Detekce světla – Poziční jednofotonové detektory

Antonín Černoch Jan Soubusta Ondřej Haderka

Společná Laboratoř Optiky UP a FZÚ AV ČR

Poziční jednofotonové detektory

EM-CCD speciální kamery s elektronovou multiplikací intenzifikátory obrazu zesilovače světla zachovávající informaci o poloze dopadu iCCD intenzifikovaná CCD kamera Fotonásobiče MCP, kovové kanálky a síťový typ s multianodou

Obsah

- Intenzifikátor obraz
- iCCD Intenzifikovaná CCD kamera

э

Princip EM-CCD

- EM přímo na čipu za čtecím registrem
- většinou FT architektura
- překonání odečítacího šumu

Násobný registr EM-CCD

- vyšší napětí na elektrodách → 'hlubší' potenciálové jamy
- zvýšení energie elektronu → nárazová ionizace
- znásobení počtu elektronů, celkový zisk až 1 000x
- zisk závisí na teplotě a velikosti napětí
- velký zisk omezuje dynamický rozsah omezená kapacita pixelů

∃ ► ∢

Násobný registr EM-CCD

- vyšší napětí na elektrodách → 'hlubší' potenciálové jamy
- zvýšení energie elektronu → nárazová ionizace
- znásobení počtu elektronů, celkový zisk až 1 000x
- zisk závisí na teplotě a velikosti napětí
- velký zisk omezuje dynamický rozsah omezená kapacita pixelů

Násobný registr EM-CCD

- vyšší napětí na elektrodách → 'hlubší' potenciálové jamy
- zvýšení energie elektronu \rightarrow nárazová ionizace
- znásobení počtu elektronů, celkový zisk až 1 000x
- zisk závisí na teplotě a velikosti napětí
- velký zisk omezuje dynamický rozsah omezená kapacita pixelů

Čítání fotonů u EM-CCD

- zesílení > 30x, po odečtením šumové hladiny
- počet fotonů ale neurčíme statistiky se překrývají

Šum EM-CCD

- odečítací, termální a šum světelného signálu +
- σ²_{cic} šum indukovaný přesunem náboje (*Clock Induced Charge*), u běžné CCD zanedbatelný (cca 0.05 elektronů na pixel)
- u EM-CCD je vynásoben zesílením až 1 000krát

Černoch, Soubusta, Haderka (SLO)

DS – EM-CCD a iCCD

Andor iXon Ultra 888 Back-Illuminated EMCCD

rozlišení velikost pixelu kapacita pixelu aktivního kapacita pixelu násobného odečítací šum bez EM EM zisk maximální η temný proud [e⁻/px/s] falešné detekce na pixel AD převodník $\begin{array}{c} 1\,024\,\times\,1\,024\\ 13\,\mu\textrm{m}\,\times\,13\,\mu\textrm{m}\\ 80\,ke^-\\ 730\,ke^-\\ 49\,e^-\,(10\,\textrm{MHz})\\ 1\text{-}1\,000\times\\ 92.5\,\%\,@\,580\,\textrm{nm}\\ 0.000\,11\,(-95\,^\circ\textrm{C})\\ 0.005\\ 16ti\ bitový\end{array}$

Obsah

Intenzifikátor obrazu

iCCD – Intenzifikovaná CCD kamera

э

Intenzifikátor obrazu

2. Generace intenzifikátorů obrazu

GEN II

- bialkalické nebo multialkalické fotokatody na křemenném skle
- použitelné v krátkovlnné oblasti spektra (UV a VIS)
- rychlost závěrky okolo 50 ns

∃ ⊳

3. Generace intenzifikátorů obrazu

GEN III

- GaAs fotokatoda na běžném skle
- použitelné ve VIS a blízké IČ oblasti

Filmed krycí ochranná vrstva z hliníku vyšší pracovní napětí rychlost elektronické závěrky 5 ns

Filmless bez krycí vrstvy rychlost závěrky 2 ns speciální konstrukce i pod 1 ns

Černoch, Soubusta, Haderka (SLO)

Obsah

iCCD – Intenzifikovaná CCD kamera

5 Šum CCD, EM-CCD a iCCD

э

iCCD – Intenzifikovaná CCD kamera

- intenzifikátor obrazu + chlazený CCD čip + nízkošumová elektr.
- malá odečítací frekvence 50 až 500 kHz
- zesílení je dáno pevným napětím na MCP

Černoch, Soubusta, Haderka (SLO)

Kvantová účinnost iCCD

prvky ovlivňující celkovou kvantovou účinnost:

- kvantová účinnost fotokatody
- ztráty při přenosu elektronů v zesilovací části
- účinnost navázání do svazku optických vláken
- kvantová účinnost CCD čipu
- \Rightarrow výsledná hodnota 5-20 %

Prostorové rozlišení

Důvody snížení prostorového rozlišení

- elektrony z fotokatody mohou dopadnout do různých kanálků MCP
- sprška elektronů z MCP excituje určitou oblast fosforové obrazovky
- svazek vláken nemusí být vycentrován na středy pixelů

Jednofotonové události

- událost nadprahové množství elektronů
- měly by být bodové
- software na doostření obrazu
- porovnání velikosti náboje v pixelu a jeho blízkém okolí s prahovou hodnotou
- přesná poloha určená jako těžiště

Laboratorní kamery

kamera	Andor DH 735	PI-MAX 512	Andor CMOS	
rozlišení	1024×1024	512 imes 512	2560×2160	
hrana pixelu [µm]	13	19	6.5	
spek. rozsah [nm]	265-740	500-900	300-800	
η _{max} [%]	\sim 20	\sim 5	40	
pro [nm]	500	600	500	

Obsah

iCCD – Intenzifikovaná CCD kamera

4 Streak kamera

э

Streak kamera

- často v kombinaci se spektrometrem
- štěrbina v horizontálním směru
- časově závislá změna vychýlení ve vertikálním směru
- spektrum s časovým rozlišením (~ 1 ps)

< ロト < 同ト < ヨト < ヨト

Hamamatsu C10910

- časové rozlišení 1 ps až 1 ms
- spektrální rozsah 230-900 nm
- jednofotonová citlivost
- spektroskopie s časovým rozlišením

iCCD – Intenzifikovaná CCD kamera

3

Šum CCD, EM-CCD a iCCD

$$\sigma^2 = \sigma_{\rm ro}^2 + F^2 G^2 (\sigma_{\rm d}^2 + \sigma_{\rm s}^2 + \sigma_{\rm cic}^2)$$

Poissonovský signál \Rightarrow

$$SNR = \frac{(\eta G\overline{n})^2}{\sigma^2} = \frac{(\eta G\overline{n})^2}{\sigma_{ro}^2 + F^2 G^2 (\sigma_d^2 + \eta \overline{n} + \sigma_{cic}^2)}$$

		Ideál	CCD	EM-CCD	iCCD
kvantová účinnost	η	1	0.93	0.93	0.50
zisk	G	1	1	1 000	1 000
faktor zvýšení šumu	F	1	1	1.41	1.6
odečítací šum	$\sigma_{\rm ro}$	0	10	60	20
temný šum	$\sigma_{\rm d}$	0	0.001	0.001	0.001
CIC šum	$\sigma_{ m cic}$	0	0.05	0.005	0

- pro silné signály nad 100 fotonů na pixel je nejlepší CCD
- pro slabší signály vyniká EM-CCD
- pro jednofotonové aplikace, kdy záleží na každé události, je nejlépe použít iCCD

∃ ► < ∃ ►</p>