Detekce světla – Vnitřní fotoelektrický jev

Antonín Černoch Jan Soubusta Ondřej Haderka

Společná Laboratoř Optiky UP a FZÚ AV ČR

Obsah

2 Fotorezistory

3 Fotodiody

Černoch, Soubusta, Haderka (SLO)

2

<ロト <回 > < 回 > < 回 > .

Vnitřní fotoefekt

 detekce v polovodičovém materiálu v oblasti bez volných nosičů náboje (velký odpor)

 dopad fotonu (hν > E_g) excituje elektron (-e) do vodivostního pásu, na jeho místě zůstává díra (+e)

 s elektrickým polem → elektrický proud → pokles napětí v obvodu

Vnitřní fotoefekt

- detekce v polovodičovém materiálu v oblasti bez volných nosičů náboje (velký odpor)
- dopad fotonu (hν > E_g) excituje elektron (-e) do vodivostního pásu, na jeho místě zůstává díra (+e)

Vnitřní fotoefekt

- detekce v polovodičovém materiálu v oblasti bez volných nosičů náboje (velký odpor)
- dopad fotonu (hν > E_g) excituje elektron (-e) do vodivostního pásu, na jeho místě zůstává díra (+e)

Vnitřní fotoefekt

- detekce v polovodičovém materiálu v oblasti bez volných nosičů náboje (velký odpor)
- dopad fotonu (hν > E_g) excituje elektron (-e) do vodivostního pásu, na jeho místě zůstává díra (+e)

Obsah

Fotorezistory

- Vlastní fotorezistory
- Nevlastní fotorezistory
- Homo a heterostruktury

3 Fotodiody

Photoconductors

za tmy počet volných nosičů úměrný teplotě → nenulová vodivost
 dopadající fotonový tok Φ_p → zvýšení vodivosti materiálu σ

Photoconductors

za tmy počet volných nosičů úměrný teplotě → nenulová vodivost
 dopadající fotonový tok Φ_p → zvýšení vodivosti materiálu σ

Materiál polovodičového detektoru

Vlastní intristické, čistý polovodič bez příměsí, jen mezipásové přechody

Nevlastní extrinsické, dopovaný polovodič, přechody z donorové nebo akceptorové hladiny

Heterostruktury vrstvy různě dopovaných polovodičů, kvantové bariéry a jámy

< ロト < 同ト < ヨト < ヨト

Photoconductors

za tmy počet volných nosičů úměrný teplotě → nenulová vodivost
 dopadající fotonový tok Φ_p → zvýšení vodivosti materiálu σ

Materiál polovodičového detektoru

Vlastní intristické, čistý polovodič bez příměsí, jen mezipásové přechody

Nevlastní extrinsické, dopovaný polovodič, přechody z donorové nebo akceptorové hladiny

Heterostruktury vrstvy různě dopovaných polovodičů, kvantové bariéry a jámy

Photoconductors

za tmy počet volných nosičů úměrný teplotě → nenulová vodivost
 dopadající fotonový tok Φ_p → zvýšení vodivosti materiálu σ

Materiál polovodičového detektoru

Vlastní intristické, čistý polovodič bez příměsí, jen mezipásové přechody

Nevlastní extrinsické, dopovaný polovodič, přechody z donorové nebo akceptorové hladiny

Heterostruktury vrstvy různě dopovaných polovodičů, kvantové bariéry a jámy

Vlastní fotorezistory

Intrinsic photoconductors

- absorpce fotonů jen díky mezipásmovým přechodům, $h\nu>E_{\rm g}$
- tvar a vzdálenost elektrod minimalizace doby průchodu
- průhledný substrát osvětlený zezadu, beze ztrát na kontaktech

ustálený stav pro nosiče náboje: rychlost generace = rychlost mizení $\frac{\eta \Phi_{\rm p}}{Sd} = \frac{\Delta n}{\tau}$

< A.

