nonlinear term in the displacement vector D
yields the interaction Hamiltonian for the χ(2) process

Hχ(2) ∝
∫
χ(2)Ep(r ,t)Es(r ,t)Et(r ,t)dr3, (11.12)

where the subscripts stand for the pump, trigger, and signal fields, respectively.

11.2.2 Quantum Mechanical Description of PDC

Quantizing the electric fields [13] in the Hamiltonian in Eq. (11.12) enables a
quantum mechanical description of the process

ĤPDC ∝ χ(2)
∫ L

2

− L
2

dz Ê (+)p (z,t)Ê (−)s (z,t)Ê (−)t (z,t)+ h.c., (11.13)

where p labels the pump, s the signal, and t the trigger field. We further restrict
ourselves to collinear propagation along the z-axis of a crystal of length L ,
neglecting the transverse degrees of freedom. Their impact will be discussed
later in this chapter.

The positive and negative frequency parts of the quantum fields in
Eq. (11.13) are defined as

Ê (+)x = Ê (−)†x = A
∫

dωx exp
[
i
(
kx(ωx)z − ωxt

)]
âx(ωx), (11.14)

where all constant factors have been merged into the overall constant A and
âx(ωx) is the photon annihilation operator for a monochromatic frequency ωx
with propagation constant k(ωx). The exact nature of the signal and trigger
fields is dependent on the applied pump field and the χ(2)-nonlinearity of the
crystal. They may be emitted into identical polarizations (type-0/type-I PDC)
or into orthogonal polarizations (type-II PDC) [13,14]. Due to the weakness of
the nonlinear interaction the incoming pump field must be relatively strong and
may be treated as a classical field

E (+)p = E (−)∗p =
∫

dωpα(ωp) exp
[
i
(
kp(ωp)z − ωpt

)]
. (11.15)

In Eq. (11.15) the function α(ωp) describes the spectrum and amplitude of the
pump field, which may vary from a delta function Ep δ(ωp − ωc) for cw laser
sources with central frequency ωc, to more complex distributions for pulsed
laser systems.
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We study parametric down-conversion in the Schrödinger picture by
calculating the generated state following the presentation in [15]

|ψ〉PDC = exp

[
− i

�

∫ t

t0
dt ′ ĤPDC(t

′)
]

|0〉 . (11.16)

We perform a perturbation expansion of Eq. (11.16) to write the PDC
process as

|ψ〉(full)
PDC = |0〉 − i

�

∫ t

t0
dt ′ ĤPDC(t

′) |0〉

+
(

i

�

)2 ∫ t

t0
dt ′ ĤPDC(t

′)
∫ t ′

t0
dt ′′ ĤPDC(t

′′) |0〉 + · · ·, (11.17)

where the zero-order term describes the vacuum emission, the first-order term
photon-pair emission, the second-order term four-photon emission, and so on.
The emission of higher-order photon pairs can be safely ignored as long as
the incoming pump field is not too bright and the probability of multi-pair
generation is sufficiently small [16,17]. We hence restrict ourselves to the
expansion up to first order

|ψ〉PDC ≈ |0〉 − i

�

∫ t

t0
dt ′ ĤPDC(t

′) |0〉 , (11.18)

which gives us the emitted not-normalized two-photon PDC state. Higher-
order expansion terms and their effects on the heralding of single photons are
discussed in Section 11.2.4.

Combining Eqs. (11.13), (11.14), (11.15), and (11.18), we arrive at∫ t

t0
dt ′ ĤPDC(t

′) = B
∫ t

t0
dt ′

∫ L
2

− L
2

dz
∫∫∫

dωpdωsdωt α(ωp)

× exp
[−i

(
ωp − ωs − ωt

)
t ′
]

× exp
[
i
(
kp(ωp)− ks(ωs)− kt(ωt)

)
z
]

â†
s (ωs)â

†
t (ωt)+ h.c.,

(11.19)

where we merged all constants into an overall factor B. Performing the
z-integration we obtain∫ t

t0
dt ĤPDC(t

′) = B
∫ t

t0
dt ′

∫∫∫
dωpdωsdωtα(ωp)

× exp
[−i

(
ωp − ωs − ωt

)
t ′
]

×L sinc

[(
kp(ωp)− ks(ωs)− kt(ωt)

) L

2

]
â†

s (ωs)â
†
t (ωt)+ h.c..

(11.20)

Note that the integration was performed from − L
2 to L

2 , which assumes a pump
with no extra phase factors in the center of the crystal. A pump pulse with no
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additional phase factor at the beginning of the interaction leads to an additional
phase factor in the end result.

As a next step we evaluate the time-integration by expanding the bounds to
plus and minus infinity. This is justified since we regard the state long before
and after the interaction in the crystal. The integration of the time-dependent
part then results in a delta function 2πδ(ωp − ωs − ωt), and we subsequently
take the integral over the pump frequencies ωp∫ ∞

−∞
dt ĤPDC(t

′) = 2πB
∫∫

dωs dωt α(ωs + ωt)

×L sinc

[
�k(ωs,ωt)

L

2

]
â†

s (ωs)â
†
t (ωt)+ h.c.. (11.21)

Here we have introduced the shorthand �k(ωs,ωt) = kp(ωs + ωt)− ks(ωs)−
kt(ωt). With Eq. (11.21), we are able to write the generated PDC state as

|ψ〉PDC = |0〉 + B′
∫∫

dωsdωt α(ωs + ωt)sinc

[
�k

(
ωs,ωt

) L

2

]
â†

s (ωs)â
†
t (ωt) |0〉

= |0〉 + B′
∫∫

dωsdωt α(ωs + ωt)�(ωs,ωt)â
†
s (ωs)â

†
t (ωt) |0〉

= |0〉 + B′
∫∫

dωsdωt f (ωs,ωt)â
†
s (ωs)â

†
t (ωt) |0〉 , (11.22)

with a scaling factor B ′ ∝ EpL , which depends linearly on the crystal length
L and the field amplitude of the pump field.

As described above, PDC creates two-photon states with a given joint-
spectral amplitude (JSA) f (ωs,ωt). The exact shape of f (ωs,ωt) is defined
by the form of the pump distribution α(ωs + ωt), and by the phase-matching
function �(ωs,ωt) determined by the length and the dispersion of the crystal.
An example of all three for PDC pumped by a pulsed laser system is presented
in Fig. 11.2.

The pump distribution function α(ωs + ωt) of Eq. (11.22) reflects the
conservation of energy during the process. All pairs created inside satisfy
ωp − ωs − ωt = 0, whereas the phase-matching function �(ωs,ωt) depicts

FIGURE 11.2 Exemplary pump spectrum α(ωs + ωt), phase-matching function �(ωs,ωt), and
joint-spectral amplitude distribution f (ωs,ωt) of a PDC state.
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momentum conservation kp(ωp) − ks(ωs) − kt(ωt) = 0. Taken together these
functions form the joint-spectral-amplitude distribution of the created photon
pairs satisfying both energy and momentum conservation.

11.2.3 Heralding Single Photons from PDC

If the two photons generated by PDC can be efficiently and deterministically
separated, for example distinguishing them by their polarizations or their
wavelengths, then the detection of one photon heralds the generation of the
other. Therefore we have to detect the trigger photon in order to signal the
presence of its partner—the signal—from the PDC state in Eq. (11.22). A single-
photon avalanche diode (SPAD) with detection efficiency η can be described
by the “click” or trigger detection observable π̂1 and “no-click” or no detection
observable π̂0 (see Chapters 2 and 4)

π̂0 =
∫

dω |0,ω〉 〈0,ω| ,

π̂1 =
∫

dω η |1,ω〉 〈1,ω| , (11.23)

where |0,ω〉 implies vacuum at frequency ω and |1,ω〉 a single photon at the
same frequency. Since we restrict ourselves to single photons arriving at the
detector, higher-photon-number components in π̂0 and π̂1 are omitted. These
SPAD detectors are also known as binary detectors, since they are not able to
distinguish the number of photons arriving simultaneously.

The probability of detecting the trigger photon and successfully heralding a
single-photon state is directly related to the efficiency of the detector η and the
amplitude of the two-photon state created in the down-conversion process B ′.
While employing efficient detectors is a straightforward method to boost the
heralding efficiency, care has to be taken when engineering the PDC process. It
might seem straightforward to increase the pump intensity in order to boost the
amplitude of the two-photon component in the PDC state. One should however
note that at some point the perturbation expansion performed in Eq. (11.18)
breaks down and higher-order components have to be considered to correctly
model the process.

Using Eqs. (11.22) and (11.23) we calculate the not-normalized heralded
single-photon state after a successful detection event

ρs = tr
(
π1 |ψ〉 〈ψ |)

=
∫

dω′′
t
〈
ω′′

t
∣∣ [η∫∫ dωsωt f (ωs,ωt)

∫∫
dω′

sω
′
t f ∗(ω′

s,ω
′
t) |ωs,ωt〉

〈
ω′

s,ω
′
t
∣∣] ∣∣ω′′

t
〉

= η

∫∫
dωs dω′

s

[∫
dω′′

t f (ωs,ω
′′
t ) f ∗(ω′

s,ω
′′
t )

]
|ωs〉

〈
ω′

s
∣∣

= η

∫∫
dωs dω′

s j(ωs,ω
′
s) |ωs〉

〈
ω′

s
∣∣ . (11.24)
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Equation (11.24) accurately describes the heralded single-photon state with
density matrix j(ωs,ω

′
s) that is determined by joint-spectral amplitude f (ωs,ωt)

of the PDC state. j(ωs,ω
′
s) already provides some intuition about the purity of

the state. If j(ωs,ω
′
s) has circular symmetry, and is therefore separable, it can be

written as j(ωs,ω
′
s) = f (ωs) f ∗(ω′

s) and the photon is heralded in a pure state

ρs = η2
∫∫

dωs dω′
s f (ωs) f ∗(ω′

s) |ωs〉
〈
ω′

s

∣∣
= η2

∫
dωs f (ωs) |ωs〉

∫
dω′

s f ∗(ω′
s)
〈
ω′

s

∣∣ = |ψs〉 〈ψs| , (11.25)

because pure states always correspond to circular-shaped j(ωs,ω
′
s) [18,19].

To obtain further insight into the PDC process we use the Schmidt
decomposition theorem [20]. It states that every well-behaved normalized two-
dimensional function can be decomposed as a sum over a range of positive
values κk and complete sets of orthonormal functions gk(x) and hk(x)

f (x,y) =
∑

k

κkg(x)h(y), (11.26)

with
∑

k κ
2
k = 1. Using this decomposition we rewrite the PDC state in

Eq. (11.22) as

|ψ〉PDC = |0〉 + b
∫∫

dωsdωt

∑
k

κkgk(ωs)hk(ωt)â
†
s (ωs)â

†
t (ωt) |0〉 ,

(11.27)
where b is used to normalize B ′ f (ωs,ωt). Carrying out a basis transformation
from the single-frequency modes â†

s (ωs) and â†
t (ωt) to the broadband frequency

modes Â†
k and B̂†

k [21], defined as

Â†
k =

∫
dωs gk(ωs)â

†
s (ωs),

B̂†
k =

∫
dωt hk(ωt)â

†
t (ωt), (11.28)

the PDC state takes the form of a sum over the broadband modes Â†
k and B̂†

k

|ψ〉PDC = |0〉 + b
∑

k

κk Â†
k B̂†

k |0〉 . (11.29)

Hence the photon pair generated during the PDC process with a given frequency
distribution f (ωs,ωt) is emitted into a superposition of strictly correlated
broadband frequency modes Â†

k and B̂†
k . If one photon is detected in mode

B̂†
k its partner is present in mode Â†

k, and vice versa.
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In a similar manner we expand the detection observables π̂0 and π̂1 from
Eq. (11.23) in the broadband basis of the trigger modes

π̂0 =
∑

k

|0,hk(ωt)〉 〈0,hk(ωt)| ,

π̂1 =
∑

k

η |1,hk(ωt)〉 〈1,hk(ωt)| . (11.30)

In this broadband formalism, using Eqs. (11.29) and (11.30) the density operator
of the heralded single photon can be represented as

ρs =
∑

k

κ2
k |1,g(ωs)〉 〈1,g(ωs)| . (11.31)

Hence after the detection process the heralded single photon is projected into a
statistical mixture of broadband single-photon states with probabilities κ2

k . The
number of κk and their respective amplitudes depend on the joint spectrum of
the initial PDC state. The reason for this behavior can be attributed to the single-
photon detector, which cannot distinguish between the different optical modes.
It is impossible to know, in principle, which optical mode was responsible for
triggering the detection event. Therefore the heralded single photon is emitted
into a statistical mixture of broadband modes.

