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10.1 INTRODUCTION

This chapter shows how the concept of single-photon sources has emerged,
starting in the early 1980s. It presents the quantum optics approach to “single-
photon states” and “single-photon wavepackets.” The quantum behavior of such
states—a single photon yields one photodetection only—is contrasted with the
behavior of attenuated classical lights, which always yield some possibility
of a joint detection on both sides of a beam splitter. We describe the single-
photon source that we developed in the early 1980s at Institut d’Optique, as
well as the quantitative criterion (“anticorrelation”) that we introduced and
used in a real experiment to show that it was indeed a single-photon source. We
contrast these results with the ones that we obtained with a source of classical
light pulses produced by a strongly attenuated light-emitting diode driven by
nanosecond electric pulses. Such light pulses do not pass the anticorrelation test,
and are definitely not single-photon pulses. We also describe the interference
experiment we carried out with our single-photon source, which illustrates the
notion of wave-particle duality. We conclude with a brief overview of further
developments in sources of single photons, heralded or on-demand, as well as
in wave-particle duality experiments, in particular Wheeler’s delayed-choice
experiments.

The rapidly developing field of quantum information [1] makes wide use of
two types of sources of quantum light: sources of single photons on the one hand,
and sources of pairs of entangled photons on the other hand. One might think
that single-photon sources were developed first, but it turns out that the history
is just the opposite: in the optical domain, sources of pairs of entangled photons
were invented first, and only later came single-photon sources. This happened
first with the source of entangled photons of Clauser and Freedman [2], about
which a property related to the behavior of single photons was demonstrated
two years later [3]. In the same vein, it took five years for the more efficient
source of pairs of entangled photons of Aspect et al. [4], to be explicitly used and
characterized, by Grangier and Aspect, as the first source of single photons [5].
Similarly, the first source of pairs of correlated photons produced by parametric
down-conversion [6, 7] preceded the use of that source to produce single photons
by Mandel et al. [8]. Actually, all these single-photon sources were what is
called, in modern quantum optics language, “heralded single-photon sources,”
i.e., single-photon wavepackets whose leading-edge time—or peak time in the
case of a bell-shaped pulse—is known by the observation of the other photon of
apair [9]. This is why their development obviously demanded the existence of a
source of pairs of photons correlated in time. It took almost another two decades
until the first source of single photons “on-demand” appeared [10], i.e., a source
of single-photon wavepackets whose leading-edge time can be chosen at will.

Although the question of single photons had been raised at the begin-
ning of the 20th century in the context of single-photon interference (see
Section 10.2.1), the question remained confused until the early 1980s, when we
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realized that none of the so-called “single-photon interference experiments” had
been carried out with “one-photon states of light.” Indeed, all these experiments
had been performed with feeble-light beams issued from standard sources (such
as discharge lamps), and it was clear from the formalism of quantum optics,
that however weak, such lights could be described by quasi-classical states
[11,12]. Therefore, their properties could be understood by the semi-classical
model of matter-light interaction, in which light is described as a classical
electromagnetic wave, and the notion of a single photon has no meaning.
Inspired by the experiment of Clauser [3], and by the celebrated antibunching
experiment of Kimble-Dagenais-Mandel [13], we found a simple quantitative
criterion to test a characteristic property of a single photon, anticorrelation:
when sent to a beam splitter, a single photon (i.e., a one-photon state of the
quantized electromagnetic field) can be detected either on one side or on the
other side of the beamsplitter, but never jointly on both sides. This is in contrast
to the behavior of light that can be described by a classical wave, which is split
on the beam splitter and always yields some possibility of a joint detection on
both sides of the beam splitter. We thus had a criterion that could be used for
a test of the single-photon character of the light emitted by a source, not only
theoretically, but also experimentally.

Section 10.2 of this chapter is devoted to a detailed theoretical presentation,
in the formalism of quantum optics (kept as simple as possible), of the difference
between light emitted by true sources of single photons, and light emitted by any
other source, as feeble as it may be. The main conclusion is that light from other
sources, no matter how weak, does not have the same characteristic property
as single photons. Even in the case of a strongly attenuated discharge lamp
where it is tempting to describe the light as made of single-photon wavepackets
separated from each other, it does not pass the single-photon test since we
miss the information about the time at which each individual single-photon
wavepacket is emitted.

In Section 10.3, we give some details about the single-photon source that we
developed in the early 1980s, and about the precise quantitative anticorrelation
criterion that we introduced and used in an experiment to show that it was indeed
a single-photon source. We contrast these results with the ones that we obtained
with a source of classical light pulses produced by a light-emitting diode (LED)
driven by nanosecond electric pulses, and attenuated to an average level of 102
photons per pulse. Such light pulses do not pass the single-photon test, and are
definitely not single-photon pulses.

In Section 10.4, we give some details about the interference experiment we
carried out with our single-photon source. Combined with the experiment of
Section 10.3 that uses the same source, it yields a striking demonstration of the
so-called “wave-particle duality,” one of the two “great mysteries” of quantum
mechanics according to Feynman [14], and it can be used for an introductory
course in quantum optics [15—17] (see also [18]).
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Section 10.5 sketches further developments of modern sources of single
photons, either heralded or on-demand, without many details, since these
details can be found in other chapters of this book. We also mention further
experiments on wave-particle duality, and in particular on Wheeler’s delayed-
choice experiment [19], which has been performed not only in its original form
[20], but also in a more refined version [21,22].

Remark on Vocabulary

In this chapter, we use the wordings ““single photon,” “single-photon wavepacket,”
“single-photon pulse” on the one hand, and “one-photon wavepacket” on the
other hand. Although these wordings are almost equivalent, we tend to use
“single photon” as it would be used generically in the common language, or in
the language of a general physicist, while we give to “one-photon wavepacket”
a more technical meaning, i.e., a state of the light that is an eigenstate of the
quantum observable “Number of Photons” of the formalism of Quantum Optics
(Section 10.2.2).

10.2 FEEBLE LIGHT VS. SINGLE PHOTON

10.2.1 In Search of Feeble Light’s Wave-Like Properties:
A Short Historical Review

Almost as soon as Einstein introduced the notion of a quanta of light [23], i.e.,
a relativistic particle [24] of energy fiw and momentum hw/c, the question
of the wave-like behavior of the corresponding particle became a major
concern among physicists, including Einstein himself [25]. The first attempt
to investigate the question experimentally [26] consisted of registering on a
photographic plate the diffraction pattern of a needle illuminated with extremely
attenuated light, so that the energy flux expressed in the number of photons per
second would correspond to an average distance between the photons much
larger than the size of the apparatus. This pioneering experiment was followed
by a long series of diffraction [27] and interference [28—33] experiments with
light emitted by strongly attenuated ordinary light sources, mostly discharge
lamps, so that the average rate of photons entering the interferometric device,
estimated as the power divided by the energy of a photon, ranged between 10?
and 107 s~!. Even at the largest of these rates, the average distance between
photons was more than 10 m, much larger than the size of the interferometric
device used in the corresponding experiment. It was thus concluded that “there
was only one photon at a time in the interferometer,” and the observation of
fringes was then considered a demonstration that “a photon interferes with
itself.” Actually, one experiment [30] failed to observe the interference pattern
expected for a wave, but it was soon repeated by other scientists who found the
expected interference pattern [32]. There is thus little doubt that diffraction or
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interference phenomena can be observed even in conditions of very weak light
intensity.

In the 1970s, the general wisdom was then that “single-photon wave-like
behavior” had been experimentally demonstrated. However, revisiting that ques-
tion in the early 1980s, we realized that, according to the formalism of modern
quantum optics as developed by Glauber [12,34,35], none of the experiments
cited above could be considered a demonstration of single particle interference,
because in none of these experiments the light used could be considered as
a single-photon wavepacket. This led us to perform the experiments of [5],
presented in Sections 10.3 and 10.4. In the rest of this section, we use the for-
malism of quantum optics to highlight the difference between single-photon
wavepackets and all the types of light used in the experiments above.