∃ >

 Δn koncentrace a au doba života

ustálený stav pro nosiče náboje: rychlost generace = rychlost mizení $\frac{\eta \Phi_{\rm p}}{Sd} = \frac{\Delta n}{\tau}$ Δn koncentrace a τ doba života Změna vodivosti $\Delta \sigma$

$$\Delta \sigma = oldsymbol{e} \Delta n(\mu_{
m e} + \mu_{
m h}) = rac{\eta oldsymbol{e} au(\mu_{
m e} + \mu_{
m h})}{oldsymbol{Sd}} \Phi_{
m p}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\mu_{e,h}$ - pohyblivosti elektronu a díry

ustálený stav pro nosiče náboje: rychlost generace = rychlost mizení $\frac{\eta \Phi_{\rm p}}{Sd} = \frac{\Delta n}{\tau}$ Δn koncentrace a τ doba života Změna vodivosti $\Delta \sigma$ $\Delta \sigma = e \Delta n (\mu_{\rm e} + \mu_{\rm h}) = \frac{\eta e \tau (\mu_{\rm e} + \mu_{\rm h})}{2 \sigma} \Phi$

 $\mu_{e,h}$ - pohyblivosti elektronu a díry

イロト イポト イヨト イヨト

Ohmův zákon

$$j_{\mathrm{f}} = \Delta \sigma E, \qquad I_{\mathrm{f}} = j_{\mathrm{f}} S \qquad \rightarrow \qquad I_{\mathrm{f}} = \eta e \tau (\mu_{\mathrm{e}} + \mu_{\mathrm{h}}) \frac{\Phi_{\mathrm{p}} E}{d}$$

střední rychlost nosičů

$$v_{e,h} = \mu_{e,h} E$$

střední doba průchodu nosičů

$$\tau_{e,h} = \textit{d} / \textit{v}_{e,h}, \qquad \textit{v}_h \ll \textit{v}_e$$

イロト イヨト イヨト イヨト

э

střední rychlost nosičů

$$v_{e,h} = \mu_{e,h} E$$

střední doba průchodu nosičů

$$\tau_{e,h} = \textit{\textit{d}} / \textit{\textit{v}}_{e,h}, \qquad \textit{\textit{v}}_h \ll \textit{\textit{v}}_e$$

proud v obvodu

$$I = \eta e \tau (v_{\rm e} + v_{\rm h}) \frac{\Phi_{\rm p}}{d} \approx \eta e \Phi_{\rm p} \frac{\tau}{\tau_{\rm e}}$$

<ロト < 回ト < 回ト < 回ト

э

 $V_{\rm h} \ll V_{\rm e}$

Gain

$$G = \tau / \tau_{e} \rightarrow I \approx \eta e \Phi_{p} G$$

 $\tau < \tau_{e} - G < 1$, rychlá rekombinace nosičů
 $\tau > \tau_{e} - G > 1$, rychlý průchod, malá vzdálenost kontaktů

Černoch, Soubusta, Haderka (SLO)

DS – Vnitřní fotoefekt

- $v_h \ll v_e \rightarrow$ elektron dorazí na kontakt dřív než díra
- nový elektron z opačného kontaktu
- průchod celým polovodičem
- opakuje se to dokud rekombinace nebo díra na kontakt

A B > 4

A 1

- $v_h \ll v_e \rightarrow$ elektron dorazí na kontakt dřív než díra
- nový elektron z opačného kontaktu
- průchod celým polovodičem
- opakuje se to dokud rekombinace nebo díra na kontakt

4 A N

- $v_h \ll v_e \rightarrow$ elektron dorazí na kontakt dřív než díra
- nový elektron z opačného kontaktu
- průchod celým polovodičem
- opakuje se to dokud rekombinace nebo díra na kontakt

∃ ► ∢

- $v_h \ll v_e \rightarrow$ elektron dorazí na kontakt dřív než díra
- nový elektron z opačného kontaktu
- průchod celým polovodičem
- opakuje se to dokud rekombinace nebo díra na kontakt

イロト イポト イヨト イヨト

Example (Zisk fotorezistoru)

- $\bullet ~~d=1~\text{mm}, \qquad \nu_{\rm e}=10^7~\text{cm/s} \qquad \rightarrow \qquad \tau_{\rm e}\approx 10^{-8}~\text{s}$
- τ podle materiálu od 10⁻¹³ s po několik sekund
- G od 10⁻⁵ teoreticky do 10⁹
- prakticky ale jen do 10⁶ (hustotou proudu, nárazová ionizace a průrazem dielektrika)