There exist a variety of different measures to characterize the purity of
the heralded single photons. Common are the cooperativity K = 1∑

k κ
4
k

[22],

which is unity if the signal photon is in a pure state and increases with increased
amounts of mixing, or the von Neumann entropy S = −∑

k κ
2
k log2 κ

2
k [23],

which ranges from zero for a pure signal photon to infinity for rising degrees
of impurity.

11.2.4 Heralding Pure Single-Photon Fock States

We now turn our attention to the heralding of pure single photons, or
single-photon Fock states, which are vital for various quantum information
applications, especially quantum computing. While the heralded signal photons
from the PDC process can be delivered in a good approximation of a single-
photon state for suitable experimental parameters, the state is not necessarily
pure. In order to achieve a pure single-photon state various methods can be
pursued.

11.2.4.1 Spectral Purity: Filtering
The simplest and most straightforward approach to create pure Fock states from
PDC uses narrowband spectral filtering in the heralding arm [24]. The spectral
filter acts as a beamsplitter through which only a single frequency is transmitted
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to the detector and all other frequencies are reflected or absorbed by the filter.
The general input-output relation of the filter can be written as

â(ω) ⇒ T (ω)â(ω)+ R(ω)b̂(ω), (11.32)

where T (ω) and R(ω) obey the standard beamsplitter relations. If we assume
a delta-function-like transmission of the filter at frequency ωf, i.e., T (ω) =
δ(ω − ωf) and condition on the heralding photon passing the filter, the PDC
state becomes

|ψ〉PDC =
∫∫

dωsdωt f (ωs,ωt)δ(ωf − ωt)â
†
s (ωs)â

†
t (ωt) |0〉

=
∫

dωs f (ωs,ωf)â
†
s (ωs)â

†
t (ωf) |0〉 . (11.33)

After detection of the filtered trigger the heralded signal photon is projected
onto the not-normalized signal state

|ψ〉s = η

∫
dωs f (ωs,ωf)â

†
s (ωs) |0〉 . (11.34)

The heralded signal is in a pure single-photon state, yet still spans a range of
different frequencies, i.e., it is in a broadband single-mode quantum state. Hence
the multimode nature of the PDC state is effectively suppressed by filtering the
trigger photon down to a single-frequency mode. This is due to the fact that, after
the filtering, only a single optical frequency mode is impinging on the detector,
which leads to a “collapse” of the signal photon into pure, but broadband, single-
photon Fock state. However, in practice, care has to be taken when performing
the filtering because the filter bandwidth will always have some finite width.
This limits the purity of the heralded single-photon state. Additionally standard
filters do not feature unit transmissivity. Thus, in this approach to producing
pure single-photon states the majority of the trigger photons are absorbed by
the filter, severely reducing the rate of successful heralding events. In addition,
the losses associated with filtering the trigger may enhance the multi-photon
contribution of the PDC state to the heralded signal [25].

11.2.4.2 Spectral Purity: Extended Phase Matching and
Group-Velocity Matching

A more sophisticated approach to herald Fock states is to engineer the down-
conversion process itself. If the generated PDC state is emitted into only a
single-frequency mode, such as |ψ〉PDC = |0〉 + Â† B̂† |0〉, then the heralded
single photon will be projected into the pure state ρs = Â† |0〉 〈0| Â.

This configuration can be achieved if the shape of the joint-spectral
distribution f (ωs,ωt) is engineered appropriately. The Schmidt decomposition
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theorems (Eq. (11.26)) tell us that to obtain a photon pair in a single optical
mode, it is necessary for the joint-spectral distribution f (ωs,ωt) to be factorable
as f (ωs,ωt) = g(ωs)h(ωt). In other words all κk coefficients have to be zero
except one. Hence it is necessary to find experimental conditions such that the
joint-spectral amplitude distribution from Eq. (11.22)

f (ωs,ωt) = α(ωs + ωt)�(ωs,ωt), (11.35)

does not feature any frequency correlations between the signal and the trigger.
Consider using a cw pump laser with central frequency ωc, in which case

f (ωs,ωt) becomes

f (ωs,ωt) = Epδ(ωs + ωt − ωc)�(ωs,ωt). (11.36)

In this specific case, the joint-spectral-amplitude distribution is diagonal and
continuous in the frequency space (ωs,ωt) and hence is not factorable and cannot
be written in product form. In fact it is impossible to directly create photon pairs
in a single-frequency mode when using a cw laser. Pulsed lasers, however, can
achieve the desired effect. Standard pulsed lasers can produce Gaussian-shaped
pulses with a given spectral width σp and central frequency ωc, resulting in a
JSA is given by

f (ωs,ωt) = Ap exp

[
−

(
(ωs + ωt − ωc)

2

2σ 2
p

)]
�(ωs,ωt)

= Ap exp

[
−

(
(ωs + ωt − ωc)

2

2σ 2
p

)]
sinc

[
�k(ωs,ωt)L/2

]
. (11.37)

From Eq. (11.37) an analytical expression for the factorability condition can be
derived (see [26])

2

σ 2 + γ L2
(

1

vp
− 1

vs

)(
1

vp
− 1

vt

)
= 0, (11.38)

where vi labels the group-velocities of the three interacting fields and γ ≈ 0.193.
Therefore the condition for directly generating PDC states that will lead to the
heralding of pure single-photon Fock states is to find a crystal in which the
pump travels slower than the trigger wave, and travels faster than the signal
wave (or vice versa). Engineering the source in this manner has the advantage
that no filtering is required, and hence the generated trigger photons arrive at
the detector with low loss, resulting in high heralding rates. It is indeed possible
to find materials that can fulfill these conditions by generating these waves in
different polarizations [26] or directions [27]. Examples will be discussed in
the remainder of this section.
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11.2.4.3 Photon-Number Purity
Based on the quantum state produced from PDC, we must consider the details of
the photon-number distribution of the heralded single-photon states achieved by
detecting one mode from a photon pair. Given the strict photon-pair correlations
imposed by the PDC process there will be multi-photon terms from the higher-
order emissions, however, if the heralding is done by a perfect single-photon
detector with ideal coupling efficiency, this scheme would allow to herald
perfect single photons.

The photon-number statistics can be derived for the state generated by PDC
by applying the PDC Hamiltonian in the approximation of a strong pump mode,
acting on two optical modes a1,a2 in the form HPDC = ε(a†

1a†
2 + a1a2), where

ε is an interaction parameter that includes the nonlinearity, the phase-matching,
and the interaction time. The state, including the higher-order photon-number
terms with their correct amplitudes, can be estimated by evolution of this
Hamiltonian for vacuum inputs

exp (−i HPDC)|0,0〉a1,a2 . (11.39)

For ε < 1 this yields the output state in the form

|�〉PDC = c0|00〉a1,a2 + c1|11〉a1,a2 + c2|22〉a1,a2 + · · ·, (11.40)

with the amplitudes ci = √
1 − ε2 · εi [28]. One of the modes will be the

trigger mode, the other the signal. Because the detection process on the trigger
photon corresponds, at least in principle, to a photon-number measurement, the
remaining photon is no longer in a superposition of number states, as originally
given by the PDC. Rather it is a mixture of number states weighted with the
appropriate probability. Typically the purity in photon numbers for the heralded
single-photon state is characterized by the normalized second-order correlation
function g(2)(t1,t2), see Chapter 2: Photon statistics and measurements.

The residual photon statistics of the heralded photon will depend on the
efficiency of the trigger detection, and on the type of trigger detector, specifically
whether it is a click/no-click detector (often referred to as a threshold detector);
or a photon-number resolving detector. See Chapters 3–7 for further details on
single-photon detectors.

As discussed earlier in this book, the response of a click/no-click detector
with single-photon detection efficiency η to two or more photons is given by
the combined probability that any number of the incident photons produces
a click. For example, with two photons impinging on the detector, |2〉〈2|,
a click-event may be generated with probability η2 in the case that both
photons are absorbed, or with probability η(1 − η), that one is absorbed
and not the other. Because the latter combination can occur in two different
ways, the combined probability for a “click” is η2 + 2η(1 − η) = 1 −
(1 − η)2. Generalizing this approach leads to the click probabilities for a
given n-Fock state PBD(n) = 1 − (1 − η)(n), with measurement operator
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�̂“click” = ∑
n

(
1 − (1 − η)n

) |n〉 〈n| (see Chapter 9, and the models described
in [29,30]). A photon-number resolving (PNR) detector has a different
characteristic, as it can discriminate the number of photons that are detected.
For instance, the measurement operator for the detection of exactly one photon
has the form �̂1 = ∑∞

N=1

(N
1

) (
1 − η

)N−1
η |N 〉 〈N |, see Refs. [31,30].

In order to determine the photon-number state of the heralded output, these
photon-number detection characteristics are used to describe the trigger detector
receiving the multi-photon state generated from PDC, shown in Eq. (11.40).
For a click/no-click detector this gives a heralded state described by the density
matrix:

ρheralded1 = 1

M
T ra1(�̂PDC |ψ〉 〈ψ |PDC ) (11.41)

= Q|0〉〈0|a2 + P1|C1|2|1〉〈1|a2 + P2|C2|2|2〉〈2|a2 + · · · , (11.42)

which describes a mixture of photon-number states, where P1,P2,. . . are the
detection probabilities for a “click” in the trigger detector, as defined above
for the respective photon-number terms, C1,C2,. . . are the amplitudes of the
terms from the PDC state, Q is the probability that the trigger detector does not
fire, and 1

M is the renormalization factor.
The simulation in Fig. 11.3 shows how g(2)(0) changes with the probability

of detecting a trigger photon within the time unit of the system (for example this
could be the duration of the pump pulse or the timing window of the detectors),
under variation of the interaction strength of the PDC. Essentially this result
shows that with a higher pair production through stronger pumping, the photon-
number purity suffers severely. One must therefore choose the PDC interaction
strength according to what can be tolerated in the specific application [114].

11.2.4.4 Improving the Heralding Rates with Switched PDC
Given the non-deterministic behavior of the PDC interaction, the heralding of
a single-photon state will only occur with a low probability. As shown above,
the pump strength cannot be increased arbitrarily, because as the probabilities
for a trigger detection increase, so will the likelihood of multi-pair emission.

One elegant solution is to combine multiple PDC sources using an array of
switches so that the signal output of a PDC source from which a trigger photon
was successfully detected can be switched into a single combined output. If
enough PDC sources are combined, the chances that at least one PDC process
triggers is close to 1, but at the same time each individual heralded photon can
be produced with the desired low g(2)(0).

Several possible schemes of this type have been studied, including parallel
switches for several spatial modes [32], and switched photon storage in rings
or cavities [33]. Generally, all these schemes are challenging to implement,
because the additional optical losses caused by currently available switching
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FIGURE 11.3 Single-photon quality g(2)(0) for photons heralded from PDC, versus the
probability for a click in the trigger detector. The pump strength of the PDC is varied in the
simulation. The assumed detector efficiencies are 65% for the click/no-click detector and 95% for
the PNR detector.

technologies outweigh the gains from the combination of several PDC’s, as was
analyzed in [34].

11.3 BULK-CRYSTAL PDC

In this section we explore parametric down-conversion in bulk crystals, i.e.,
standard nonlinear crystals without poling or embedded waveguides. The vast
majority of PDC sources have been realized in bulk crystals, and while they are
increasingly being supplanted by periodically-poled structures in continuous-
wave down-conversion—due to the higher achievable brightnesses—they are
still the system of choice for the generation of multi-photon states in pulsed-
pump PDC.