10.2.2 Quantum Optics in a Nutshell

We describe light in the standard formalism of quantum optics [17,36,37], in the
Heisenberg representation. A particular light field is represented by a state vector
independent of time |\W). When fluctuations must be accounted for, taking the
statistical average will be sufficient, so we will not resort to the density matrix
formalism nor to the notion of mixed states. The field observables depend on
time (and position). The electric-field operator is decomposed into two adjoint
operators, EC) (r,1) and ED(r,1), corresponding respectively to positive and
negative frequencies. These operators can be expanded on any set of modes of
the electromagnetic field. A frequent choice is polarized homogeneous traveling
waves, and the electric-field operator expansion then reads

ED @ =i &g agexplitke -1 — wpt)], (10.1)
l
EC @, = [EP x,n]". (10.2)

The mode ¢ is characterized by a wave-vector ky, an angular frequency
wy = c|ky¢|, and a polarization 7 orthogonal to k¢. The quantity

a1 ha)[
& = P (10.3)
is the “one-photon amplitude.” It depends on the volume of quantization L3,
which is usually arbitrary, so that L should not appear explicitly in the final
results of the calculations.
The adjoint operators ¢, and &Z are the destruction and creation operators
for photons of the mode £. They obey the fundamental commutation relations

[ae,a},] = Su (10.4)
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with 8¢/, the Kronecker symbol. They allow one to build a complete basis
{lne); ng = 0,1...} of the state space associated with the mode ¢:

aflng) = Ve + lng + 1), (10.5)
aglne) = /nelng — 1), (10.6)
a¢|0¢) = 0. (10.7)

States |ng), the so-called number states, are eigenstates of the operator “number
of photons in the mode ¢ ”:
N¢ = a,ay, (10.8)

the corresponding eigenvalue being precisely the number of photons 7;:
Nelng) = nelne). (10.9)

One also defines the operator “total number of photons”

N=>Y"N,. (10.10)
l

which can be measured with a wide-band photodetector operating in the photon-
counting regime (“click detector”).

There is no position operator for the photon, so one cannot define a density
of probability of presence, as in the quantum mechanical description of a single
massive particle. However, there is a very useful quantity that allows one to link
theory to experiments with a click detector: the probability of a photodetection
per unit of surface and time at the point r and time ¢. For a field in the state | W),
that quantity (also called the rate of single photodetections) is

wD(r,t) = s(WET (0, ) ED (r,1)| ), (10.11)

where s is the sensitivity of the detector. A most important quantity for modern
quantum optics relates to the rate of double photodetections at (r,¢) and (r/,t'),
which is defined by

d’P = wP(r,r; v ,¢)dr dr’, (10.12)

where d?P is the probability of a double photodetection per unit surface around
r during the time interval [z,f + df] and per unit surface around r’ during
[¢/,t/ 4+ dt'], with

w® (@,r; vt = sHWIED @,nEC @, HED (1 HYED (1,1) | ¥).
(10.13)
The formalism above, and in particular the rates of single or double
detections, will allow us to compare the properties of one-photon pulses with
other types of lights: attenuated classical light pulses, attenuated laser beams,
and light emitted from discharge lamps, attenuated or not.
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Remark. Formulae (10.11) and (10.13) look similar to the semi-classical
expressions for a classical electromagnetic field

Ea(r,r) = EO(r,r) + EP(r,1), (10.14)

where E()(r,¢) is the complex amplitude of the field, and E™) (r,¢) its complex
conjugate. The rates of single and double photodetections are indeed, in the
semi-classical point of view,

w(r,r) =sEC @) - EP (r,1) = n|EP (r,0))? (10.15)

and

w?,t; vt = s2[EP @, P EP (.12 (10.16)

The semi-classical and quantum expressions are, however, dramatically
different both technically and conceptually. In the quantum formalism, the non-
commutation of E(™) and E™ entails the fact that the probability of a double
detection is null for a single photon, as can be seen in Section 10.2.5. Such a
statement does not hold in the semi-classical point of view. More generally,
in the fully quantum point of view, observation of a photoelectron at time
t and location r is associated with a photon being detected at (r,z). If the
photodetector is perfect, each detected photoelectron is therefore associated
with a photon. In other words, the statistical distribution of the photoelectrons
reflects the statistical distribution of the photons in the beam. This is in
contrast to the semi-classical point of view, where there is no photon, and the
discrete and probabilistic character of the photodetection signals stems from the
discretization of the electric charge, or equivalently from the discontinuous and
probabilistic character of the photodetection process itself, while the classical
light intensity [ECP) (r,7)|? is a continuous quantity.

10.2.3 One-Photon Wavepacket
Any light state of the form

)= cilne=1) (10.17)
V4

is an eigenstate of N (see Eq. (10.10)) corresponding to the eigenvalue 1. Itis a
one-photon state. As a model of such a state in a collimated beam, we consider
a one-photon state consisting of modes all propagating along the same direction
defined by the unit vector u, i.e.,

ke = u’, (10.18)
C
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Equation (10.11) then gives the rate of photodetections:

2
w (e, =7

?Efe(l)cz exp [—ia)g (t — u)] |0)
C
4
2
—= (1) . r-u
S e ciexp [—W (t — —)] . (10.19)
7 C

=1

which suggests a propagation along u at velocity c.

To simplify formulae, we write most often such quantities at r = 0. The
expression at r is readily obtained replacing by t — r - u/c.

To be more specific, let us consider the case of a Lorentzian distribution for
|ce|?, which happens to describe light emitted by two-level-like single emitters,
such as single atoms. More precisely, we take the form

K
)= ——""—+—, 10.20
ety = T iT2 (10:20)
with
K1 = |Ki|exp (iwet;) , (10.21)

such that the state vector is normalized. For simplification, we take all modes
to have the same polarization,

5, =7¢. (10.22)

For L large enough, the sum in (10.19) can be transformed into an integral
using the density of modes p(w). If T" is small compared to wy, the quantities
£ él) ,p(w), and | K1]| can be considered constant in the integral, with their values
at wo. The remaining integral can be calculated by integration in the complex
plane, yielding:

exp[—iw(r — t;)]

My — (D, o—iowgt _ (1
B0 =) & e —p(wo>5w0|1<1|/dw o —wn £ 1/2

14

—2imp(wo)ESy K1H(T) exp [(—g - ia)o) (t — zj)]

EoH(r — tj)exp [(—g — iw0> (t— tj)] , (10.23)

where H(t) is the Heaviside step function. The rate of photodetection at r = 0
is then

w0, = n|E,(j1)(t)|2 = n|Eol’H(t — tj)exp[—T'(t — ;). (10.24)
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FIGURE 10.1 Average rate of photodetection at point at r = 0 as a function of time, as given by
Eq. (10.24) for a one-photon wavepacket with a leading edge at #;. The rate of photodetection at
point at r would be similar, with #; replaced by #; + r-u/c.

Normalization of the state (10.17) with the coefficients ¢, given by (10.20)
yields the condition

|K1|?
1= 2= |4
>l / 0P
27
= ?p(wo>|1<1|2. (10.25)
Hence
Eg = —i€Q) [2p(wo)T]'2. (10.26)

The rate of photodetection (10.24) at point r = 0 is represented as a
function of time in Fig. 10.1. It clearly suggests a wavepacket with a leading-
edge at t = t;, exponentially damped with a time constant ', The result
(10.24), however, must be understood in a statistical sense. One prepares a field
in the form defined by Eqs. 10.17-10.20 at time ¢+ = 0, and one looks for
photodetection by a detector at position r. When the photodetection happens,
its time is recorded. The experiment is repeated a great number of times, and
the histogram of the results looks as shown in Fig. 10.1.