э

Vlastnosti materiálů vlastních polovodičů

Materiál	$\varepsilon_{\rm r}$	au [S]	$\mu_{ m e}~[m cm^2/(m Vs)]$	$\mu_{ m h} [m cm^2/(m Vs)]$	$E_{\rm g}$ [eV]
Si	11.8	10 ⁻⁴	1 350	480	1.11
Ge	16	10 ⁻²	3 900	1 900	0.67
PbS	161	$2 imes 10^{-5}$	575	200	0.37
InSb	17.7	10 ⁻⁷	105	1 700	0.18
GaAs	13.2	$\geq 10^{-6}$	8 500	400	1.43
InP	12.4	$\sim 10^{-6}$	4 000	100	1.35

3

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Vlastnosti materiálů vlastních polovodičů

Materiál	$\varepsilon_{\rm r}$	au [S]	$\mu_{ m e}~[m cm^2/(m Vs)]$	$\mu_{ m h} [m cm^2/(m Vs)]$	$E_{\rm g}$ [eV]
Si	11.8	10 ⁻⁴	1 350	480	1.11
Ge	16	10 ⁻²	3 900	1 900	0.67
PbS	161	$2 imes 10^{-5}$	575	200	0.37
InSb	17.7	10 ⁻⁷	105	1 700	0.18
GaAs	13.2	$\geq 10^{-6}$	8 500	400	1.43
InP	12.4	$\sim 10^{-6}$	4 000	100	1.35

Spektrální citlivost

- závisí na η materiálu, dlouhovlnný limit dán E_{g}
- slitina Hg_xCd_{1-x}Te má $E_{\rm g} \in [1.55,0] \, {\rm eV} \to \lambda_{\rm g} \in [800,\infty]$ nm (HgTe je kov)
- posun λ_g podle teploty o 5 až 10 %, nad 1 µm chlazení

Citlivost \mathcal{R}

- úměrná G a η, tvar a velikost kontaktů, předpětí až po průrazné (potom fluktuace vodivosti, nárůst šumu, destrukce)
- materiály s velkou τ (nepřímý přechod, vysoká čistota bez rekombinačních center)

・ 同 ト ・ ヨ ト ・ ヨ ト

Citlivost \mathcal{R}

- úměrná G a η, tvar a velikost kontaktů, předpětí až po průrazné (potom fluktuace vodivosti, nárůst šumu, destrukce)
- materiály s velkou τ (nepřímý přechod, vysoká čistota bez rekombinačních center)

Doba odezvy

závisí na $\tau_{\rm e,h}$ a *RC* konstantě

$$R = rac{d^2}{\eta e \Phi au(\mu_{
m e} + \mu_{
m h})}, \quad C = rac{arepsilon_0 arepsilon_{
m r} S}{d}, \quad arepsilon_0 = 8.854 imes 10^{-12} \, {
m F/m}$$

 $\tau \sim G$ ale $\tau \sim 1/B \rightarrow GB \approx 10^9$ B – šířka pásma (rychlost odezvy, mezní frekvence $\frac{1}{2\pi\tau}$)

Nevlastní fotorezistory

Extrinsic photoconductors

- excitace elektronu z donorové hladiny do vodivostního pásu za vzniku vázané díry
- excitace díry z akceptorové hladiny do valenčního pásu za vzniku vázaného elektronu

větší pravděpodobnost termální excitace - chlazení až na 4 K

Absorpční koeficient $\alpha(\lambda) = \sigma_i(\lambda) N_{a,d}$

- $\sigma_i(\lambda)$ fotoionizační průřez, $N_{a,d}$ koncentrace dopantu
- koncentrace N₁ limitována rozpustností (10¹⁴–10²¹ cm⁻³) a nežádoucím nárůstem vodivosti (10¹⁵–10¹⁶ cm⁻³)
- absorpční koeficient menší cca o tři řády oproti vlastním polovodičům → zvětšení objemu

Dopant	Тур		Ge		Si
		$\lambda_{ m m}$ [µm]	$\sigma_{ m i} [10^{-15} { m cm}^2]$	$\lambda_{ m m}$ [µm]	$\sigma_{ m i} [10^{-15} { m cm}^2]$
Al	р			18.5	0.8
В	р	119	10	28	1.4
Be	р	52		8.3	0.005
Ga	р	115	10	17.2	0.5
In	р	111		7.9	0.033
As	n	98	11	23	2.2
Cu	р	31	1	5.2	0.005
Р	n	103	15	27	1.7
Sb	n	129	16	29	6.2

Homostruktury a heterostruktury

- vrstvení různě dotovaných polovodičů → potenciálové jámy (GaAs) a bariéry (AlGaAs)
- QWIP Quantum-well a QDIP quantum-dot infrared photodetector
- stlačený materiál (*stressed*) narušení krystalové mřížky, snížení excitační energie

< 17 ≥

- 4 B M 4 B M

Homostruktury a heterostruktury

 vrstvení různě dotovaných polovodičů → potenciálové jámy (GaAs) a bariéry (AlGaAs)

- QWIP Quantum-well a QDIP quantum-dot infrared photodetector
- stlačený materiál (stressed) narušení krystalové mřížky, snížení excitační energie

Komerční fotorezistory Tesly Blatná a.s.