11.3.1 Birefringent Phase-Matching

In Section 11.2.2, we derived the general PDC Hamiltonian. To generate PDC in
practice, the three interacting fields have to conserve energy, i.e., the frequencies
match

ωp = ωs + ωt, (11.43)

and conserve momentum in the crystal, i.e., the phases match

kp = ks + kt, (11.44)
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FIGURE 11.4 Energy and momentum conversion between a pump (p), a signal (s), and a trigger
field (t) in parametric down-conservation.

(a) (b)

FIGURE 11.5 Refractive index for a light field k propagating in birefringent crystals. (a) Negative
uniaxial crystal with no > ne. (b) Positive uniaxial crystal with ne > no. o.a.: optical axis.

as shown schematically in Fig. 11.4. The phase-matching condition Eq. (11.44)
is subject to dispersion in the nonlinear medium, through k = ωn(ω)/c,
see also Eq. (11.7). To satisfy Eq. (11.44), the polarizations and wave vec-
tors of the interacting fields must be carefully chosen such that ωpnp(ωp) =
ωsns(ωs)+ωtnt(ωt). In an isotropic bulk crystal however, the normal dispersion
ensures that this is not possible while also fulfilling Eq. (11.43).

The solution is to use anisotropic materials, in which fields with different
polarizations experience different refractive indices. The plane containing the
optical axis and the pump wave vector is called the principal plane, and we
denote a light beam polarized orthogonally to that plane the ordinary (o) and
the beam polarized within that plane the extraordinary (e) beam. As can be seen
in Fig. 11.5 for a uniaxial crystal, the refractive index for the ordinary beam, no,
is independent of the field orientation in the crystal. The extraordinary refractive
index, shown as an ellipsoid, is dependent on the angle θ between the field vector
and the optical axis of the crystal, ne(θ) = ( cos2(θ)/n2

o + sin2(θ)/n2
e)

−1/2.
Phase-matching in such a material can be achieved for orthogonally-

polarized fields through birefringent phase-matching, which is most commonly
done by tuning the angle between the crystal axes and the interacting fields. This
technique is also called critical phase-matching, because it is quite sensitive to
deviations from optimal conditions and thus limits the angular, spectral, and
temperature acceptance bandwidth.

Alternatively, the angle θ can be set to 90◦ and the phase-matching can be
achieved by varying the temperature of the crystal, which changes the relative
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(a) (b)

FIGURE 11.6 Parametric down-conversion in a bulk crystal. (a) Angular phase matching. The
optical crystal axis (o.a.) spans an angle θ with the pump field. The down-converted fields emerge
at angles θs and θt. (b) PDC in birefringent materials can be achieved via type-I (top) or type-II
(bottom) phase matching.

size of the ordinary and extraordinary ellipsoids, Fig. 11.5. This technique is
called non-critical phase-matching (and sometimes temperature- or 90◦ phase-
matching).

Angular phase matching is schematically shown in Fig. 11.6a. The pump
field spans the angles θs and θt with the two down-converted fields. There are
two phase-matching options in this case, type-I down-conversion of a pump
beam orthogonally polarized to the two co-polarized down-conversion fields,
or type-II down-conversion, where the down-converted fields are orthogonally
polarized, see Fig. 11.6b. In a negative uniaxial crystal, type-I phase matching
is possible for an extraordinary pump splitting into two ordinary PDC photons,
e → o + o, while type-II PDC can be achieved for e → o + e. In a positive
uniaxial crystal, this situation is inverted, o → e + e, o → e + o. The third
option, type-0 phase matching where all fields are co-polarized, cannot generally
be implemented in bulk materials but is often used in periodically-poled crystals.

One of the challenges of building PDC sources using angle phase-matching
is transversal walkoff between the e and o fields. This walkoff restricts the
useful length of a bulk crystal and thus limits the photon-pair yield. This can
only be avoided by choosing a collinear PDC configuration along one of the
crystal axes, which can be achieved by using non-critical phase matching in
bulk crystals.

The dispersion relations, i.e., the exact wavelength- and temperature-
dependence of the refractive indices, are usually available in the form of
empirical Sellmeier equations (see [35] for one of the most comprehensive
compilations of nonlinear crystal properties). Using these equations, the phase-
matching conditions can be solved numerically for a set of target frequencies—
which are usually subject to availability of suitable pump lasers and photon
detectors. A particularly useful free software suite for this purpose is SNLO,
written by A. Smith [36]. It contains data for more than 50 commonly used
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(a) (b)

FIGURE 11.7 Non-collinear type-II down-conversion in a BBO crystal, with its optical axis
oriented at θ = 41◦, pumped at 410 nm.

crystals and allows modeling of most nonlinear optical applications, such
as optical parametric oscillators, second-harmonic generation, and parametric
down-conversion.

We now present two example solutions for widely used PDC applications.
The first is type-II noncollinear PDC in a negative uniaxial β-barium borate
(BBO) crystal pumped by a 410 nm laser to generate frequency-degenerate
down-conversion at 820 nm. The characteristic emission cones are shown in
Fig. 11.7. This geometry is a popular choice for generating polarization-
entangled photons, and has had enormous success in experimental quantum
information processing since its first demonstration in [8].

The second example is collinear PDC (θs = θt = 0) in a biaxial bismuth
borate (BiBO) crystal. The BiBO crystal is increasingly replacing BBO due to
its higher nonlinearity, as for example demonstrated in [37]. While it is more
complicated to calculate phase-matching conditions for biaxial crystals, they are
also more versatile. Exemplary tuning curves, for the same pump wavelength
of 410 nm, are shown as a function of θ for type-I and type-II phase matching in
Fig. 11.8a and b, respectively. These tuning curves show a characteristic
difference between type-I and type-II schemes. For frequency-degenerate
schemes, where ωs = ωt, the bandwidth of type-I schemes is far broader for
a given acceptance angle then for type-II schemes. The bandwidth quickly
decreases for type-I as one moves away from degeneracy, whereas it is
more or less constant over a wide frequency range for type-II configurations.
Furthermore, the type-I configuration does not have a phase-matching solution
for angles above the critical angle. A rigorous analysis of non-collinear type-II
PDC in BiBO has recently been conducted [38].

Once a crystal has been chosen and a phase-matching solution has been
found, the next design challenges are: to optimise (i) the PDC brightness, (ii)
the photon heralding efficiency, and (iii) the heralded-photon purity. As we shall
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(a) (b)

FIGURE 11.8 Tuning curves for PDC in a biaxial BiBO crystal, as a function of optical axis
orientation θ , pumped at 410 nm. (a) Type-I phase-matching, o → e + e, with the crystal cut along
the X-Z plane. (b) Type-II phase-matching, e → o + e, along the Y-Z plane.

FIGURE 11.9 Fiber coupling non-collinear down-conversion light. The pump beam is focused
to a waist size wp in the crystal of length L. The PDC modes are coupled into two optical fibers,
whose mode field diameter is matched to the PDC mode with two lenses.

see, these are intimately interconnected. The source brightness can be defined
as either the collected or detected number of photon pairs per unit time and unit
pump power. Depending on the application, this is sometimes further divided
by the PDC output bandwidth, giving the spectral brightness. Typical values
are summarized in Fig. 11.32.

The heralding efficiency is the probability of a PDC photon being in the
signal mode conditioned on detection of the trigger photon (see also the formal
definition in Section 11.2.3). Both the brightness and the heralding efficiency
are primarily controlled by optical mode-matching of the pump and PDC fields,
see Fig. 11.9. Early experiments relied mostly on pinholes for spatial filtering
and collection of the PDC light, a technique that was soon replaced by the use of
single-mode. One early analysis showed that fibre coupling can be optimized for
a given spectral range by tuning the (continuous-wave) pump-beam focusing to
match the angular spread of the PDC emission to the angular acceptance width of
the fibre modes [39]. This work was followed by more sophisticated numerical
models for both the continuous-wave [40,41] and—for heralding applications—
the pulsed-pump cases [42]. Due to the complicated spatio-temporal form of
the two-photon state generated in non-collinear PDC, the calculations must be
solved numerically. In the following we briefly outline how this problem can
be approached [42].
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11.3.1.1 Transverse Two-Photon State in Bulk Crystals
In contrast to the derivation of the collinear case in Section 11.2.2, the exact
description of non-collinear PDC includes the transverse components of the
interacting fields. The positive and negative components of the field opera-
tors (cf. Eq. (11.14)) thus take the form Ê (+)i (r)= Ê (−)†i (r)= A

∫
d2kidωi

eı
(
ki(ωi)r−ωit

)
âi(ki,ωi). The corresponding two-photon state is

|ψ〉 =
∫

d2ks⊥d2kt⊥dωsdωt�(ks⊥,ωs,kt⊥,ωt)a
†
s (ks⊥,ωs)a

†
t (kt⊥,ωt)|0〉,

(11.45)
with the two-photon amplitude

�(ks⊥,ωs,kt⊥,ωt) =
∫ L

0
dz Ap(ks⊥ + kt⊥,ωs + ωt)e

i�kz(ks⊥+kt⊥,ωs+ωt)z,

(11.46)
where Ap represents the pump field. The phase-mismatch �kz is now defined
through the z components of the wave vectors involved

�kz(ks⊥+ kt⊥,ωs +ωt) = kpz(ks⊥+ kt⊥,ωs +ωt)

− ksz(ks⊥,ωs)− ktz(kt⊥,ωt). (11.47)

Equation (11.46) describes the PDC field for all possible output directions,
but will only have non-zero amplitude for the propagation directions allowed
by the phase-matching conditions. Using these equations one can now tackle
the problem of optimizing the key performance parameters of a non-collinear
PDC source, for example, by numerically maximizing the overlap of the output
wave function with optical fiber modes, as shown in [42]. This treatment also
provides a starting point for obtaining conditions for which the joint-spectral
PDC amplitude is factorizable, which is the prerequisite for a high heralded-
photon purity [115].

11.3.2 Heralded Single Photons from Triggered PDC

A plethora of PDC sources have been demonstrated for the generation of
one or more (entangled) photon pairs for experiments in quantum information
processing. All of them serve as examples of the creation of heralded single
photons via PDC even though they were usually not employed for that purpose.

The creation of pure heralded single photons (see theory in Section 11.2.4)
via PDC has only recently attracted the focus of in-depth research. In the
following we describe two approaches toward this goal. The first investigates
how vectorial matching can be used to create pure photons. The second,
which can be combined with most other techniques, involves multiplexing
downconverters to increase the likelihood of the creation of single pairs while
reducing multi-pair emissions.
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11.3.2.1 Photon-State Tuning Through Vectorial Matching
In Section 11.2.3 we discussed the theory and necessity of creating photon pairs
with a separable joint-spectral amplitude, defined in Eq. (11.35). The goal is
to tailor the JSA such that the measurement of the heralding photon does not
interfere with the state of the signal photon. In particular, the two photons must
not be correlated in frequency. This can be achieved through group-velocity
matching [26] in one of the following two ways.

Asymmetric JSA
The first is to match the group-velocity of either down-conversion photon to
that of the pump field, e.g., v′

t = v′
p. This creates a vertical phase-matching

function and, consequently, a separable, asymmetric JSA, see Fig. 11.10, which
corresponds to emission of one narrowband and one broadband photon. In a bulk
crystal, this can be achieved through careful vectorial matching in combination
with the proper choice of the spectral properties of the pump laser. However,
the necessity of simultaneous phase-matching and group-velocity matching
imposes very stringent conditions and can only be achieved for very specific
sets of wavelengths in a limited number of nonlinear crystals. This limitation
is alleviated by the advent of periodically-poled crystals, which offer more
experimental degrees of freedom, as discussed in Section 11.4.

This particular group-velocity matching technique was first demonstrated
in an experiment by Mosley et al. [43]. The authors employed a frequency-
doubled Ti:sapphire laser with 50 fs pulses to pump a pair of 5 mm potassium
dihydrogen phosphate (KDP) crystals at 415 nm. For type-II down-conversion
in this configuration, the group-velocity of the e-polarized 415 pump field is
matched to the o-polarized 830 nm down-conversion photon which theoretically
would suffice for the creation of uncorrelated photons. However, the group-
velocity matching only holds for a plane wave. In practice, the pump beam has
to be focused into the PDC crystal to increase the pair yield and coupling of the
down-converted fields into single-mode fibers. This leads to an angular spread
of the pump field, which leads to non-ideal group-velocity matching. In [43]

FIGURE 11.10 Group-velocity matching. The condition v′t = v′p results in an asymmetric phase-
matching function and a vertical, separable joint-spectral amplitude.
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this problem was addressed (to some degree) by adjusting the spatial chirp the
pump acquired in the frequency-doubling crystal. A detailed analysis of the
effects of focusing and spectral pulse shaping can be found in [44].