The one-photon state (10.17), of the form defined by (10.20), with (10.25),
can be called a “one-photon wavepacket” with a leading-edge at ¢;. We thus
introduce the notation

N |K1]exp (ia)gtj)
11(t))) = Xl:mm). (10.27)
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The ensemble of these states, for all possible leading-edge times ?;, has
properties that allow us to use them as a basis for all single-photon states. To
show this, we establish a closure relation. We first introduce a constant density
of states p;, which has the dimension of an inverse time. We can then write

D ) =pj/dtj|1(lj)><1(tj)|- (10.28)
J

Let us now express |1(z;)) replacing Z by an integral in (10.17), with (10.20)

4
and the density of states p(w¢). We obtain

St =p; [ a [[ docdor p@ip@n
J

|K1|? expi(we — wp)t)

(a)g —wo + 1%) (a)y —wo — 1%) '

(10.29)
Using the fact that
/ dj @ = 27 §(we — wpr), (10.30)
we obtain
[p (@)K |?
1)1 =p; [ d
? (1)) p,/ P
5 221
= pjlp(wo)]”|K1] i (10.31)

(as above, we take p (w¢) constant over the bandwidth I around wy). Recalling
(10.25), we finally have

p» p(w ) Z|1(t, Y1) =1, (10.32)
J

which can be used as a closure relation to expand single-photon states.
On the other hand, the |1(¢;)) only obey an approximate orthogonality
relation:
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|K 1] exp (iwetj) exp ( — iwpt )
(LpIL@;)) = (Teller)
S ZZ (0 — w0 +i%) (0 — wo —i%)
|K1| exp [iwe(1j — 1)) 2
= == K
; et LTy = KiPpen
ela)g(t/ t.r)
x/da)z
(¢ — wo)? +T2/4
= 21K ottt H i, (1033)
Using (10.25) once more, we find
(LapI@a;n) = g0 (i1~ 7 1t ~1y1] (10.34)

This relation, as well as the closure relation (10.32), show that the ensemble of
states |1(z;)) is an overcomplete basis [12]. This is used in Section 10.2.7.

Remark. To obtain a result that is meaningful for a real experiment, we need
to take into account the transverse profile of the light beam. A simple model that
captures all the necessary features makes use of “top hat” modes, transversely
homogeneous over a surface S, and with an arbitrary length L (along u) (see
for instance [17, Section 5B.1.2]). We have then

h

[55})] 280‘25 (10.35)
L

p@) =5 (10.36)

Substituting in (10.26), we obtain an expression independent of L

huwg

Epg= |—20
0=\ 2e08er—1

(10.37)

Note that this is the amplitude for a single photon in a volume ScI' ™.

If the detector covers the whole beam, we must integrate w® [Eq. (10.24)]
over S to obtain the probability of detection per unit time at position r = 0, and
we get

ap® Fiwg
= H(r—1¢ It —1¢))]. 10.38
G = Moo (= 1)) eXPL=T(t = 1))] (10.38)
A perfect photodetector should detect a single photon with a probability of 1,

ie.,
dpm hw
/dt P =s—=1. (10.39)
dr 2¢€pc

Hence, its sensitivity (in units of [electric field]~2) per unit surface is

2
Sperfect = o . (10.40)
P hw
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10.2.4 Quasi-Classical Wavepacket

A fundamental reason for the success of the semi-classical model of matter-
light interaction is the fact that most of the light sources available in everyday
life, or even in laboratories, deliver light beams whose behavior can be fully
described by the semi-classical model. In particular, the rates of single and joint
photodetections can be expressed in terms of Eqgs. (10.15) and (10.16). This can
be understood, in the fully quantum optics formalism, by the fact that such light
beams can be described by quantum states of radiation called coherent states
or quasi-classical states [11,12]. A quasi-classical state |a) of the mode € is
an eigenstate of the destruction operator day

agloe) = aglag), (10.41)
with oy a complex number. A multimode quasi-classical state is
|\I]qc> =lo=1) Qlor=2) Q- - R log) ® - - - (10.42)

This state is an eigenstate of the positive-frequency electric-field operator (10.1):

ED (r,0)|Wqe) = B (r,0) | Wee) (10.43)
with the eigenvalue
EF =i &M ol explitke -1 — wph)}. (10.44)

14

It turns out that ES') (r,t) is the positive frequencies part of a classical field that
we can associate with |Wqc). One can then check by simple inspection that the
rates of simple or double photodetection (10.11) or (10.13) obtained for the state
(10.42) are identical to the ones obtained using the semi-classical expressions
(10.15) and (10.16) with the classical field (10.44).

Such quasi-classical states—or, more generally, a statistical ensemble of
states of the form (10.42)—allow one to describe, in the quantum optics
formalism, the light emitted by what we will thus call classical sources, for
instance a thermal source, or a laser operated well above threshold (see Section
10.2.6). But they also allow us to build quasi-classical wavepackets that lead
to the same probability of single detections as the one-photon wavepackets
considered in Section 10.2.3. To show this, we take again the case of propagation
along u

ke = ut, (10.45)
c
with a single polarization
B=7¢. (10.46)
We then assume the «,’s have a distribution
K
o = & (10.47)

wy —wo+iI‘/2’
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and we take Kgc to be real, for simplicity. We can then calculate explicitly
the quasi-classical field (10.44). As in Section 10.2.3, we replace the sum by
an integral, using the density of states p(w). Integration in the complex plane
yields

Eg?_)(r,t) = ?EOH (t - %) exp {—g (z — %)}exp {—iwo (t - u)}

C

(10.48)
with
Eg = —i2mp(00)EL) Kye. (10.49)

Since Egr) is the eigenvalue of E™ associated with the radiation state (10.42),
the rate of single photodetections (10.11) can be written as

)< (=522 o (=52
1) = n|Ec(r,0)|” = n|Eo|"H (¢ exp =T (7 :

¢ © (10.50)
Like (10.24) (with z replaced by t —r-u/c), Eq. (10.50) suggests the propagation
of a wavepacket damped with a time constant '!. However, the quasi-
classical wavepacket introduced here differs in many aspects from the one-
photon wavepacket of Section 10.2.3. The most striking difference can be seen
in Section 10.2.5. Here, we note that the quasi-classical state |Wqc) is not an
eigenstate of the number of photons operator N.More precisely, it can be shown
that if we were to measure the photon number in such a state, we would find a
Poisson distribution. One can readily calculate the average of that distribution,
i.e., the average photon number

(N)ge = (Wqel NWge) = Y lael, (10.51)
14

and its standard deviation

~n < o112 172
(AN)ge = [(0%) = (2] 7 =[] (10.52)
Using a method similar to the one yielding Eq. (10.25), we can express (10.51)

as

| Kgel? _ 2
(w—w)2+T2/4 T

(N)ge = / do p(@) p(@o)|Kgel>.  (10.53)

It is important to realize that the constant K. (or equivalently, the average
photon number) can be chosen arbitrarily (contrary to constant K in the case
of a one-photon wavepacket). A quasi-classical wavepacket thus can be built
with any average photon number. In particular, K. can be chosen small enough
to get an average photon number smaller than one. Such a state is the quantum

description of a quasi-classical pulse that has been strongly attenuated by a
neutral density filter.
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Remark. Using the results above, we find that the amplitude E( of Eq.
(10.49) assumes a form similar to (10.26), with the right-hand side multiplied
by [(N)gc]'/?