Тур	$U_{\rm max}$ [V]	P _{max} [mW]	$\lambda_{\mathcal{R}\max}$ [nm]	$R_{10 \text{ k}} [\text{k}\Omega]$	R_{\min} [M Ω]
M0856 20	250	125	560	1327	2
P0860 200	320	125	600	130260	50
K0772 10	150	125	720	6.513.5	10

→ ∃ →

Obsah

- Fotodiody
- p-n fotodiody
- p-i-n fotodiody
- Lavinové fotodiody
- APD v Geigerově módu

э

Fotodiody

Photodiodes

Princip

- velká vodivost p a n typu
- vnitřní elektrické pole U₀
- ochuzená oblast bez volných nosičů
- jen mezipásmové přechody majoritního čistého polovodiče
- pohyb excitovaných nosičů díky vnitřnímu elektrickému poli
- nevykazují zisk

• • • • • • • • • • • •

p-n fotodiody

- závěrné napětí → sečtení potenciálů
- zvětšení ochuzené oblasti a odporu
- zmenšení kapacitance

< 17 ▶

문어 문

p-n fotodiody

- závěrné napětí → sečtení potenciálů
- zvětšení ochuzené oblasti a odporu
- zmenšení kapacitance

$$\mathcal{R} = \frac{\textit{I}_{f}}{\Phi_{r}} = \frac{\textit{e}\eta}{\textit{h}\nu}$$

< 17 ▶

∃ ► < ∃</p>

æ

- závěrné napětí → sečtení potenciálů
- zvětšení ochuzené oblasti a odporu
- zmenšení kapacitance

$$\mathcal{R} = \frac{\textit{I}_{f}}{\Phi_{r}} = \frac{\textit{e}\eta}{\textit{h}\nu}$$

$$I = I_{\rm s} \left[e^{(eU/k_{\rm B}T)} - 1 \right] - I_{\rm f}$$

 \textit{I}_{s} – saturovaný proud $\textit{I}_{f} = \eta \textit{e} \Phi_{p}$ – fotoproud

Oblasti absorpce podle transportu nosičů

- ochuzená oblast, transport vlivem vnitřního elektrického pole
- v bezprostřední blízkosti ochuzené oblasti může nosič náboje náhodně dodriftovat do oblasti s elektrickým polem, koeficient difuze $D_{e,h}$ [cm²/s], difuzní délka $L_{e,h} = \sqrt{D_{e,h}\tau_{e,h}}$ [cm]
- ve vzdálenosti větší jak Leh nepřispějí nosiče k proudu ve vnějším obvodu

Doba odezvy

- závisí na $\tau_{e,h}$ a *RC* konstantě stejně jako u fotorezistoru
- navíc doba pohybu nosičů vzniklých mimo ochuzenou oblast

Materiály fotodiod s mezní vlnovou délkou

diamantové vrstvy	230 nm	GaN	370 nm
$AI_xGa_{1-x}N$	200-370 nm	GaP	520 nm
Al _x Ga _{1-x} AsSb	0.75-1.7 μm	Si	1.1 µm
GalnAs	1.65 µm	Ge	1.8 µm
InAs	3.4 µm	InSb	6.8 µm
$Hg_{1-x}Cd_xTe$	1-15 µm		

Elektrické zapojení l

- 1 na prázdno zvýšení elektrického pole (napětí na kontaktech), citlivost ve V/W
- 2 na krátko přímé spojení, měří se fotoproud ip

Elektrické zapojení II

- 3 se závěrným napětím
- 4 se závěrným napětím s odporem v sérii

1

< 17 ≥

p-i-n fotodiody

širší ochuzená vrstva

- větší světlocitlivá oblast
- snížení C ale prodloužení $\tau_{\rm e,h}$
- menší poměr mezi difuzní a driftovou vzdáleností → rychlejší odezva