As a quality benchmark, the authors demonstrated two-photon interference
of signal photons created in two independent PDC crystals. This type of
experiment was first demonstrated by Hong, Ou, and Mandel [7], and is the
basis for many protocols in linear optical quantum information processing.
Importantly, the visibility of this two-photon interference is a direct measure
of photon-number and spectral purity once the unavoidable spatio-temporal
distinguishability in the measurement is accounted for. In [44], the authors
achieved an interference visibility of 94.7% for independently heralded photons.
The key achievement was that no narrowband spectral filters were used, which
usually limit the source brightness in multi-photon schemes.

Symmetric JSA
The second option to attain group-velocity matching is to match the mean
group-velocity of the two down-converted fields to the pump group-velocity,
v′

p = (v′
s + v′

t)/2, see Fig. 11.11. This creates a phase-matching function
with orthogonal orientation to the pump function. The resulting JSA is thus
roughly circular. In order to achieve perfect separability, the widths of the
phase-matching and pump functions must be equal, which can be controlled
via crystal length or the pump spectrum, respectively [26].

In either case, one can see that the final JSA is still not perfect—the phase-
matching function has a distinct sinc shape, which emanates from the integration
of the PDC Hamiltonian over a finite crystal length, see Eq. (11.19). The
associated side lobes can not be eliminated through group-velocity matching
[24]. One way to reduce this residual distinguishability would be to use
frequency filtering, but this defies the main purpose of group-velocity matching.
Alternatively, one can manipulate the nonlinearity of a PDC crystal to produce
a Gaussian-shaped phase-matching function, a technique which has been

FIGURE 11.11 Group-velocity matching. Setting v′p = (v′s + vt)/2 creates a symmetric phase-
matching function and a circular joint-spectral amplitude.
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demonstrated for periodically-poled crystals in [45] and will be outlined in
Section 11.4.6.

11.3.2.2 Multiplexed PDC Sources
As shown in Section 11.2.4, the number purity of heralded single photons is
strongly dependent on the PDC pump power. The simplest method to reduce
multi-photon emission and improve this purity is to operate at lower pump
power. This however limits the source brightness, which one cannot always
afford. Instead, several sources at lower power can be used in parallel and
multiplexed into a single output as discussed above.

In the spatial multiplexing scheme suggested in [47], and shown
schematically in Fig. 11.12a, several down-converters are run in parallel in
a photon switchyard. The efficiency for this scheme was simulated in detail in
[46]. It is critically limited by the switchyard architecture and the characteristics
of the switches, such as switching time and optical loss.
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FIGURE 11.12 Heralded photons from spatially multiplexed PDC sources [46]. (a) Tightly
synchronized laser pulses pump N PDC sources. One photon from each source is used as a trigger
a1. . .aN while the signal modes b1. . .bN are routed into the single output mode via an active N:1
switch. (b) Three-photon switchyard configurations are simulated. (i) A single N:1 optical switch;
(ii) A succession of 2:1 binary switches; (iii) An all-optical multiport switch. The performance of the
multiplexing scheme depends crucially on switching speeds and optical loss in these architectures.
(c) Simulation of the three switching schemes, showing the photon heralding efficiency Phrld versus
the triggering probability Ptrigger .
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FIGURE 11.13 Demonstration of active PDC multiplexing [34]. (a) Experimental scheme for
multiplexing 2 and 4 PDC sources into a common signal mode via fast electro-optical switches
(EOM). (b) Correlation function g(2)(0) measured for the multiplexed signal photon. The results
show a clear improvement of photon purity for comparable count rates.

Experimentally, this multiplexing scheme has been demonstrated for 2 and
4 PDC sources in [34], see Fig. 11.13. Photon pairs were created in type-II
phase-matched BBO crystals. For the 2:1 scheme, one photon of each pair was
split off with a polarizing beamsplitter and served as the trigger. The 4:1 scheme
was realized with a more sophisticated setup which was based on polarization-
entangled photons. The signal photons in both cases were combined with
an ultrafast photon router based on electro-optical switches, as shown in
Fig. 11.13a. The authors measured the two-photon correlation function g(2)(0)
as a benchmark for single-photon purity. The results in Fig. 11.13b show
that g(2)(0) for a single PDC source decays quickly toward 1 for high pump
powers, where multi-pair emissions dominate. In comparison, the 2:1 and 4:1
multiplexed schemes allow higher pump power and thus higher signal rates for
the same g(2)(0), a convincing improvement.

Alternatively, sources can be multiplexed in time. Typically, PDC
experiments are pumped with Ti:Sapphire lasers at a fixed pulse repetition
rate of 76 MHz, which corresponds to an interval of 13 ns between subsequent
pulses. The timing windows for heralded photons can, however, be as small as
1 ns, with the main limitation being the photon detectors and electronics. In
this case an experiment could be operated at repetition rates of up to 1 GHz.
This would allow operation of a PDC source at lower power, to diminish the
number of unwanted higher-order pair emissions, while keeping the signal rate
at a reasonable level.

Since the laser repetition rate is usually fixed, it has to be changed externally,
as demonstrated in a recent experiment in [48], see Fig. 11.14a. A simple optical
delay line, consisting of two beamsplitters and two mirrors, splits off 50% of the
frequency-doubled, 76 MHz pump laser and recombines it with the pump mode
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FIGURE 11.14 Temporal multiplexing of PDC sources [48]. (a) The repetition rate of a pump
laser can be increased with a simple optical delay line. (b) Two-photon interference on a 1/3
beamsplitter (BS) was used to test the performance of the scheme. (c) The results show that at
twice the repetition rate, the interference visibility (which is limited to 80% for this BS) decays by
a factor of 2 less with increasing pump power.

after a ≈6.5 ns delay period. The pump repetition rate is doubled to 152 MHz,
while the pump power per pulse is reduced to 25%, where 50% of the loss
occurs due to the recombination on the second beamsplitter. Usually, this loss
can easily be afforded, as state-of-the-art experiments are very efficient and are
operated far below the approximately 3–4 W average pump power that can be
generated from a frequency-doubled femtosecond Ti:sapph laser. As in [43], this
scheme was benchmarked using a two-photon interference experiment between
independently generated photons, as shown in Fig. 11.14b. The results in
Fig. 11.14c show a clear improvement of the two-photon interference visibility
for the doubled repetition rate. The advantage of this temporal multiplexing
scheme is that it is simple and can be applied to almost any experiment. The
optical delay line can be extended to multiply the repetition rate beyond a factor
of 2 without further loss in overall power.

A less complicated alternative for a newly designed experiment would be
to employ a pulsed laser with a higher repetition rate. One example would be
commercially available picosecond lasers with a repetition rate of 150 MHz. The
longer pulse length as compared to femtosecond lasers has some drawbacks,
however. Another example are newly available Ti:sapphire femtosecond lasers
with up to 1 GHz repetition rate. The overall output power of such a system is
considerably lower than for the commonly used 76 MHz Ti:sapphire lasers, but
this limitation can be overcome by use of more efficient crystals, as we will see
in the next Section 11.4.

Another method to increase the signal to noise ratio of heralded photons,
which can be combined with the multiplexing schemes discussed above, is
deliberate suppression of unwanted background counts. These background
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FIGURE 11.15 (a) Scheme for background suppression in heralded PDC [49]. (a) Photon pairs
are produced in type-II non-degenerate PDC in a PPLN crystal. The trigger detector synchronizes
an optical shutter (O.S.), which blocks the signal line, through a fast field-programmable gate array
(FPGA). The 1550 nm signal photon was detected with a InGaAs detector with a timing window
of 100 ns. (b) Results. Shorter switching times �tswitch lead to a significant reduction in α, which
corresponds to the two-photon correlation function g(2)(0).

counts, either in the heralding or the signal detectors can be intrinsic dark
counts caused by the detector, or actual counts induced by background light.
The intrinsic dark counts can be minimized by proper choice of detectors (see
Chapters 3–7 for an overview).

Extrinsic background counts can be minimized by adding optical shutters
to heralded PDC scheme, as demonstrated in [49] and shown in Fig. 11.15. The
signal channel in this scheme is blocked until the trigger photon signals the
arrival of the signal photon. This technique is especially effective in systems
using slow detectors, such as photon-number-resolving transition edge sensors
(c.f. Chapter 6). These detectors, due to their high internal jitter, require
comparably large coincidence windows (≈100 ns) and operate in a low-count-
rate regime. They therefore produce a significant amount of background-
induced false-positive coincidence counts, which can be minimized with an
optical shutter. The results in Fig. 11.15 show that shutter times below the
coincidence timing window increase the single-photon purity.
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11.4 PERIODICALLY-POLED CRYSTAL PDC

11.4.1 Quasi-Phase-Matching

Quasi-phase-matching (QPM) was first proposed by Armstrong et al. in 1962
[50] to achieve efficient energy transfer between interacting waves in nonlinear
media. It is based on a spatial modulation of the nonlinear properties along the
propagation direction. The simplest form of QPM is a periodically alternating
orientation of the crystal domain, so that the effective nonlinearity flips
between +dbulk and −dbulk [50]. In contrast to birefringent phase-matching, the
interacting fields still propagate with different phase velocities inside the crystal,
but when the accumulated phase mismatch reaches π , the sign of the nonlinear
susceptibility is reversed. Rather than starting to interfere destructively the fields
at this point start at zero phase difference, which then increases again as the
fields propagate until it reaches π again, where the nonlinear susceptibility is
reversed once more. This creates a step-wise growth in the output power along
the crystal length as shown in Fig. 11.16.

We give here a brief introduction of the principles of QPM, a formal
derivation of the QPM can be found in [51]. The longitudinally varying
nonlinear susceptibility (d(z)) can be expressed as a Fourier series

d(z) = dbulk

∑
m

Gmexp(−ikmz), (11.48)

m=1 m=3

(a) (b)

(c)

<<

FIGURE 11.16 Solid lines show the effective growth of signal intensity with length in a nonlinear
medium (here in units of the coherence length Lc) in the case of first-order QPM (a) and third-order
QPM (b). The dashed lines show the signal intensity for perfect birefringent phase-matching and
the phase-mismatched case. In (c), the poling structure and periodicity � are schematically drawn
for the first- and third-order cases.
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where dbulk is the nonlinear coefficient of the bulk material, Gm are the Fourier
coefficients, km = 2πm/� is the grating vector of the m-th Fourier component,
and � is the spatial period of the modulated structure.

Assuming that only one Fourier component is phase matched and contributes
significantly to the PDC process, the integration of the signal amplitude from
Eq. (11.9) yields

Es ∝ L dQ sinc

(
�kQ

L

2

)
, (11.49)

where dQ is the effective nonlinear coefficient in QPM. For a square-wave
modulation of the nonlinearity from +dbulk to −dbulk the effective nonlinear
coefficient becomes:

dQ = 2 dbulk sin(π D)/m π, (11.50)

where the duty factor D = l/� is given by the length l of a single reversed
domain divided by the period �. The value of m determines the order of the
QPM. As the efficiency of the nonlinear process is proportional to 1/m2, a
low-order QPM is desired. However this comes with the price of small periodic
structures (�). For example, in a first-order QPM (Fig. 11.16) the period �
has to be twice the coherence length lc as defined in the bulk medium, see
Eq. (11.10). The largest nonlinear coefficient for QPM is obtained for a first-
order process with duty cycle of 50%. In this case

dQ = 2

π
dbulk. (11.51)

The effective nonlinearity in QPM is therefore reduced by at least a factor of 2
π

compared to the value for birefringent phase-matching in the bulk medium.
The Hamiltonian in Eq. (11.21) has the following form for QPM:∫ t

t0
dt ĤPDC(t

′) = 2π B dQ

∫∫
dωs dωt α(ωs + ωt)

×L sinc

[
�kQ

L

2

]
â†

s (ωs)â
†
t (ωt)+ h.c.. (11.52)

The effective wave-vector mismatch due to the quasi-phase-matching is

�kQ = kp − ks − kt − km = �kbulk − km, (11.53)

assuming that all wave vectors are collinear with the grating vector. The grating
vector is a powerful parameter as it is independent of material properties and
can be easily adjusted during crystal fabrication, as shown in the periodic-
poling section below. Even if the wave-vector mismatch is non-zero for the
bulk material, using quasi-phase-matching a fully phase-matched interaction
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(�kQ = 0) can be achieved for maximum conversion efficiency. In addition,
the phase-matching can be tuned (somewhat) using the temperature dependence
of the refractive index, with the wave vector k given by

k(λ,T ) = n(λ,T )ω

c
. (11.54)

The grating vector km is also affected by temperature changes, since the poling
period�(T ) depends on the thermal expansion of the medium. The temperature
and wavelength dependence of the refractive index can be easily derived using
the empirical Sellmeier equations of the medium, e.g., for potassium titanyl
phosphate (KTP), the Sellmeier coefficients can be found in Refs. [52,53].