= —i[(N)qe]"2ES) 27 p(wp)T]HZe7i000, (10.54)

Taking the same set of top-hat modes as in the remark of Section 10.2.3, we
find a rate of photodetection

ho T r-u r-u
wD (1) = s — (N)ocH (z - —) exp {—r (z - —)} . (1055
2e0c S c c
An integration over the whole section S of the beam, and over time, yields the

average number of photoelectrons

//d2 /dtw(l)(r t)—sE< Yqe- (10.56)

For a perfect detector, of sensitivity given by (10.40), the average number of
counts is equal to the average number of photon (N )4, as expected.

10.2.5 The Possibility of an Experimental Distinction

‘We now compare the predictions of quantum optics for a one-photon wavepacket
and for a quasi-classical wavepacket. Equations (10.24) and (10.50) show that
if we measure the instants of photodetection for wavepackets whose time of
emission is known, and build the histogram of the delays between the emission
and the photodetection, the results for single-photon wavepackets and quasi-
classical wavepackets are similar. Measurements of wD(r,1) therefore do not
allow us to distinguish between a one-photon wavepacket and a quasi-classical
wavepacket. Actually, it is well known that when a distinction between classical
light and quantum light is possible, it cannot be observed on single detection
signals, but rather on double detection signals [34]. We thus calculate the
probability of double detections for both cases.

In the case of a quasi-classical wavepacket of the form (10.42), we again
use the fact that it is an eigenstate of E® (r,t) and obtain from (10.13)

w® (.50 ,1') = n?[Ba(r,0) [} [Ec(r 1) %, (10.57)

The probability of a double detection is the product of the probabilities of the
single detections. The detection events are uncorrelated. This is the same result
as would be obtained in the semi-classical model of matter-light interaction, for
a wavepacket with Fourier components distributed as the «;’s.

Let us now consider the case of a single-photon wavepacket of the form
(10.17). We have now

B (r,0)[1) = [Z 276V, exp [w (— - r)}} 10) (10.58)
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and therefore
EP @, HEP (r,n|1) =0 (10.59)

since ay|0) = 0. We conclude that
w® @, r,t") =0. (10.60)

The probability of a double detection is thus strictly null in the case of a single-
photon wavepacket. This property (“anticorrelation”) is not surprising if one
remembers that the number of photons is a good quantum number, and its value
is 1. Since a photodetection amounts to destroying a photon, there is no photon
left to allow for a second detection.

In contrast, in a semi-classical wavepacket the number of photons is not a
good quantum number, since | W) is not an eigenstate of N, and the probability
to have two photons is not null. It is therefore not surprising that one can have
two photodetections.

This difference allows one to make an experimental distinction between a
true single-photon wavepacket, and a quasi-classical wavepacket, even when
attenuated enough that the average number of photons is much less than 1.
One can then ask: can such a difference be observed, when one takes into
account experimental inefficiencies and noise? We will see in Section 10.3
that it is indeed possible to establish a quantitative criterion that renders
the distinction presented above fully operational, leading to practical tests in
realistic experiments. But before addressing that question, we will ask, still
from a theoretical point of view, whether various kinds of strongly attenuated
light beams may exhibit an anomalously small rate of double photodetection,
by comparison to what is expected for a classical wave.

10.2.6 Attenuated Continuous Light Beams

In this subsection, we consider the case of a continuous beam emitted by a
CW laser, or even a thermal source, attenuated to the point where the average
power is so weak that if we insist to describe the beam as made of photons, the
average distance between these photons would be large compared to a standard
interferometric system (say several meters).

Let us start with the simplest case, the beam emitted by a perfectly stable
single-mode laser, of average power Ppaeer. It is well known [34] that such a
beam is well described by a quasi-classical state oy a5¢r) Of the mode associated
with the laser beam. Even in an ideal laser, the complex number og ,ser has
some fluctuations due to spontaneous emission [38], but the fluctuations of the
modulus |op aser| can be considered negligible, provided the laser operates well
above threshold.

A laser beam has a non-uniform transverse profile (for instance, a
Gaussian profile for the fundamental transverse mode), and one should use
the corresponding non-uniform modes of the electromagnetic field to correctly
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describe the quantized field associated with the laser beam. To simplify, we
use again the top-hat modes introduced in the remark of Section 10.2.3, with
a transverse profile uniform over an area Spager- The volume of quantization
is then Spaser X L, where L is an arbitrary length along the beam axis, which
can be taken as large as necessary. The single-photon amplitude Sﬁg)ser then
assumes the value (10.35) with S replaced by Spaser, and the density of modes
has the value (10.36). The modulus of o 4 is related to the average number

of photons in the quantization volume by

Praser L
hoLaser ¢

(N)ge = |otLaser|* = (10.61)

Since |araser) is an eigenstate of the positive-frequency electric-field
operator (10.1), the calculation of the single and joint photodetections is trivial
(cf. Section 10.2.4). The rate of single photodetections is uniform in the profile,
and is equal to

2
w0 =" ] lovaserl (10.62)

Replacing £ é b by its value, and assuming a perfect detector, we obtain

0] C
w(l)(rst) = nperfect—S|05Laser|2 = |05Laser|2_’ (10.63)

I
2eoL L
i.e., according to (10.61), the average number of photons per unit time, as it
should be.
The density of double detections is also uniform

4
w® w0 = [ ] lovaserl . (10.64)

Moreover, we see that
w @, ) = wP e, - wPa ). (10.65)

This means that the detection events are independent from each other. If we
take a perfect photodetector that detects every photon, we thus conclude that
the photons are randomly distributed in time with a uniform probability density.
This property remains true even for an attenuated beam, whatever the level
of attenuation, since this only amounts to reducing the magnitude |opager]-
This property is equivalent to the fact that if one looks for the statistics of
photodetections in a given time interval, we expect to find a Poisson distribution.

If now we consider thermal light, it can be considered constituted by
a statistical ensemble of quasi-classical states associated with a continuum
of modes of the electromagnetic field. Reasoning as in Section 10.2.5,
the calculation can be done using the semi-classical model of matter-light
interaction, for a classical stochastic field [39]. One can then show, using
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a standard Cauchy-Schwartz inequality, that the rates of single and double
photodetections, calculated according to formulae (10.15) and (10.16), obey
the relation

w®w,t;r,0) > (W (r,0))2. (10.66)

We can thus conclude that such light beams, even strongly attenuated, never
lead to a null rate of double detection. The situation is thus explicitly different
from what happens with genuine single-photon wavepackets (Section 10.2.5).
This conclusion remains valid when we use the criterion that is derived in
Section 10.3.3, which applies to real experiments.

10.2.7 Light From a Discharge Lamp

We consider now light emitted by a source constituted of many independent
emitters, each emitting one-photon wavepacket, at random times. The light is
collimated, and we can thus describe the radiation state as constituted of many
independent one-photon wavepackets introduced in Section 10.2.3. We call u
the average number of single photons per unit time, and we consider a time
interval T in which we have N = uT wavepackets. We will then write the
radiation state as

Wn) = [1(1)) @ [1(12)) - - - @ |[1(tn))- (10.67)

In writing this expression, which reflects the fact that the one-photon
wavepackets are independent, we assume that the |1(¢;)) states are orthogonal,
i.e., the second member of Eq. (10.34) is replaced by § ;. This is reasonable if
the wavepackets are produced by the same emitter (since then there is a delay
between them), or if they are emitted by different emitters with frequencies
o that are not exactly the same because of Doppler effect or inhomogeneous
broadening.