< 17 ▶

-

∃ ► < ∃ ►</p>

Vlastnosti p-i-n

æ

Vlastnosti p-i-n

Heterostruktury

- vrstva s větší šířkou zakázaného pásu průhledné okénko
- AlGaAs/GaAs 700-780 nm
- \ln_x Ga_{1-x}As/InP 1.3-1.6 µm, $\eta \sim$ 75 %, $\mathcal{R} \sim$ 0.9 A/W
- Hg_xCd_{1-x}Te/CdTe 3-17 μm, noční vidění, komunikace

Fotodiody s Schottkyho bariérou

- heteropřechod kovu a polovodiče, majoritní nosiče
- tenká ochuzená oblast poblíž povrchu detekce krátkých λ
- rychlá odezva (ps), malá RC konstanta (malý odpor kovu)

Technické parametry komerčních fotodiod

Technické parametry komerčních fotodiod

- aktivní oblast
- rozsah detekovaných vlnových délek
- mez linearity
- práh zničení
- délka náběžné a úběžné hrany impulzu
 (h) 0.5 (D)
 - $(t_{
 m r} pprox 0.35/B)$

dy APD – Avelanche photodiodes

- nadprůrazné napětí na p-n přechodu
- urychlení nosičů náboje
- nárazová ionizace
- lavinové násobení nosičů náboje

∃ ► < ∃ ►</p>

Koeficient ionizace a ionizační poměr

 $\alpha_{e,h}$ koeficient ionizace elektronů a děr [cm⁻¹]

- roste s elektrickým polem
- klesá s teplotou

・ 同 ト ・ ヨ ト ・ ヨ ト

Koeficient ionizace a ionizační poměr

 $\alpha_{e,h}$ koeficient ionizace elektronů a děr [cm⁻¹]

- roste s elektrickým polem
- klesá s teplotou

 ${\cal K}~$ ionizační poměr ${\cal K}=\frac{\alpha_h}{\alpha_e}$

- $\alpha_h \ll \alpha_e, \, \mathcal{K} \ll$ 1, excitují jen elektrony, lavina směrem k n
- $\alpha_h \gg \alpha_e, \mathcal{K} \gg$ 1, excitují jen díry, lavina směrem k p
- $\alpha_{\rm h} \approx \alpha_{\rm e}, \, \mathcal{K} \approx$ 1, excitují oba nosiče
 - větší zisk
 - delší odezva (menší šířka pásma B)
 - více šumový, nestabilní, možnost lokálního průrazu a poškození detektoru

< 回 ト < 三 ト < 三

SAM APD Separate Absorption-Multiplication APD

- u APD velikosti světlocitlivé plochy × multiplikační oblasti
- z materiálů s malým \mathcal{K}
- ve velké slabě dotované oblasti (π) elektrické pole malé na nárazovou ionizaci – detekce
- úzká multiplikační oblast s velkým elektrickým polem lavinové zesílení

SAM APD Separate Absorption-Multiplication APD

- u APD velikosti světlocitlivé plochy \times multiplikační oblasti
- z materiálů s malým K
- ve velké slabě dotované oblasti (π) elektrické pole malé na nárazovou ionizaci – detekce
- úzká multiplikační oblast s velkým elektrickým polem lavinové zesílení

Zisk APD

• $\mathcal{K} = 0 \rightarrow j_e(x) = j_e(0)e^{\alpha_e x}$ $G = e^{\alpha_e d}$ $j_e(x) + j_h(x) = konst.$ • multiplikace elektronů i děr $1 - \mathcal{K}$

 $G = \frac{1 - \mathcal{K}}{e^{-(1 - \mathcal{K})\alpha_{\rm e}d} - \mathcal{K}}$

• $\mathcal{K} = 1 \rightarrow G = \frac{1}{1-\alpha_e d}$ pro $\alpha_e d = 1$ je $G = \infty$ \rightarrow nestabilní situace, možnost zničení detektoru

Černoch, Soubusta, Haderka (SLO)

Zisk APD

• $\mathcal{K} = 0 \rightarrow j_{e}(x) = j_{e}(0)e^{\alpha_{e}x}$ $G = e^{\alpha_e d}$ $j_{\rm e}(x) + j_{\rm h}(x) = konst.$ multiplikace elektronů i děr $G = \frac{1 - \mathcal{K}}{e^{-(1 - \mathcal{K})\alpha_e d} - \mathcal{K}}$ • $\mathcal{K} = 1 \rightarrow G = \frac{1}{1 - \alpha d}$