The QPM approach has several advantages over the birefringent phase-
matching discussed in the previous chapter:

● Free choice of the trigger and signal wavelengths by appropriate choice of
the modulation period �.

● For fixed choice of trigger and signal wavelength, the propagation direction
of trigger and signal photons can be made collinear with the pump photons,
eliminating spatial walk-off effects in the transverse direction.

● With no walk-off, the interaction length inside the nonlinear medium can be
very long, increasing the conversion efficiency.

● Free choice of polarization of the pump, trigger, and signal fields. This
allows to make use of the largest component of the nonlinear susceptibility
tensor to maximize conversion efficiency in a given nonlinear medium.

● Easy tunability of the trigger and signal wavelengths of several nm by
controlling the temperature of the nonlinear medium.

● Complex phase-matching conditions can be achieved by using non-periodic
modulation of the nonlinear coefficient.

The advantage of QPM is illustrated in Fig. 11.17 where different phase-
matching scenarios are realized in the same nonlinear medium, a periodically-
poled KTP (ppKTP) crystal. The top row shows data from a simulated type-II
phase-matched ppKTP, with signal and trigger wavelengths around 810 nm.
The trigger and signal wavelengths for collinear emission are plotted against
the poling period, temperature, and pump wavelength. By simply varying the
period of the poling, the difference in wavelength can be altered at will around
the degeneracy wavelength of 810 nm (set by the pump wavelength) which
occurs at � = 10.7 μm. Although not as strong, the additional dependence
of the phase-matching on temperature is very helpful in experiments since
it allows fine tuning of the trigger and signal wavelengths to match existing
filters or atomic absorption lines without interfering with the optical setup. If a
tunable pump is available, fine tuning can also be achieved using different pump
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FIGURE 11.17 Simulated phase-matching curves of ppKTP using SLNO (Select Nonlinear
Optics (software), by Dr. Arlee Smith, download: http://www.as-photonics.com). The first row
shows the phase-matching conditions for a degenerate type-II interaction as functions of three
parameters: poling period �, temperature, and pump wavelength. The second row shows a non-
degenerate type-I interaction.

wavelengths, as shown on the right-most plot. The bottom row of Fig. 11.17
shows a simulation for the same ppKTP crystal but this time phase-matched for
type-I with non-degenerate signal and trigger wavelengths. By slightly changing
the poling period to � = 9.9 μm , the crystal (at 20◦C) produces trigger and
signal photons at highly non-degenerate wavelengths. The trigger is found at
810 nm and the signal lies at 1550 nm, a wavelength combination that profits
from the high available detection efficiency at 810 nm and low transmission
losses at 1550 nm in optical fibers. The same wavelength pair can be obtained
from a crystal with period� = 9.7 μm when heated to about 130◦C, as shown
on the bottom center of Fig. 11.17.

Note that there is no crossing of the trigger and signal wavelengths at the
degeneracy point, as in the type-II case. Since in type-I both photons have
the same polarization they become indistinguishable and interchangeable at
degeneracy. As a result the natural bandwidth of trigger and signal at degeneracy
is larger for type-I phase-matching.

Even if the period � is fixed after production of the crystal, the exact
wavelengths for collinear emission can still be tuned using either the crystal
temperature or pump wavelength. It is clear that this technique provides
the experimenter with very valuable additional controls when operating or
designing an experimental setup.

http://www.as-photonics.com
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11.4.2 Periodic Poling

The spatial modulation of the nonlinearity can be realized in ferroelectric crys-
tals by periodically altering the crystal orientation so that the effective nonlin-
earity alternates between +dbulk and −dbulk in each domain. An early method
for generating domain reversal was periodic modulation during crystal growth,
but this approach lacked precise control of the domain size over long distances.
Later use of lithographic methods improved the control of the domain struc-
ture. In this technique, a lithographic mask is used to define the periodic-poling
regions after crystal growth. Initially the first periodic poling under lithography
was based on in-diffusion of dopants [54] or through ion exchange [55]. How-
ever these methods could only produce periodically-poled waveguides because
the domains only penetrated a few μm into the substrate. Finally, electric-field
poling methods, developed in the early 1990s, enabled the production of bulk
periodically-poled structures for high-power applications [56–58].

In electric-field poling the nonlinear medium is lithographically patterned
with electrodes. A pulsed electric field is then applied to the electrodes, and if
the field is strong enough, spontaneous reversal of the crystal structure occurs.
The critical field strength at which poling occurs is called the coercive field. The
actual value for the critical field depends on the crystal properties and is on the
order of several kV/mm. By reversing the domains only under the electrodes,
see Fig. 11.18, a periodic structure with alternating nonlinearity is achieved.

One of the first demonstrations of PDC in a periodically-poled bulk
crystal was performed by Mason et al. in 2002 [59], where a periodically-
poled lithium niobate (ppLN) crystal was used to generate photon pairs at
800–1600 nm. Although waveguide experiments preceded bulk operation in
this instance, due to the easier fabrication of periodically-poled structures in
small surface layers, the number of PDC experiments based on periodically-
poled bulk-crystals grew rapidly thereafter [60–62]. The early experiments were
not entirely directed toward the creation of heralded single photons, but many of
them already revealed the need for efficient coupling and photon-number purity.

FIGURE 11.18 Left: Domain reversal underneath the electrode region. Right: Uniform 15 μm
wide domain structure through a 0.5 mm thick crystal. Reprinted figure with permission from D.S.
Hum and M.M. Fejer, Comptes Rendus Physique 8, 180–198 (2007). Copyright © 2007 Acadmie
des sciences. Published by Elsevier Masson SAS. All rights reserved.
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The following sections of this chapter discuss strategies for efficient coupling
of the output fields to optical fibers and detail the experimental effort to achieve
high photon-number purity and spectral purity with periodically-poled PDC
sources.

11.4.3 Optimal Focus Parameters for Heralding Efficiency

In most instances, trigger and signal photons produced inside the nonlinear
medium will be coupled to single-mode fibers (SMF), in order to guide them to
the analysis and detection stations. In particular, the ability to tune the PDC to
collinear emission makes the use of single-mode fibers very attractive since the
trigger and signal photons can be coupled very efficiently. The key parameters
for a single-photon source are heralding efficiency and the overall rate of
heralded photons. The heralding efficiency (ηs|t) is defined as the probability of
a signal photon being in the single-mode fiber given the detection of a trigger
photon. Since single-photon detectors can have efficiencies ranging from< 1%
to above 90%, it is difficult to compare the heralding efficiency when different
types of detectors are used. Therefore the detection efficiency has been excluded
from the values of the heralding efficiencies stated below for easier comparison.

Several theoretical and experimental investigations have been conducted
to find the optimal fiber-coupling configurations [63–67]. In Fig. 11.19, taken
from [64], a non-degenerate PDC source for heralded photons is depicted that
produces trigger photons at 810 nm and signal photons at 1550 nm. A laser is
focused at the center of the ppLN crystal with a focal spot waist size of Wp.

FIGURE 11.19 Setup for production of heralded single photons at 1550 nm. The pump beam is
focused to a waist size of Wp inside a 5 mm long ppLN crystal. The fiber cores have waist sizes of
Wo,1 and Wo,2 for trigger (810 nm) and signal (1550 nm) photons, respectively. In the main text
these waists are refereed to as Wt and Ws. Reprinted figure with permission from S. Castelletto, I.P.
Degiovanni, V. Schettini, and A. Migdall, Metrologia, 43, S56-S60, 2006. © Bureau International
des Poids et Mesures. Reproduced by permission of IOP Publishing. All rights reserved.
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Likewise the mode accepted by the optical fibers is also imaged at the same loca-
tion as the pump beam, generating two waists Wt and Ws, for the trigger and sig-
nal fiber, respectively. Note that the size of the mode field in the fibers is depen-
dent on the wavelength and therefore Wt and Ws are not necessarily the same.

Measurements of ηs|t were performed at a fixed Wp = 144 μm and a
fixed Wt = 82 μm for two different signal waists (Ws). Spectral filtering was
achieved solely by the geometrical acceptance of the single-mode fibers and a
FWHM of ≈2 nm was measured for the trigger photon. For Ws of 158 μm and
197 μm the measured heralding efficiencies were 16% and 21%, respectively.
Much higher heralding efficiencies were obtained by using a narrow band filter
(�λ = 0.1 nm) in the trigger path. In this case the efficiency increased nearly
to unity when optical losses were removed.

A thorough theoretical model for the case of non-degenerate PDC at 810–
1550 nm devised by Ljunggren et al. [63] came to a similar conclusion: when a
narrow filter is applied to the trigger field the heralding efficiency can reach up to
100% over a large range of focusing conditions, as shown in Fig. 11.20. Narrow
filtering in this context means a reduction of the bandwidth of the photons below
the bandwidth limit set by the crystal properties and collection angle of the SMF.
The focusing parameters in Fig. 11.20 are not directly given in waist sizes but
are defined as ξ = L/zR, the ratio between crystal length L and the Rayleigh-
range zR of a standard Gaussian beam. This representation is helpful as it turns

FIGURE 11.20 Plot of maximally achievable heralding efficiencies (ηs|t) as function of focusing
parameters for pump and trigger modes (ξp,ξt). Black lines indicate the optimal signal focusing
conditions (ξs) in order to maximize ηs|t. Reprinted figure with permission from D. Ljunggren and
M. Tengner, Phys. Rev. A, 72, 062301, 2005. Copyright (2005) by the American Physical Society.
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out that the optimal focusing parameter ξopt is independent of the crystal length.
It is also interesting to see that the exact values of the individual modes is not
very important because the maximum for the heralding efficiency is very broad,
(note the logarithmic scale for ξp and ξt). As a rule of thumb, a large heralding
efficiency is expected when the ξ ’s of all three fields are on the order of one, i.e.,
when the crystal length is about twice the Rayleigh range. Experimental data was
also obtained using a 4.5 mm ppKTP crystal phase-matched to 810–1550 nm.
A heralding efficiency, excluding all optical losses, of 34% was reported with
focusing parameters of ξp = 2.1, ξt = 3.2 and ξs = 2.5.

Another interesting finding of [63] is the dependence of the fiber-coupled
photon rate, and hence the heralding rate, on the crystal length, when operating
at optimal focusing. With no additional spectral filtering, only the fiber acts as
a frequency filter and the coupled photon rate R scales as

R(�λwide) ∝ √
L, (11.55)

whereas in the case of narrow filtering the dependence goes as

R(�λnarrow) ∝ L
√

L. (11.56)

The reason for the smaller growth of the rate with crystal length, as compared
to Eq. (11.49), is the focusing of the pump beam. The angular spread in pump
k-vectors generates additional sinc functions that are slightly offset, causing the
spectral width to decrease as 1/

√
L with the crystal length.