The ensemble of the one-photon states {|1(#1)),...,|1(ty))} can then be
considered a basis for the Fock space of any combination of such one-photon
states. It is then convenient to define creation and destruction operators at@y)
anda(t;) (L =1,...,N) such that

a'(t)|0) = [1(t0)) (10.68)
and
[&(tz),&*(w)] = 8. (10.69)
The state (10.67) can then be written as
Wy) =a'(t)a' (1) ...a" 1)]0). (10.70)

The restriction of the electric-field operator E) (r,1) to that space can be written
as
N
EP =7 E 0. (10.71)

173
=1
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To determine the probability of a single detection per unit time, we need to
calculate

EY0.010y) = TE0)1(n) ® 113)) ® -+~ ® [1(1y))
17 E(”(t)u(z])) ® (1)) ®

+ .
N
=7 ZE“) ® 11(;)). (10.72)
=1
N—1 terms

The state above is a state with N — 1 photons. Taking its modulus and using
(10.24), we obtain

w00 =1 Z E0F
=1
N
= nlEol’ ) H(t — ) expl-T(¢ —1)l.  (10.73)
(=1

Actually, with such a source we cannot measure the quantity above, since even
for an ideal detector we have at most one detection per wavepacket. If we repeat
the experiment, and select another interval with N one-photon wavepackets,
the distribution of the times {t1, ...,t¢,15} will be different, so that the result
after a large number of such experiments is obtained by averaging over each 7,
distributed uniformly in the interval T = Ny ~!. The result of that averaging
is constant in time o

w® = y|Eo>ul "L (10.74)

Integrating over the whole area of an ideal detector, and reasoning as in Eqs.
10.35-10.40, we obtain an average probability of detection per unit time

dpm®
= L. 10.75
TR ( )
To evaluate the probability of double detection, we apply the operator I:ZE\',H

to (10.72):
N

ZE}“(;)ZE”(;) ® ). (10.76)

(=1 p#L
N—2 terms

In the sum above, the two terms obtained by exchanging £ and p are identical,
and we can thus write

£ 0,0E 0,0 wy) —2215“)(;)215(”@) ® L) (0.77)
=1 p>L
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Taking its square modulus, we obtain

N
wP(t,1) = 4n? Z Z ED (1) PIED (1,))°. (10.78)
=1 p>¢t

We again average over all #; and ¢, in the interval T', and we obtain
— N(N — 1) —=72
w(t.1) = 2%[14)(1)] , (10.79)

where w(D is given in (10.74). If the number of photons is large enough, we

- 2
have w® =2 [w(l )] . The factor 2 is the celebrated Hanbury Brown and Twiss

factor.

We thus find that there is no possibility to observe an anticorrelation effect
with light emitted from a discharge lamp, even if the one-photon wavepackets
are well separated from each other. The reason is that the various wavepackets
are emitted at random times independent from each other, and there is a
significant probability to have two wavepackets arriving at the same time.

Remark. If we make N = 1 in Eq. (10.79), we find w® = 0. It does not
mean that if we take a small enough time interval we can expect to observe
w®@ = 0. Indeed, for a source emitting one-photon wavepackets at random
times the number N is not strictly fixed, it is in fact distributed according
to a Poisson law. A calculation averaging over that distribution would give

_ 2
w@(t,1) = Z[w(‘)] , whatever the interval.

10.2.8 Conclusion: What is Single-Photon Light?

In this section, we have shown that a genuine single-photon wavepacket, i.e.,
a one-photon state emitted at a well-known time, exhibits a characteristic
behavior, the fact that it cannot be detected jointly by two photodetectors
(anticorrelation). Such a behavior is not expected in the case of an attenuated
beam from a classical lamp, including the case of a discharge lamp where
one has single-photon wavepackets shorter than the average time between the
wavepackets. The paradoxical behavior in the latter case is resolved when we
realize that the problem is the fact that one has no information about the time
when any single-photon wavepacket is emitted. We can thus conclude that it
is not enough to have single-photon wavepackets to have single-photon light.
We need in addition to know at which time each single-photon wavepacket is
emitted [40]. This is the case for the two types of sources described below:
heralded single-photon sources on the one hand, and on-demand single-photon
sources on the other hand.
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10.3 PHOTON PAIRS AS A RESOURCE FOR SINGLE
PHOTONS

10.3.1 Introduction

When an atom emits from an excited level, the fluorescent light emitted is a
one-photon wavepacket, as can be guessed merely from energy conservation.
However, in usual sources, such as discharge lamps, many excited atoms are seen
simultaneously by a detector, and their time of excitation is random (Section
10.2.7). The theoretical description of the light then is a mixture of one-photon
wavepackets of the form presented in Section 10.2, with random leading-edge
times. If one also takes into account the fluctuations of the number of excited
atoms, the emitted light can be considered a statistical ensemble of quasi-
classical states, and in this situation there is no hope to observe any non-classical
effects. To observe non-classical properties in fluorescent light, it is necessary
to isolate single-atom emissions, either in space, or in time. This can be done
in sources of “heralded” single photons, based on the emission of separated
pairs of photons: the first photon then “heralds” the emission of the second one,
allowing one to isolate single-atom emission in time.

The production of pairs of photons occurs in many different contexts in
physics, including particle physics (e.g., the electron-positron annihilation,
producing two y photons), nuclear physics and atomic physics (through cascade
de-excitation between several levels), and non-linear optics (pair production
in spontaneous parametric fluorescence). In the latter case, the temporal
correlation between the two photons of one pair, a fully quantum property,
was observed first in 1970 by Burnham and Weinberg [6] and studied more
accurately by Hong et al. [41], while the specifically quantum properties of
the photon pairs emitted by an atomic cascade were demonstrated in 1974 by
Clauser (see Section 10.3.2).

However, it took some time to realize that a very simple way to understand
these specifically quantum properties is to consider the quantum state of the light
for the second photon only, once the first one has been detected: according to
the “projection postulate” of quantum mechanics this second photon is in a state
very close to a one-photon state, or more precisely, a one-photon wavepacket
with a well-defined leading-edge time (or peak time). One can say that the
second photon is “heralded” by the detection of the first [9]. This expression
has become popular and is now used as a generic name for such sources.

In this section, we first present and discuss inequalities that apply to
“classical” light, i.e., light described by the standard wave model of classical
optics, or equivalently light described by the quantum theory as a statistical
mixture of quasi-classical states. Such inequalities are derived for the case of
an atomic cascade (Section 10.3.2), and for a single photon on a beamsplitter
(Section 10.3.3). These inequalities are fully general in the classical context,
and since quantum light can contradict them, they delineate a limit beyond
which “specifically quantum effects” can be observed. In Section 10.3.4, we
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present the anticorrelation experiment that allowed us to conclude that our 1986
source was a true single-photon source, and we contrast this result with the one
obtained with strongly attenuated classical light pulses.

10.3.2 Non-Classical Properties in an Atomic Cascade

In 1974, John Clauser proposed a scheme to obtain a “model-independent”
inequality applying to any classical description of pairs of photons emitted by
an atomic radiative cascade [3]. His idea was to “split” simultaneously both
the first and second photons of the cascade, by collecting the light emitted on
opposite sides of an assembly of excited atoms, and focusing it separately into
two beams. The wavelength 1| on one side was selected to correspond to that
of the first transition of the cascade, and that on the other, XA;, to the second.
The two light beams impinged on beamsplitters, thus creating a total of four
beams, between which coincidence rates of photodetections are measured. The

semi-classical expression of a coincidence rate between detectors i and j is (see
Eq. (10.16))

T/2 pT)2
Cij = nian’I/ / (L; (¢ +t/)11'(t +t"))dt dt”, (10.80)
—T/2J-T)2 |

where n;,n; are the detection efficiencies of the photodetectors, and I;
(respectively I) the classical light intensity /; = |E§+) ()% at photodetector i
(respectively j). The time integral bears over the duration T of the run, while
the brackets denote a statistical average over many runs.