Zisk APD

•
$$\mathcal{K} = 0 \rightarrow j_e(x) = j_e(0)e^{\alpha_e x}$$

 $G = e^{\alpha_e d}$
 $j_e(x) + j_h(x) = konst.$
• multiplikace elektronů i děr
 $G = \frac{1 - \mathcal{K}}{e^{-(1 - \mathcal{K})\alpha_e d} - \mathcal{K}}$
• $\mathcal{K} = 1 \rightarrow G = \frac{1}{1 - \alpha_e d}$
pro $\alpha_e d = 1$ je $G = \infty$
 \rightarrow nestabilní situace, možnost
zničení detektoru

イロト イヨト イヨト イヨト

æ

୬ < (~ 30/33

æ

Si 700-900 nm, \mathcal{K} mezi 0.1 a 0.2 ale i 0.006

InGaAs 1.3-1.6 μ m, větší \mathcal{K} i citlivost, střední šum, pracovní napětí 10⁵ V/cm

Černoch, Soubusta, Haderka (SLO)

Doba odezvy APD

- **1** doba průchodu ochuzenou vrstvou šířky $d_{\rm o}$
- doba driftu poblíž ochuzené vrstvy
- In the second second
- Charakteristická doba lavinového násobení $au_{
 m m}$

Doba odezvy APD

- doba průchodu ochuzenou vrstvou šířky d_o
- doba driftu poblíž ochuzené vrstvy
- In the second second
- Charakteristická doba lavinového násobení τ_m

Doba odezvy APD

- doba průchodu ochuzenou vrstvou šířky d_o
- doba driftu poblíž ochuzené vrstvy
- In the second second
- 🕘 charakteristická doba lavinového násobení $au_{
 m m}$

- vysoké závěrné napětí, dopad fotonu → velká lavina, která by zničila detektor, nutné aktivní či pasivní zhášení
- dokáží zaznamenat dopad jednotlivých fotonů
- pro zobrazování, navádění satelitů, kvantová informatika
- binární dopadl foton × nedopadl foton
- samovolná (temná) detekce termální excitací nebo afterpulse

- vysoké závěrné napětí, dopad fotonu → velká lavina, která by zničila detektor, nutné aktivní či pasivní zhášení
- dokáží zaznamenat dopad jednotlivých fotonů
- pro zobrazování, navádění satelitů, kvantová informatika
- binární dopadl foton × nedopadl foton
- samovolná (temná) detekce termální excitací nebo afterpulse

32/33

- vysoké závěrné napětí, dopad fotonu → velká lavina, která by zničila detektor, nutné aktivní či pasivní zhášení
- dokáží zaznamenat dopad jednotlivých fotonů
- pro zobrazování, navádění satelitů, kvantová informatika
- binární dopadl foton × nedopadl foton
- samovolná (temná) detekce termální excitací nebo afterpulse

32/33

- vysoké závěrné napětí, dopad fotonu → velká lavina, která by zničila detektor, nutné aktivní či pasivní zhášení
- dokáží zaznamenat dopad jednotlivých fotonů
- pro zobrazování, navádění satelitů, kvantová informatika
- binární dopadl foton × nedopadl foton
- samovolná (temná) detekce termální excitací nebo afterpulse

- vysoké závěrné napětí, dopad fotonu → velká lavina, která by zničila detektor, nutné aktivní či pasivní zhášení
- dokáží zaznamenat dopad jednotlivých fotonů
- pro zobrazování, navádění satelitů, kvantová informatika
- binární dopadl foton × nedopadl foton
- samovolná (temná) detekce termální excitací nebo afterpulse

32/33

Materiály jednofotonových APD

Si 0.4-1 µm, $\eta_{max} \approx 75$ %, temné detekce $< 50 \text{ s}^{-1}$, rychlé (50 ns aktivní zhášení) InGaAs/InP 1.3-1.6 µm, $\eta_{max} \approx 20$ %, temné detekce 5 000 s⁻¹, pomalejší

- Ge a Si-Ge pro telekomunikační oblast 1.3-1.6 µm
- pro IČ do 4 μm detektor s absorpční oblastí z InAsSb, multiplikační oblast z AlGaAsSb na substrátu z GaSb
- GaN a SiC pro UV, SiC odolný velkým teplotám a nehostinnému prostředí
- lepší kvantová účinnost na úkor opakovací frekvence