Another experimental study investigated optimal focusing parameters for
the case of degenerate PDC around 810 nm [65]. Absolute coincidence rates
and heralding efficiencies were measured for varying pump and signal/trigger
waist sizes. The main findings are shown in Fig. 11.21 for a 15 mm long ppKTP
crystal. For this crystal the maximum heralding efficiency was measured to be

(a) (b)

FIGURE 11.21 Coincidence count rates (a) and heralding efficiencies (ηs|t) (b) for a 15 mm long
ppKTP for a series of focusing conditions. Reprinted figure with permission from A. Fedrizzi, T.
Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, Opt. Express, 15, 15377-15386, 2007. Copyright
(2007) by OSA.
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FIGURE 11.22 Simultaneous optimization of the total collection probability and heralding
efficiency ηs|t. Panel on the right shows the focusing parameters which result in the best trade-
off between collection probability and heralding efficiency. Reprinted figure with permission from
R.S. Bennink, Phys. Rev. A, 81, 053805, 2010. Copyright (2010) by the American Physical Society.

around 22% for single-mode coupling without any additional filtering of the
signal/trigger fields.

The reader should note that the optimal focusing conditions are different
for maximal rate and maximal heralding efficiency. The optimum heralding
efficiency is achieved with a looser focusing, enabling a higher mode overlap
of the signal and trigger modes at the optical fiber. Other crystal lengths, ranging
between 10 and 25 mm, were also investigated showing the independence of the
focusing parameter ξopt with crystal length for the signal and trigger fields. The
square-root dependence of the fiber-coupled photon rate given in Eq. (11.55)
was also verified experimentally in this investigation.

In a recent theoretical work by Bennink [66], the trade-off between maximal
pair rate and heralding efficiency was also found. Contrary to [63], Bennink
assumed collinear Gaussian spatial modes. The calculation proceeds to find the
various probabilities that the trigger and signal fields are emitted into collinear
Gaussian modes. Such Gaussian modes can be coupled very efficiently to single-
mode optical fibers and therefore the analysis can be regarded as if the trigger
and signal fields are fiber coupled. The theoretical results for the heralding
efficiency are summarized in Fig. 11.22.

It is evident from the figure that with a strong pump focus (ξp � 1) there will
be a high overall pair-coincidence rate. However the trigger and signal might
not be emitted into the same modes, and therefore the heralding efficiency
will be decreased. In the limit of a weak pump focus (ξp � 1) the trigger and
signal fields are in the same mode and have a higher heralding efficiency.
No closed forms for ξt and ξs are given for the maximum values of ηs|t, but
the right plot in Fig. 11.22 displays the values of ξt and ξs, which results
in the best trade-off between collection probability and heralding efficiency.
Nevertheless the study shows that near unity heralding efficiencies are possible



388 Single-Photon Generation and Detection

when the pump beam is weakly focused. A recent experimental investigation
corroborated these findings by reporting a heralding efficiency of 84% in a
25 mm long ppKTP crystal [68]. This result was achieved with a weakly focused
pump (ωp = 200 μm) and more strongly focused trigger and signal modes
(ωt,s = 175 μm). When comparing results, one should note that in [66] the
focus parameter is defined as ξ = L

2zR
, which is half the size of the definition

in [63] for the same focusing condition.
Similar heralding efficiencies were reported in [69,70]. Both these setups

are based on a ppKTP crystal phase-matched for creation of photon pairs at
810 nm from a 405 nm pump laser, and both used the results from [65,66]
for optimal focusing. A heralding efficiency of 80% was observed in [69]. In
[70] a standard telecom fiber (SMF-28), guiding two spatial modes at 810 nm,
was used to increase the coupling efficiency of the signal photon. The larger
mode field diameter of the SMF-28 fiber increased the heralding efficiency
to 87%. Both experiments also employed transition-edge sensors (TES) with
ηDE > 95% to achieve high heralding efficiencies, including detection.

11.4.4 Number Purity

As outlined in Section 11.2.4, the photon state produced by PDC contains
terms with more than one trigger/signal pair. These higher-order pairs lead
to a degradation of the purity of the single-photon signal, especially when a
non-number resolving detector is used to herald the presence of the signal.
Without using the elaborate schemes of switched PDC sources presented at
the end of Section 11.2.4 it is possible to approximate a single-photon state
using a weakly pumped heralded PDC source. The photon-number purity
can be measured using a Hanbury Brown-Twiss setup in the signal arm.
Without heralding, the signal photons of a single-mode PDC beam have
thermal statistics [71], i.e., it shows bunching of photons with an increased
probability that two or more signal photons are detected at the same time. In the
heralding case, these measurements are conditioned on the detection of a trigger
photon so that the second-order correlation function (g(2)c ) of the signal arms
becomes [72]

g(2)c (t1,t2|tt) = 〈Ês(t1) Ês(t2) Ê†
s (t2) Ê†

s (t1)〉c

〈Ês(t1) Ê†
s (t1)〉c 〈Ês(t2) Ê†

s (t2)〉c
, (11.57)

where Ês(t),Ê
†
s (t) are the field operators for the signal arm at times t1 and t2.

The average 〈. . .〉c is conditioned on the detection of a trigger photon at time tt.
If a PDC source is used for the production of single photons, we are especially
interested in the probability of a second signal photon at time t2 = τ , given that
a signal photon at t1 = 0 was heralded by the detection of a trigger photon at
tt = 0. In this case the second-order correlation function reduces to: g(2)c (0,τ |0).
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FIGURE 11.23 Measured (dots) and simulated (solid line) second-order coherence function
of signal photons conditioned on the detection of a trigger photon. The dotted line represents a
simulation without background noise. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this book.) Reprinted figure with permission
from D. Höckel, L. Koch, and O. Benson, Phys. Rev. A, 83, 013802, 2011. Copyright (2011) by the
American Physical Society.

In Fig. 11.23, this correlation is plotted and clearly shows a dip below unity
around τ = 0.

It is thus possible to obtain anti-bunched light from a PDC source, and
therefore a suppression of higher photon-numbers, even though the individual
signal and trigger fields show thermal (bunching) statistics. This is possible
since the heralding uses the very strong non-classical correlations between the
two fields (pair generation), which is independent of pump power. On the other
hand, the probability to detect two signal photons, which scales quadratically
with the pump power (see Eq. (11.40)), can be made arbitrarily small by reducing
the pump intensity. It should be noted that the simple heralding presented
here approximates a single-photon state with g(2)c (0) = 0 only in the limit
of negligible pump power and heralding rate. To obtain single-photon statistics
at high rates, one has to revert to the switched PDC scheme as outlined in
Section 11.2.4, or some other technique.

Several experimental investigations have observed the antibunching feature
of the signal photons when conditioned on the trigger [72–77]. In [72] a cw
pumped 10 mm long ppKTP crystal was used to produce trigger and signal
photons around 800 nm. A conditioned measurement of the signal second-order
correlation function yielded g(2)c (0) = 0.7 at a heralding rate of ≈240,000 s−1.
A suppression of higher photon-numbers by 2 orders of magnitude compared
with a Poissonian light source (g(2)c (0) = 0.01) was reported by [75], although
in this instance the heralding rate was reduced to ≈5000 s−1. This experiment is
also interesting because it used cavities around the ppKTP crystal to enhance the
coherence time of the photons to beyond 140 ns. In this regime the detector jitter
is negligible and the shape of the coherence function is given by the temporal
extent of the wavepacket alone. The lowest g(2)c (0) for single-photon sources
based on PDC was reported in [77] with a value of 0.005.
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11.4.5 Spectral Purity

To have spectrally independent trigger and signal photons, Eq. (11.38) has to
be fulfilled, which states that the group-velocity of the pump in the nonlinear
medium must lie between the group-velocities of the trigger and signal fields.
In the visible wavelength range this requirement is difficult to satisfy since
the normal material dispersion at lower (pump) wavelengths results in lower
group-velocities for the pump. However, by moving to longer wavelengths the
differences in dispersion between pump, trigger, and signal fields become small.
It is then possible, by including the dependence of the group-velocity with
polarization, to find a solution in which the orthogonally polarized trigger and
signal fields have group-velocities above and below the pump [78]. For example,
in type-II PDC using KTP, it is possible to match the group-velocities in a pump
wavelength range of 650–900 nm, corresponding to degenerate wavelengths of
1300–1800 nm for the trigger and signal fields. In an experiment by Evans
et al. [79] a pump wavelength of 776 nm was used to produce trigger and signal
pairs at 1552 nm in a 20 mm long type-II ppKTP. In addition, the crystal was
periodically-poled to yield zero phase mismatch at those wavelengths. To obtain
the minimal spectral entanglement a specific width of the pump spectrum had to
be chosen, corresponding to a pulse duration of 1.3 ps. Joint-spectral intensities
were measured and can be seen in Fig. 11.24a. Analysis of the spectrum yields
a spectral Schmidt number of 1.07, indicating a very high spectral purity of the
trigger and signal photons.

Spectral purity of trigger and signal photons has also been shown in an
experiment using a periodically-poled KDP crystal, quasi-phase-matched for

T

(a) (b)

FIGURE 11.24 Joint-spectral intensity of the trigger and signal modes in (a) type-II ppKTP
crystal pumped at 776 nm. Reprinted figure with permission from P.G. Evans, R.S. Bennink,
W.P. Grice, T.S. Humble, and J. Schaake, Phys. Rev. Lett., 105, 253601, 2010. Copyright (2010) by
the American Physical Society. and (b) type-II ppKDP crystal pumped at 415 nm. Reprinted figure
with permission from R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K.
Edamatsu., Phys. Rev. A, 83, 031805, 2011. Copyright (2011) by the American Physical Society.
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type-II PDC [80]. The trigger and signal fields were degenerate at 830 nm and
their joint-spectral intensity can be seen in Fig. 11.24b. The Schmidt value
obtained from the experimental data was 1.03, demonstrating again the high
spectral purity.

11.4.6 Non-Uniform Periodic Poling

The versatility of poled structures is further increased through transversal
or longitudinal patterning of the quasi-phase-matched poling structure.
Transversal patterning can be used to control the spatial component of
the PDC biphoton wave function, see e.g., [81,82]. Longitudinal patterning
enables the manipulation of the spectral PDC wavefunction, which is arguably
more important for the purpose of creating pure heralded single photons.
A linearly-chirped poling period �(z), for example, allows the creation of
ultra-broadband single photons for optical coherence tomography [83]. A
longitudinal, interleaved superposition of multiple poling periods may lead to
quasi-phase-matching solutions for multiple sets of wavelengths [84], or for
concurrent type-0, type-I and type-II PDC [85].

Longitudinal domain engineering can be used to address one of the
remaining problems not addressed by group-velocity matching. In a standard
PDC experiment, wavepackets have a sinc frequency spectrum. As can be seen
from Eq. (11.19), this is due to the fact that a crystal has finite length and a
rectangular shape—the nonlinear interaction between the pump beam and the
crystal is thus turned on abruptly to its full strength when the pump enters the
crystal, and remains constant until it is turned off when the pump exits the
crystal. In the frequency domain, this temporal step-function transforms into
a sinc shape, see Eq. (11.20). This spectral shape causes residual frequency
distinguishability even in the presence of group-velocity matching—see the
sidelobes in Figs. 11.10 and 11.11—which has a detrimental effect on the purity
of heralded PDC photons [24].

To fully reduce these side lobes, the constant nonlinearity of the crystal
must be turned into an effective Gaussian function. In [45], a 10 mm ppKTP
was longitudinally patterned with discrete sections of increasingly higher-order
polings, see Fig. 11.25. The pump beam entering the crystal first encountered a
section with poling order m = 32, experiencing, according to Eq. (11.50), a very
weak effective nonlinearity. The nonlinearity was then increased step by step,
peaking at m = 1 in the crystal center and then dropping off symmetrically. The
theoretic biphoton spectrum obtained with this spectral engineering method,
shown in Fig. 11.25b, was confirmed by measuring two-photon interference
patterns, which showed a distinctly Gaussian pattern instead of the characteristic
triangular pattern of sinc2-shaped bi-photons.