By using four photomultipliers labeled y14,y18,Y24, and y2p, the
coincidence rates were monitored between the four combinations: y;4 —
Y1B>YV2A—V2B,Y1A— V2B, and y24 —y1 . A diagram of the arrangement is shown
in Fig. 10.2. Defining 1 (¢) and I>(¢) as the instantaneous light intensities at the
¥14 — y1B beam splitter with wavelength A1, and at the y»4 — y»p beam splitter
with wavelength A,, respectively, it follows directly from the Cauchy-Schwarz
inequality that the following inequality holds:

T2 (T)2 -
/ / (Lt +1 + )L+t +1))dt dt”
—rpJ-r)2 i

T)2 pT)2 .
/ / (Lt +1" + )L+ 1"+ 1))di dt”
) i

T2 (T)2 .
> / / (Lt +1 + )b+t +v))dt dt”
—rpJ-r)2

Using the definition (10.80) of C;;, this can be written as

C14-18(0)C24—2B(0) = C14—2B(t)Ci1p_24(7). (10.81)
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FIGURE 10.2 Schematic diagram of the apparatus used in John Clauser’s 1974 experiment.

A filter

This simple calculation ignores a possible polarization dependence of the
detectors, and the finite photocathode areas, as well as the nonvanishing
phototube dark rates (c.f. Chapter 3). However, it can be shown that the above
inequality is fully general and holds for these cases as well.

From a quantum point of view, the coincidence rates Ci4—>p and Coa—_1p
are due to the strong temporal correlation between the two photons in each pair
emitted by the cascade, and these coincidence rates can reach quite high values.
On the other hand, the rates C14—1p and C24_»p require random coincidences
between photons emitted by different atoms, and for a low-density source, such
coincidence rates are much smaller than Ci4_2p and Cy4—1p. Therefore the
above equality can be violated by a large amount, as has been confirmed by the
experiment [3].

10.3.3 Anticorrelation for a Single Photon on a Beamsplitter

The main idea of the previous experiment is thus to compare “intra-beam” corre-
lations (auto-correlations), and “inter-beam” correlations (cross-correlations),
the first ones being always larger for classical beams, whereas the opposite
situation happens for the quantum light emitted by an atomic cascade. This
approach, however, does not directly exhibit the anticorrelation behavior that
is only associated with a single photon. This is why we introduced the scheme
of Fig. 10.3. In that scheme [42], the detection of the first photon of a radia-
tive cascade fires a trigger that generates an electronic gate of duration Tgate,
synchronized with, and somewhat longer than, the decay constant I'"! of the
one-photon wavepacket associated with the second photon of the cascade.
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FIGURE 10.3 Experiment to look for an anticorrelation on a beam splitter. The source S emits
light pulses that fall on a beam splitter and can be detected in both channels (reflected and
transmitted) behind the beam splitter. The detectors are enabled during a gate tgate synchronized
with the light pulses. The rates of single detection (N and N7) and coincidence (N¢) are
monitored. If the light pulse contains only one photon, one detection is expected at most, and
no coincidence is expected: this is the anticorrelation effect. In sources of heralded single photons
based on photon pairs, such as the ones emitted by the radiative cascade of Fig. 10.4, the trigger is
activated by the detection of the other photon of the pair.

That single-photon wavepacket is launched toward a beamsplitter with two
detectors in the transmitted and reflected legs, and these detectors are enabled
only during the gates associated with the trigger, i.e., during the time interval
corresponding to the single-photon wavepacket. If both detectors fire during the
same gate, a coincidence is recorded. A counting system monitors the triggering
events, the detection events, and the coincidences.

Consider an experiment that consists of running the source for a given
duration and counting the total number of counts in the transmitted (N7) or
reflected (Ng) channels, the total number of coincidences (/N.), and the total
number of gates N1. We can then estimate the probabilities of single detections
per gate,

Ng Nt

Ppr=— d Pr=—, 10.82
R= N an =N, ( )

and the probability of a coincidence per gate,

Nc

P ==
c Nl

(10.83)
According to our intuition, we expect P, to be zero in the ideal case of a
one-photon wavepacket, and to be non-zero for a classical light pulse. As in the
previous section, this discussion can be rephrased in the context of a comparison
between the quantum theory of light and the semi-classical theories of light.
To establish classical inequalities, two equivalent approaches are possible:
one is to consider the quantum state “heralded” by the first detection, and to

look to the single and coincidence detections on both sides of the beamsplitter;
the other one is to look “globally” at the cascade, so that a detection on one
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side of the beamsplitter is already a coincidence (between the “heralding” and
“heralded” photons), whereas clicks on both sides of the beamsplitter will be a
“triple” coincidence.

In the first approach, we define

1 Tgate
Q= Tg_eltef Ip(t + thdt'
0

as the time-averaged (classical) intensity impinging on the beamsplitter during
the counting window Tgate. For many pulses, one finds

PR = SR§, PT = ST§, PC = SRST@,

where s7 and sg are the global detection efficiencies (including the transmission
and reflection coefficients of the beamsplitter) of each detector, and the overbar
indicates a statistical average over many pulses. From the Cauchy-Schwarz
inequality 2 > ()% one gets P. > Pg Pr or equivalently

NRrNt
= .
=N

N,

In the second approach we consider the quantity, where £ is a real variable:

F() = IA(I)/O /o &+ It +1))(E + Ip(t +1")dt" dt”

w 2
= I4(1) </ &+ Ip(t + t’))dt’>
0

w w

2
= 2w T, (1) + 25w / I Ip(t +t))dt' + 14(1) ( / Ip(t + r/)dﬂ) :
0 0

Since F(£) > 0, one obtains the usual Cauchy-Schwarz inequality:

w 2 w
I4(t) x I4(1) (/ IB(t+t/)dt/> > (/ IA(t)IB(t+t/)dt/)
0 0

Reintroducing the appropriate detection-sensitivity factors sgs7 on both sides,
one obtains:

2

NN, > NgNr,

which is the same as the inequality derived in the first approach. It is usually
written

P. NN
o=—C =TS (10.84)
PrPr  NRrNt

This inequality can be seen either as a property of the “heralded” wavepacket,
or as a property of the correlation functions taking into account the “heralding”
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event, corresponding to 74 (¢). Its physical content is very close to the inequality
(10.66), and its violation (i.e., & < 1), also called “anticorrelation” [5]. As for
the antibunching effect [13], the observation of such an anticorrelation is an
evidence against the semi-classical theories of light.

Remark. Inthe limit where gy is very small, the inequality (10.84) is strictly
equivalent to (10.66), or to g(Z) (0) > 1, where g(z) (7) is the usual normalized
second-order correlation function [35]. So the condition « > 1 can be seen as an
“integrated” version of g(z) (0) > 1, over atime window suited to the duration of
the single-photon wavepacket. As for the semi-classical inequality g® (0) > 1,
or the semi-classical inequality g(z) ) > g(z)(r) used in [13], its violation
has some relation with sub-Poissonian photon statistics, but no statistics are
measured here, only intensity correlation functions. This is why we consider
the wording “anticorrelation” well suited to characterize this violation.

10.3.4 The 1986 Anticorrelation Experiment

We have built an experiment corresponding to the scheme of Fig. 10.3, i.e., a
setup allowing us to measure the single and coincidence rates on the two sides
of a beamsplitter during the opening of gates triggered by events synchronous
with the light pulses. This system has been used to study light pulses from a
source designed to emit heralded one-photon wavepackets, i.e., based on pairs
of photons emitted in a radiative cascade (see Section 10.3.4.1). But we have
also used that setup to study strongly attenuated pulses from a classical source.
(Section 10.3.4.2.)

10.3.4.1 Heralded One-Photon Pulses From an Atomic Cascade
Our source is composed of atoms excited to the upper level of a two-photon
radiative cascade (Fig. 10.4) [4,5]. Each excited atom decays by emission of
two photons at different frequencies v; and v,. The time intervals between
the detections of v; and v, are distributed according to an exponential law,
corresponding to the decay time of the intermediate state (lifetime 7y = 4.7 ns,
which is also the time constant I'~! of the wavepacket describing the heralded
single photon 1,). By choosing the rate of excitation much smaller than (z;) ™",
we have cascades well separated in time. We use the detection of v; as a trigger
for a gate of duration Tgye = 27, corresponding to the scheme of Fig. 10.3.
During a gate, the probability of detecting a photon vy coming from the atom
that emitted vy is much larger than the probability of detecting a photon v,
coming from any other atom in the source. We are then in a situation close
to an ideal single-photon pulse, as defined in Section 10.2, and we expect the
corresponding anticorrelation behavior on the beamsplitter.

The expected values of the counting rates can be obtained from a
straightforward quantum mechanical calculation. Denoting N as the rate of
excitation of the cascades, and 711,17, and ng as the detection efficiencies of
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FIGURE 10.4 Radiative cascade in Calcium, used to produce heralded single-photon pulses.
The atom is excited to the upper level of the cascade by a resonant two-photon excitation with a
Krypton-ion laser and a tunable dye laser. It then re-emits photons v and v,. Detection of photon
v activates the trigger of Fig. 10.3.

photons vy and v; (including the collection solid angles, optics transmissions,
and detector efficiencies) we obtain:

N1 =n1N, (10.85)

Nt = Nint[f (tgaie) + N Tgatel, (10.86)

Nr =M rlR[f(Tgate) + Nfgate]v (10.87)

Ne = Ninrnrl2 f (Teate) N Teate + (N Taare) ], (10.88)

where N Tgate is the probability to have a photon from another atom than the
heralding atom, during the gate. The quantity f(Tgae), very close to 1 in this
experiment, is the product of the factor [1 —exp ( — Tgate/75)] (overlap between
the gate and the exponential decay) and a factor somewhat greater than 1 that
is related to the angular correlation between v and vy [4,5].

The quantum mechanical prediction for « is

2f(":gatc)N'fgate + (I\I‘Kgate)2
[f(fgate) + N"-’gate]2

aom = : (10.89)

which is smaller than 1, as expected. The anticorrelation effect is strong («
small compared to 1) if NTgye is much smaller than 1. This condition is easily
fulfilled if the cascades are well separated in time, in the average.

Counting electronics, including the gating system, was a critical part of
this experiment. The gate tgae Was realized by logical decisions based on the
measurement of the time intervals between counts at the various detectors. This



ﬁBLE 10.1 Feeble-Light Interference Experiments. All these Experiments have been Realized with Attenuated Light fromh

Usual Source

Author Date Interferometer Detector Photon Flux (s~1) Interferences
Taylor [26] 1909 Diffraction Photography 106 Yes
Dempster et al. [28] 1927 (i) Grating Photography 10° Yes

(i) Fabry Perot Photography 10° Yes
Janossy et al. [29] 1957 Michelson interferometer Photomultiplier 10° Yes
Donstov et al. ([30]) 1967 Fabry Perot Image intensifier 103 No
Reynolds er al. [31] 1969 Fabry Perot Image intensifier 102 Yes
Bozec eral. [32] 1969 Fabry Perot Photography 102 Yes
Grishaev et al. [33] 1969 Jamin interferometer Image intensifier 103 Yes

1994 Diffraction Image intensifier and CCD 10°

Qimberlini etal [27]

Yes /
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mBLE 10.2 Anticorrelation experiment with single-photon pulses from th
radiative cascade. The last column corresponds to the expected number of
coincidences for « = 1. The measured coincidences show a clear
anticorrelation effect. These data can be compared to Table 10.3

Trigger Rates Singles Rates Duration Measured Expected
Coincidences Coincidences

foro =1
Ni(s™") Nr(s™") Nr(s™") 6(s) Neb Nz g
4720 2.45 3.23 1200 6 25.5
8870 4.55 5.75 17,200 9 50.8
1,21,00 6.21 8.44 14,800 23 64.1
20,400 12.6 17.0 19,200 86 204
36,500 31.0 40.6 13,200 273 456
50,300 47.6 61.9 8400 314 492

<7,100 71.5 95.8 3600 291 367 /

allowed the adjustment of the gates with an accuracy of 0.1 ns. The system also
yielded various time-delay spectra, useful for consistency checks.

Table 10.2 shows the measured counting rates for different values of the
excitation rate of the cascade. The corresponding values of « have been plotted
in Fig. 10.5 as a function of N7ge. As expected, the violation of inequality
(10.84) increases as N Tgye decreases, but the signal decreases simultaneously,
and it becomes necessary to accumulate the data for periods of time long enough
to achieve a reasonable statistical accuracy. A maximum violation of more than
13 standard deviations has been obtained for a counting time of five hours
(second line of Table 10.2). The value of « then is 0.18(6), corresponding to a
total number of coincidences of 9, instead of the minimum value of 50 expected
for a quasi-classical pulse.

10.3.4.2 Attenuated Classical Pulses

To confirm our arguments experimentally, and to test the photon-counting
system, we also studied light from a pulsed light-emitting diode (LED). It
produced light pulses with a rise time of 1.5 ns and a fall time about 6 ns.
The gates, triggered by the electric pulses driving the photodiode, were 9 ns
wide and had an almost complete overlap with the light pulses.

The source was attenuated to a level corresponding to one detection per 1,000
pulses emitted. With a detector quantum efficiency of about 10%, the average
energy per pulse can be estimated to be about 0.01 photon. In the context of
Table 10.1, this source certainly would have been considered a source of single
photons. The results presented in Table 10.3 show that it is definitely not the
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FIGURE 10.5 Correlation parameter « as a function of the excitation rate of the cascade N.
The value of « smaller than 1 is the signature of an anticorrelation, corresponding to the one-
photon behavior (no classical theory of light can predict a parameter « less than 1). The solid line
is the prediction of quantum optics, taking into account the possibility that more than one atom is
excited during one gate of duration Tgate: For a single emitter, & would be zero.

TABLE 10.3 Anticorrelation experiment for light pulses from an

attenuated photodiode (0.01 Photon/Pulse). The last column corresponds
to the expected number of coincidences for « = 1. All the measured
coincidences are compatible with & = 1; there is no evidence of
anticorrelation. Note that the singles rates are similar to the ones of
Table 10.2
Trigger rates Singles rates Duration Measured Expected
coincidences coincidences
fora =1

Ni(s™) Nar(s™) Nop(s™) 6(s) Net Nefrg
4760 3.02 3.76 31200 82 74.5
8880 5.58 7.28 31200 153 143
12,130 7.90 10.2 25,200 157 167
20,400 14.1 20.0 25,200 341 349
35,750 26.4 33.1 12,800 329 313
50,800 44.3 48.6 18,800 840 798

69.6 72.5 12,800 925 955

\67,600

=/

case. The quantity « (of inequality (10.84)) is consistently found very close to
1; i.e., no anticorrelation is observed. In fact, the coincidence rate is exactly in

agreement with the limit of inequality (10.84).

This experiment thus supports the claim that light emitted by an attenuated
classical source does not exhibit one-photon behavior on a beamsplitter, even in
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the case of very attenuated light pulses with an average energy by pulse much
less than the energy of a photon.