Combining these engineered nonlinearities with group-velocity matching
leads to a significant improvement in photon purity without the need for spectral
filtering, as shown numerically in [45].
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FIGURE 11.25 Spectral biphoton shaping via engineered crystal nonlinearities (Reprinted figure
with permission from A.M. Brańczyk, A. Fedrizzi, T.M. Stace, T.C. Ralph, and A.G. White, Opt.
Express, 19, 55–65, 2011. Copyright (2011) by OSA.). (a) A Gaussian nonlinearity profile (black
dashed line) was approximated with discrete crystal sections (gray solid line) of order m. (b) Phase-
matching function amplitudes and intensities (inset) for the aperiodically poled crystal (solid line)
compared to a ppKTP of the same effective length (dot-dashed line) and target Gaussian profile
(dashed line). (c) Magnified image of part of the custom crystal. Vertical lines separate sections
with constant nonlinearity, with their poling order, length L and poling duty cycle D. (d) Zoom
into the transition from poling order m = 1 to m = 2.

11.5 WAVEGUIDE-CRYSTAL PDC

After the success of PDC in bulk crystals as a source of heralded single photons
(see Section 11.3) and the incorporation of periodic poling for quasi-phase-
matching enabling easy tunability of the signal and trigger wavelengths (see
Section 11.4) another major development was the inclusion of waveguide
technology, as depicted in Fig. 11.26.

The confinement of the electric fields inside a waveguide leads to extremely
high field amplitudes in the nonlinear material, increasing the down-conversion
rate by several orders of magnitude in comparison to bulk-crystal sources.

FIGURE 11.26 Microscopy of the waveguide used in [86] (color adjusted). The depicted cross-
section gives an impression of the tooth-like waveguide structure and enables a rough estimate of
its dimensions.
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Furthermore the confinement of the signal and trigger fields in the waveguide
modes enables efficient coupling to optical fibers. Finally, waveguided PDC
allows for the integration into small-scale devices that may include sources,
optical circuits, and detectors.

11.5.1 History and Experimental Implementations

The main challenge for the generation of heralded single photons in nonlinear
waveguides is the production of high-quality waveguides with low losses and
minimal variation over the length of the structure. There are several materials
available that are well suited for nonlinear optical waveguides, including
dielectric materials such as lithium niobate (LiNbO3 or LN), lithium tantalate
(LiTaO3), potassium titanyl phosphate (KTiOPO4 or KTP) [87,88], and
potassium niobate (KNbO3) [14]. Nonlinear semiconductor materials include
AlGaAs, GaAs, ZnSe, ZnTe, and InP [89–92]. In comparison to dielectric
materials, semiconductors feature higher nonlinearities, but also higher loss
rates.

The methods to create waveguiding structures inside the nonlinear materials
are as varied as the materials, ranging from proton exchange, anneal/proton
exchange over ion exchange, to metal-diffused waveguides (Ti-, Rb-, Zn-
indiffusion), ion-implantation waveguides, and epitaxial-growth methods. Each
method has its inherent advantages and disadvantages. For example ion-
exchange waveguides in LN guide only one polarization, but allow burying the
waveguide in the material via reverse-proton-exchange processes. To perform
type-II PDC in LN one has to resort to metal-diffused LN waveguides, which
guide both polarizations but are always located at the surface. There exists an
extensive literature on the waveguide production process, with an overview
given in [14].

The most commonly used waveguide materials for PDC are LN and KTP,
which gained popularity due to their low losses, special dispersion properties,
and ease of fabrication. The first photon-pair PDC source using waveguides
was presented in 2001 by Tanzilli et al. [93] in LN, and already featured down-
conversion rates four orders of magnitudes higher than bulk-PDC sources at
that time. Soon afterwards the spatial properties of PDC in waveguides were
investigated [94]. Since then a lot of improvements were made to this process
[95–97]. The generation of type-II PDC in a waveguide yielded signal and
trigger states in orthogonal polarizations, such that they could be separated by
a polarizing beam splitter and efficient state generation could be accomplished
[26,98,99]. Nonetheless, all these sources created frequency-correlated photon
pairs, resulting in the heralding of mixed single-photon states. Frequency
filtering of photon-pair states for producing pure single-photon Fock states
was experimentally investigated in [25].

The first direct production of uncorrelated photon pairs in waveguides based
on group-velocity matching [100] was demonstrated in 2011, two years after
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the initial breakthrough by Mosley et al. relying on bulk PDC [43], and ten years
after the first demonstration of waveguided PDC [93]. Since then the available
generation rates and heralding efficiencies have continuously improved [101].
Modern sources exhibit heralding rates up to 80% and feature high conversion
efficiencies [102].

One advantage of PDC in waveguides for heralded Fock-state generation
is the fact that it opens up new possibilities to achieve uncorrelated photon-
pair generation. For example, Bragg structures placed at the boundaries
of the waveguide can be used to modify the dispersion properties inside
the waveguides, enabling group-velocity matching in various materials and
at wavelengths previously not available due to their unfavorable material
parameters [103]. Waveguides also enable the creation of counterpropagating
photon pairs, in which one photon travels backward toward the pump [104,
105,27]. This setup, while technologically challenging, leads to uncorrelated
photon-pair emission that is (almost) independent of the dispersion properties
of the crystal material.

11.5.2 Theory of PDC in Waveguides

To mathematically describe the PDC process in waveguides we expand the
theory presented in Section 11.2 to include the transverse degrees of freedom,
as in Section 11.3, while also including the effects of an optical guide.

To calculate the two-photon state emitted by the process of waveguided
parametric down-conversion (see Fig. 11.27) we extend the PDC Hamiltonian
to include the transverse degrees of freedom

ĤPDC(t) ∝ χ(2)
∫

V
d3r Ê (+)p (r,t)Ê (−)s (r,t)Ê (−)t (r,t)+ h.c. (11.58)

Following the presentation in [86], the boundary conditions imposed by the
waveguide on the electric fields define a finite set of transverse-field distributions

FIGURE 11.27 Single-photon generation using PDC in a nonlinear optical waveguide. The
guiding structure gives rise to an enhanced down-conversion rate and a collinear propagation of all
involved fields in well-defined spatial modes.
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FIGURE 11.28 Schematic spatial modes and k-vectors of an electric field propagating inside a
1D waveguide.

f (k)(x,y) propagating inside the waveguide. This is sketched in Fig. 11.28 for
a one-dimensional waveguide. The propagating field in a given spatial mode is
defined by its k-vector, which is split into the β(k) component describing the
propagation constant through the material, and k(k)⊥ related to the individual
transverse-spatial-mode distribution f (k)(x,y). This is in sharp contrast to
down-conversion in bulk crystals. Instead of emitting the signal and trigger
fields into a continuous set of spatial modes, the down-converted beams are
generated in a finite set of well-defined spatial modes imposed not by the PDC
process but by the waveguide parameters. The electric fields inside the channel
are therefore of the form

Ê (+)x = Ê (−)†x = A
∑

k

f (k)x (x,y)
∫

dωx exp
[
i
(
β(k)x (ωx)z − ωxt

)]
â(k)x (ωx).

(11.59)

In Eq. (11.59), A collects all constants, the x subscript labels the signal,
trigger, or pump field, and the superscript (k) labels the spatial mode. Note
that both the spatial field distribution f (k)x (x,y) and the effective k-vector β(k)x
are dissimilar for the signal, trigger, and pump fields due to varying wavelengths
and polarizations, which impact the spatial-mode distributions. In Eq. (11.59)
we assume fields which are not too broad in frequency,�ω � ωc, which means
we may neglect the frequency dependence in the spatial distribution function
about the central wavelength. Again, we treat the strong pump field as a classical
wave, which yields the formula

E (+)p = E (−)∗p = A
∑

k

f (k)p (x,y)
∫

dωp α(ωp) exp
[
ı
(
β(k)p (ωp)z − ωpt

)]
.

(11.60)

We use Eqs. (11.18), (11.58),(11.59), and (11.60) to calculate the two-photon
output state. By incorporating the three-dimensional structure of all involved
fields we finally arrive at the following formula
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∫ t

t0
dt ′ ĤPDC(t

′) = B
∫ t

t0
dt ′

∑
klm

∫∫
dx dy f (k)p (x,y) f (l)s (x,y) f (m)t (x,y)︸ ︷︷ ︸

Aklm

×
∫ L

2

− L
2

dz
∫∫∫

dωpdωsdωt α(ωp)

× exp
[−i

(
ωp − ωs − ωt

)
t ′
]

× exp
[
i
(
β(k)p (ωp)− β(l)s (ωs)− β

(m)
t (ωt)

)
z
]

× â(l)†s (ωs)â
(m)†
t (ωt)+ h.c..

(11.61)

Equation (11.61) is very similar to Eq. (11.19) in Section 11.2 neglecting the
transverse degree of freedom and describing a collinear interaction. Following
the discussion in Section 11.2, we are able to calculate the generated waveguided
PDC state as

|ψ〉PDC = |0〉 + B ′ ∑
klm

Aklm

∫∫
dωsdωt α(ωs + ωt)

× sinc

[
�βklm

(
ωs,ωt

) L

2

]
â(l)†s (ωs)â

(m)†
t (ωt) |0〉

= |0〉 + B ′ ∑
klm

Aklm

∫∫
dωsdωt α(ωs + ωt)

×�klm(ωs,ωt)â
(l)†
s (ωs)â

(m)†
t (ωt) |0〉

= |0〉 + B ′ ∑
klm

Aklm

∫∫
dωsdωt fklm(ωs,ωt)â

(l)†
s (ωs)â

(m)†
t (ωt) |0〉 ,

(11.62)

where all constants have been merged into B ′.
The main modification with respect to the simplified model is the appearance

of the overlap integral over the three interacting spatial modes, which introduces
the coupling constant

Aklm =
∫∫

dxdy f (k)p (x,y) f (l)s (x,y) f (m)t (x,y). (11.63)

Hence the efficiency of the down-conversion becomes dependent on the spa-
tial shape of the interacting spatial-mode triplet. If the pump, signal, and trigger
propagate in similar modes an output state will be generated with high efficiency,
but if the signal and trigger modes are sufficiently distinct the photon-pair gen-
eration efficiency will be strongly diminished. In addition, the phase-matching
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FIGURE 11.29 Sketch of the frequency distribution generated by a spectrally multimode PDC
process [86]. (a) Pump distribution α(ωs + ωt), (b) phase-matching function �klm(ωs,ωt) for
the interacting mode triplets, (c) joint-spectral distribution function fklm(ωs,ωt). Each triplet of
interacting modes exhibits a distinct spectral shape.

function�klm(ωs,ωt) is now dependent on the spatial modes inside the waveg-
uide, as each interacting mode triplet features a distinct β-vector mismatch

�β(klm)(ωp, ωs, ωt) = β(k)p (ωp)− β(l)s (ωs)− β
(m)
t (ωt). (11.64)

Different spatial modes lead to a modification of the propagation vectors βi,
which consequently translates the phase-matching function in frequency space.
This creates an individual phase-matching function for each interacting spatial-
mode triplet, and in effect a different joint-spectral amplitude.

Figure 11.29 sketches, the pump distribution, the multitude of phase-
matching functions, and the three distinct spectral shapes generated by the
source presented in [86].

Direct measurements of the spatial- and spectral-mode structure in
waveguided PDC are presented in [86,106,107]. Figure 11.30 shows the
measured spectral distributions of the signal and trigger photons (labeled idler in
this picture) of the waveguided KTP down-conversion source presented in [106].
Each peak, labeled A–E corresponds to different spatial-mode triplets (signal,
trigger, and pump) propagating inside the material. By measuring the spatial-
mode distribution of each peak one can resolve the different spatial modes of the
signal and trigger beams, ranging from simple Gaussian distributions to more
complicated higher-order structures (see Fig. (11.31)). Details are presented
in [106].

Employing waveguides for PDC processes offers several advantages over
bulk-PDC sources. It enables control of generated spatial distributions by
engineering the design of the waveguiding structure. Whereas bulk PDC emits
photon pairs into a large set of spatial modes at different angles, waveguided
PDC restricts the two-photon states to well-defined spatial modes ideally suited
for high collection efficiencies and coupling into optical fibers. Furthermore
the confinement of PDC inside a waveguide leads to an increased overlap of
the involved fields Aklm and to the restriction of the interaction couplings to
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FIGURE 11.30 Spectral distribution of spatial multimode PDC in a nonlinear KTP waveguide
[106] (Idler ≡ Trigger). The different peaks A-E stem from distinct interacting pump, signal, and
trigger spatial-mode triplets inside the waveguide.