10.3.4.3 Conclusion: Anticorrelation as a Characteristic Property
of Single Photons

The experiments presented in this subsection confirm that anticorrelation on a
beamsplitter is a very clear criterion for discriminating between a one-photon
light pulse and a quasi-classical light pulse. A pulse produced by a classical
source, even attenuated to a level of 10™2 average photon number per pulse, has
the behavior expected for a quasi-classical pulse: one observes coincidences
in agreement with the inequality (10.84). In contrast, we have been able to
produce one-photon pulses for which the number of coincidences was so small
that a violation of inequality (10.84) by more than 13 standard deviations
was observed. This last result can also be considered as strong experimental
evidence against semi-classical theories of light, which never predict a violation
of inequality (10.84).

10.4 SINGLE-PHOTON INTERFERENCES
10.4.1 Wave-Particle Duality in Textbooks

Many introductory courses in Quantum Mechanics—whether or not they choose
an historical perspective—begin with an “experiment” exhibiting the wave-
particle duality of light and matter. This experiment is usually presented by
showing an interference pattern, for instance in a Young’s slit experiment. Such
a phenomenon can be interpreted by invoking a wave that passes through both
holes: it is well known that the resulting intensity then depends on the “path
difference” A, and exhibits a modulation depending on the interference order
p = A /A, where A is the wavelength. On the other hand, the “particle” character
is usually considered obvious for matter particles such as electrons, neutrons, or
atoms, whereas it is actually not obvious for light, as discussed in the previous
sections. In the latter case it is therefore useful, before looking for interferences,
to present experimental proof that the source S emits well-separated single-
photon pulses: if it were not the case, the discussion would be pointless. This
is why we have addressed the question of single-photon interferences with the
source described in 10.3.4.1.

10.4.2 Interferences with a Single Photon

The quantum theory of light predicts indeed that interferences will happen
even with one-photon pulses (see for instance [17] for a detailed calculation).
We have thus built a Mach-Zehnder interferometer, keeping the same source
and the same beamsplitter as in Fig. 10.3, but removing the detectors on both
sides of the beam splitter, and recombining the two beams on a second beam
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FIGURE 10.6 Single-photon interference experiment. The source and the beamsplitter are similar
to Fig. 10.3, but are now configured as a Mach-Zehnder interferometer. The detectors are gated, as
in Fig. 10.3, synchronously with the light pulses.

splitter (Fig. 10.6) [5]. The detection rates in the two outputs (1) and (2) are
expected to be modulated as a function of the path difference in both arms of the
interferometer. To guarantee that we are still working with one-photon pulses,
the detectors P M1 and P M2 are gated synchronously with the pulses, as they
were in the experiment of Section 10.3.4.1.

The interferometer has been carefully designed and built to give high-
visibility fringes with the beam of large étendue (product of transverse area
and solid angle) produced by our source (about 0.5 mm? rad?). The reflecting
mirrors and the beam splitters are A /50 flat over a 40 mm diameter aperture. A
mechanical system driven by piezoelectric transducers permits displacement of
the mirrors while keeping their orientation exactly constant: this allows control
of the path difference of the interferometer. Preliminary checks with classical
light showed a strong modulation of the counting rates of PMz| and PMz>
when the path difference is modified. For classical pulses shaped as the one-
photon pulses from our source, the measured visibility was V = 98.7(5)%,
a value very close to the ideal value V =1, showing the quality of the
interferometer.

Figure 10.7 presents the results obtained by running this interferometer with
the one-photon source. The numbers of counts during a given time interval are
measured as a function of the path difference. In the first plots, the counting
time at each position was 0.01 s, while it was 10s for the last recordings.
This run was performed with the sources in a regime corresponding to an
anticorrelation parameter « = 0.2, and therefore in the one-photon regime.
These recordings clearly show the interference fringes building up “one-photon
at a time.” When enough data have been accumulated, the signal-to-noise ratio
is high enough to allow a measurement of the visibility of the fringes. We
repeated such measurements for various regimes of the source, corresponding
to the different values of & shown in Fig. 10.5, and observed no deviation from
the expected value V = 98.7, within the experimental noise, even in a regime
where the source emits almost pure one-photon pulses. As predicted by the
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FIGURE 10.7 Number of detected counts in output (1) and (2) as a function of the path difference.
The four sets of plots correspond to different counting times at each path difference. This experiment
has been realized in the single-photon regime (« = 0.2). Note that the interferograms of outputs
(1) and (2) are complementary. Original plot for the experiment described in Ref. [5].

quantum theory of light, single-photon pulses do interfere. To our knowledge,
this experiment (realized in 1985) was the first of this kind performed with a
“fully quantum” light source, a source for which the anticorrelation effect was
also directly observed [18].

10.5 FURTHER DEVELOPMENTS
10.5.1 Parametric Sources of Photon Pairs

During the same period as the experiments described above—between the early
1970s and the mid-1980s—another approach to generating photon pairs was
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developed using parametric fluorescence from x ) crystals, rather than atomic
cascades [6,7]. In 1986, Hong & Mandel performed an experiment strongly
related to the anticorrelation effect described above, though presented in a
different way [8]. Since a full chapter in this book is devoted to such sources,
here we only comment that the non-classical features of these photon pairs are
similar to the ones described above, but with some notable differences:

e Due to phase-matching conditions, parametric photons are strongly
correlated both in their emission times, with a time separation of the order
of the inverse of the phase-matching bandwidth, and in their emission
directions, due to the conservation of the photon momenta when “splitting”
a pump photon into two parametric photons. As a consequence, the heralded
photons can be collected with an efficiency orders of magnitude better than
in an atomic cascade, and this has been intensively used in experiments.

e A parametric fluorescence experiment is significantly simpler and more
reliable than an atomic cascade experiment. Indeed with such sources, a
photon-anticorrelation experiment can now be a small and simple table-top
experiment that can be done by students in lab work [43].

For these reasons, parametric fluorescence is now widely used to produce
heralded single photons, and it is even possible to produce number states in
well-defined spatio-temporal modes, and to reconstruct their Wigner functions
using quantum homodyne tomography. This has been demonstrated both for
one-photon [44] and two-photon Fock states [45]. It should be noted also that
parametric photon pairs can be emitted from x ) non-linear effects in optical
fibers, rather than x ® non-linear effects in crystals, as described in Chapter 13
of this book.

10.5.2 Other Heralded and “On-Demand” Single-Photon
Sources

Many other types of single-photon sources have been proposed and imple-
mented, using quantum dots, single molecules or atoms, possibly in the cav-
ity QED regime, Nitrogen-vacancy centers in diamond, collectively enhanced
quantum ensembles, all of which are described elsewhere in this book. Let us
emphasize that some of these sources are getting close to being “on-demand”
single-photon sources, meaning that the single photon is not only ‘“heralded,”
but emitted in a “push-button” way at a prescribed time. This can be obtained
rather easily from pulsed excitation of a single quantum emitter, but in addition
it is desirable that the photon is emitted with a very high efficiency (that is, each
“click” gives one and only one photon), and with a perfectly defined spatio-
temporal mode (so that, for instance, high-quality quantum tomography of the
single photon can be performed). A fully on-demand single-photon source is not
yet available, but impressive progress has been achieved during the last 25 years.
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10.5.3 “Delayed-Choice” Single-Photon Interference
Experiments

To conclude, let us mention some recent developments in single-photon
interferences. Following a famous proposal by Wheeler, a very convincing
“delayed-choice” interference experiment has been performed by Jacques ez al.
using a Nitrogen-vacancy (NV) center in diamond as the single-photon source
[20]. In this experiment, the “choice” of leaving the interferometer open—and
thus observing the “which path” information—or closing the interferometer—
and thus observing the interference fringes—is made while the photon is
already inside a 50-m long interferometer. In even more recent experiments,
it was shown that this choice can be made remotely, by using a second photon
entangled with the photon inside the interferometer [21,22]. These experiments
demonstrate the impressive control that can be obtained in manipulating single
photons, offering more and more possibilities for applications in quantum
information and quantum communications.
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