(a)

FIGURE 11.31 Spatial mode distribution of the different spectral PDC distributions presented
in [106](Idler ≡ Trigger).

a discrete number of modes. This in turn significantly boosts the photon-pair
generation probability [108,109]. Finally, the interaction of the three fields
is strictly collinear, and this greatly eases the experimental alignment and
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post-processing of the beams in the laboratory. It should however be noted
that waveguides feature a slightly enhanced loss rate in comparison to the
surrounding bulk material, which stem from additional scattering losses in the
waveguide.

11.5.3 Heralding Single Photons from PDC in Waveguides

If we take into account the spatial degree of freedom for the heralding of single-
photon states from waveguided PDC, the heralded signal assumes the form

ρs =
∑
l,l′

∫∫
dωs dωs′

⎡
⎣∫ dωt

∑
k,k′,m

fklm(ωs,ωt) f ∗
k′l′m(ωs′ ,ωt′)

⎤
⎦|ωs,l〉

〈
ωs′ ,l

′∣∣
=

∑
l,l′

∫∫
dωs dωs′ jl,l′(ωs,ωs′) |ωs,l〉

〈
ωs′ ,l

′∣∣ , (11.65)

where ωs,ωs′ label the frequencies of the heralded signal and l, l ′ its spatial
mode. Hence the heralded single-photon states are, in general, prepared in a
mixture of different frequencies and spatial modes. Of course this is a highly
detrimental effect for the heralding of pure single-photon Fock states. In order
to achieve a high purity for the single-photon Fock-state generation we must not
only consider the frequency degree of freedom as discussed in Section 11.2.4,
but we must also consider the spatial degree of freedom.

In Section 11.2.3 we learned how to cope with mixing effects that stem from
frequency correlations. In fact, the impact of the spatial degree of freedom
on the heralding of single photons is mathematically almost identical to the
spectral degree of freedom. As in the frequency domain, the easiest and most
straightforward approach is to apply filtering, for example employing small
pinholes or single-mode fibers to purify the trigger photon, which results in the
propagation of spatially pure signal states. This, however, greatly reduces the
heralding efficiency because a large fraction of the beam is lost.

To study the impact of the spatial modes on the heralded signal in more
detail we start by neglecting the frequency properties of the state in Eq. (11.65)
and assume monochromatic signal and trigger modes. The heralded signal is
transformed to

ρs =
∑
k,l

∑
k′,l′

∑
m

fklm f ∗
k′l′m |l〉 〈l ′∣∣ , (11.66)

where (k, k′) labels the spatial modes of the pump beam, (l, l ′) the modes of
the signal beam and m the trigger modes. From Eq. (11.66) it is evident that
the heralded signal photon is, in general, in a mixture of spatial modes, and
consequently not in a pure single-photon Fock state.

One method to herald single-spatial-mode single photons is to create the
PDC state in only a single trigger mode m, which leads to the heralding of a
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spatially pure signal photon

ρs =
∑
k,l

∑
k′,l′

fklm f ∗
k′l′m |l〉 〈l ′∣∣

=
∑
k,l

fklm |l〉
∑
k′,l′

f ∗
k′l′m

〈
l ′
∣∣

= |ψs〉 〈ψs| . (11.67)

Alternatively it is also sufficient to engineer the signal emission into a single
mode. In this case the heralded state becomes

ρs =
∑

k

∑
k′

∑
m

fklm f ∗
k′lm︸ ︷︷ ︸

d

|l〉 〈l| = d |l〉 〈l| = |ψs〉 〈ψs| . (11.68)

Engineering single-spatial-mode behavior in a waveguide is an elegant
method to cope with spatial-mode effects. If the guiding structure is designed
to allow only single-mode propagation of the signal or trigger photon, the
heralded state will be pure in this domain and no spatial mixing occurs. This can
be achieved by a custom waveguide design where the diameters of the guide
geometry are adapted to the signal or trigger field. Note, however, that the pump
beam, which has a shorter wavelength then the signal and trigger, might still
be able to propagate in a higher spatial mode. This can distort the frequency
shape of the heralded photons, as different modes typically also exhibit different
spectral properties (see Section 11.5.3). However, this effect can be mediated
by a careful coupling of the pump wave into the fundamental waveguide mode.

In between the two extremes of strong filtering and careful engineering of
the spatio-spectral structure of PDC there exists a third method to eliminate
all but one interacting spatial-mode triplet. Introducing spectral windowing
we can exploit the fact that each down-conversion process features a distinct
joint-spectral amplitude distribution fklm(ωs, ωt), for each spatial-mode triplet,
as depicted in Fig. 11.29, which is caused by the unique β-vector mismatch
between the three interacting beams. Using this characteristic it is possible
to spatially purify the down-conversion by placing broadband (and thus low
loss) spectral filters in the signal and trigger arm that transmit only one
process fklm(ωs,ωt). Hence we can eliminate the spatial multimode effects
without introducing losses to the targeted down-conversion process. Still, the
applicability of this approach is closely related to the specific characteristics of
the individual source. A more detailed review—featuring experimental data—is
presented in [106].

In summary all three approaches lead to the same result. The considered
PDC components become single mode in the spatial domain and consequently
the heralded signal photon can be represented in the form of Eq. (11.24). The
effects from the spatial domain are negated and efficient creation and heralding
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of pure single-photon Fock states with well-defined spatial-mode profiles is
possible.

11.5.4 Electric Field Modes in Waveguides

The main challenge when analyzing the exact spatial structure of PDC in
waveguides is the theoretical modeling of the transverse-field distributions
defined by the channel. As a first step one has to get access to the refractive-
index profile of the waveguide. The easiest approach is to perform microscopy
at the input or output facet to get a general impression of the structure, as shown
in Fig. 11.26.

This measurement already provides some insight on the waveguide
properties, and opens up a route to assess the width and height of the
structure. However this approach does not give access to the refractive-index
step �n between the waveguide and the material, which must be estimated
(common values are �n ≈ 0.01). More precise methods have been developed
in the context of fabricating classical optical devices, for example M-line
spectroscopy, and the inverse WKB method enabling precise access to the to
refractive-index distribution of the waveguide [110].

For a given refractive-index distribution inside the waveguide there exist
various methods to calculate the guided spatial modes, depending on the
geometry of the system. Assuming rectangular or circular waveguides with
perfectly conducting edges—the mathematical analog of modes inside an
infinitely deep potential well (�n = ∞)—is the most simplistic model and
has the advantage of yielding an analytic solution. Including the effects of finite
refractive-index steps �n, a completely analytical solution is not possible, but
a semi-analytical approach, is presented in [111], which relies on the solution
of transcendental equations. As more complex waveguide geometries are
considered, such as non-rectangular waveguide structures with slowly varying
refractive indices �n, full numerical theories must be utilized. Mode-solving
techniques based on finite element approaches [112] are common, and various
software applications are available for this purpose.

11.5.4.1 Analytic Waveguide Model
In this book we restrict ourselves to the discussion of the straightforward
analytical model, which gives a fair introduction to the physics involved. In
this model we assume a rectangular waveguide of width w and height h with
perfectly conducting edges (i.e., the electric fields are zero at the boundaries).

To calculate the electric field propagation in three dimensions, we express
the electric field as

E(x,y,z) = [
ex Ex(x)+ ey Ey(y)+ ez Ez(z)

]
e−iωt

Ei( j) = Eie
iki j . (11.69)
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Here we define z as the propagation direction of the beam, and the x and y
components label the transverse degrees of freedom. The absolute value of the
wave vector of a light ray inside a medium, propagating alongside a crystal
axis i , is given by

|k|2 = k2
x + k2

y + k2
z = ω

c
ni(ω) = 2π

λ
ni(λ). (11.70)

During the PDC process we are mostly interested in the momentum or wave-
vector mismatch between the interacting fields in propagation direction, which
we label β and that can be calculated by

β2 = |k|2 − k2
x − k2

y (11.71)

The solutions for an electric field in a infinitely deep potential well are well
known

Ex(x) = sin
(νπ
w

x
)
,

Ey(y) = sin
(μπ

h
y
)
, (11.72)

where ν and μ label the spatial mode of the standing-wave solution in the
waveguide ν,μ = N

+\{0}, with the corresponding k-vectors

kx = νπ

w
,

ky = μπ

w
. (11.73)

Using Eq. (11.73) we arrive at the effective propagating wave vector:

β2(λ) =
(

2π

λ
nx(λ)

)2

−
(νπ
w

)2 −
(μπ

h

)2
(11.74)

For practical purposes it is more elegant to write this effective k-vector β in the
propagation direction as an effective Sellmeier equation

n2
eff(λ) = n2

x(λ)−
(
λν

2w

)
−

(
λμ

2h

)
. (11.75)

Despite the simplicity of this model, it yields quite accurate values for the
generated mode distributions and effective k-vectors inside the waveguide,
given only the width and height of the system. It is very useful to obtain
a qualitative simulation of the process, however, when precise quantitative
predictions are required, the semi-analytic approach by Marcuse [111] or finite
element methods [112] should be applied.
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11.6 COMPARISON OF EXPERIMENTAL SINGLE-PHOTON
SOURCES USING PDC

FIGURE 11.32 Overview of selected experimental realisations of heralded single-photon sources
using PDC. The table is divided into bulk, periodically-poled and waveguide parts, the references
are ordered chronologically, and the name of the nonlinear crystal used is given. The heralding
efficiency includes optical loses but no detection efficiencies. The heralding rate is the absolute
rate measured, i.e., the raw coincidence rate. The central wavelength of the trigger and signal
photons is given with their respective bandwidths in brackets. Additional experimental details and
measurements on photon-number purity and spectral purity are summarized under remarks.
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11.7 OVERVIEW OF THE MOST COMMONLY USED
NONLINEAR MATERIALS AND THEIR PROPERTIES

Crystal Quasi phase-matching Waveguide Nonlinearity Phase-matching Damage threshold Transparency range (nm)

d24 = 0.13 pm/V Type-II
d22 = 2.6 pm/V Type-0

LBO - Yes d24 = -0.67 pm/V Type-II 9.5 GW/cm^2 160 - 2600

LN Yes Yes d33 = 27.0 pm/V Type-0 0.2 GW/cm^2 420 - 5200
d33 = 16.9 pm/V Type-0
d24 = 7.6 pm/V Type-II

BIBO - Yes d11 = 2.5 pm/V Type-I 0.3 GW/cm^2 286 - 2500

KNbO3 Yes Yes d32 = -18.3 pm/V Type-I  0.4 MW/cm^2 400 - 4500

AlGaAs Yes Yes d14=100 pm/V Type-II - > 1000

189 - 3500

350- 4500

5 GW/cm^2

2.5 GW/cm^2

- Yes

KTP Yes Yes

BBO

FIGURE 11.33 Overview of commonly used nonlinear materials for production of heralded
single photons. Quasi-phase-matching and waveguide indicate if these modifications are available
for the specific material. Strength of χ(2)-nonlinearities is given together with the type of possible
phase-matching (only the most common types are listed). Damage thresholds indicate the maximum
intensity for the pump laser. Transparency data list the range over which the material is transparent.
Note that nonlinearities and damage thresholds are wavelength dependent. Therefore, the values
quoted here should only be taken as approximate.

11.8 CONCLUSION

In conclusion, parametric down-conversion is a mature technology for single-
photon sources. The spectral and spatio-temporal profiles of PDC light are
extremely well understood and can be tailored to meet the demands of modern
applications. Advances in nonlinear optics have made PDC sources very effi-
cient and well suited for on-chip integration, which becomes increasingly impor-
tant as quantum technology moves from laboratories to real-world applications.

The remaining challenge is to combine the theoretic and engineering
advances presented in this chapter into one package that delivers pure heralded
single photons on demand. The probabilistic nature of the PDC process is
acceptable for some applications, such as quantum key distribution, but less
so for others, such as quantum logic gates or quantum metrology. A solution
may be provided by combining PDC sources with novel nonlinear techniques
such as strong two-photon absorbers similar to the scheme shown in [113], for
which several systems are studied. Until such schemes become available, PDC
sources can approximate single photons to virtually any desired degree by using
multiplexing techniques that necessitate a modest engineering overhead once
sources, logic gates, and detectors are all integrated on a single photonic chip.
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